
 1

Large Display User Experience
George Robertson, Mary Czerwinski, Patrick Baudisch, Brian Meyers,

Daniel Robbins, Greg Smith, and Desney Tan
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
1-425-703-1527

{ggr, marycz, baudisch, brianme, dcr, gregsmi, desney} @Microsoft.com

ABSTRACT
As large displays become more affordable, researchers
are investigating the effects on productivity, and
techniques for making the large display user experience
more effective. Recent work has demonstrated
significant productivity benefits, but has also identified
numerous usability issues that inhibit productivity.
Studies show that larger displays enable users to create
and manage many more windows, as well as to engage
in more complex multitasking behavior. In this paper,
we describe various usability issues, including losing
track of the cursor, accessing windows and icons at a
distance, dealing with bezels in multimonitor displays,
window management, and task management. We also
present several novel techniques that address these
issues and make users more productive on large display
systems.

Author Keywords
Large Displays, User Experience, Window Manage-
ment, Task Management

INTRODUCTION
The increasing graphical processing power of the PC
has fueled a powerful demand for larger and more ca-
pable display devices. Despite the increasing afforda-
bility and availability of larger displays, most users’
display space represents less than 10% of their physical
workspace area. Similarly, many of our current inter-
faces are designed assuming a relatively small display
providing access to a much larger virtual world. How
might users cope with and benefit from display devices
that provide 25% to 35% of their physical desk area or
perhaps one day cover an entire office wall? This ques-
tion has been an issue of interest for many researchers
[4, 5, 6, 8, 9]. To examine this issue, we evaluated us-
ability issues for large displays and developed a series

of research prototypes that address various issues we
discovered.

Because the ability to work with multiple displays has
been supported for some time in several operating sys-
tems (OS) and due to the advancements of graphic
cards over the past ten years or so, a growing number
of computer users take advantage of multiple monitor
(multimon) capabilities. Our own survey research indi-
cates that as many as 20% of the Windows™ OS “in-
formation worker” users today run multiple monitors
from one PC or laptop. Most users are becoming aware
that running multimon is an option. The two top rea-
sons participants in our survey cited for not running
multiple monitors included not having enough physical
desktop space and having price concerns. Display
manufacturers are predicting trends for the price of
liquid crystal displays (LCDs), which have smaller
desktop footprints, to drop dramatically over the next

Figure 1. “DSharp” - A Wide Screen Multi-
Projector Display

 2

four years. This price drop has already begun and the
average computer consumer can now readily get 25%
more pixels by buying dual 17″ LCDs than by buying
one 21″ LCD for approximately the same price. Since
all laptop manufacturers also are selling their products
with built-in support for multiple monitors, we may see
a dramatic increase in the number of users who will be
opting for more screen real estate (pixels) by running
multimon configurations, and we need to develop user
interfaces that take advantage of this possibility.

Grudin [5] documents the usage patterns of CAD/CAM
programmers and designers running multiple monitors.
Despite the limitations observed in current OS support,
multimon users clearly love the extra screen real estate,
and they adapt their windows and application layouts
optimally for the number, size, orientation and resolu-
tion of their displays. Most current multimon users
claim they would never go back to a single monitor.

Czerwinski et al. [4] document a series of user studies
demonstrating productivity benefits from using multi-
mon or large displays with an eye toward novel soft-
ware applications that might better support the way
information workers multitask between their projects
and applications. These studies showed a 12% signifi-
cant performance benefit as well as a satisfaction pref-
erence for large displays.

While these studies demonstrate the advantages of us-
ing large displays, we have found in our work that
there are also serious usability issues with current
software systems. In the remainder of this paper, we
describe basic usability issues as well as proposed solu-
tions for key problems, including keeping track of the
cursor, accessing distal windows and icons, dealing
with bezels in multimon configurations, and managing
windows and tasks.

There are two basic approaches to providing a large
display experience. Wall-sized displays are often seam-
less display surfaces created using multiple tiled pro-
jectors. These systems tend to use touch or pen input.
Large desktop displays are often multiple monitor con-
figurations with seams between the monitors caused by
the monitor bezels. These systems tend to use keyboard
and mouse for input. Most of the usability issues and
solutions presented here are relevant for both ap-
proaches. The seams in multiple monitor configura-
tions offer additional challenges and opportunities.

COGNITIVE BENEFITS OF LARGE DISPLAYS
In addition to productivity benefits mentioned earlier,
Czerwinski et al. [4] also document results showing
that larger displays lead to improved recognition mem-
ory and peripheral awareness.

Tan et al. [13] report a series of studies demonstrating
the advantages of large displays on 3D navigation in
virtual worlds. They show that while large displays
increase performance for all users on average, females
improved so much that the normal advantage male us-
ers have over females in virtual 3D navigation disap-
pears when using large displays. These studies reveal
that the wider fields of view provided by large displays
lead to increased ability to process optical flow cues
during navigation, cues that females are more reliant
upon than males. They ran their studies on DSharp, a
seamless wide screen multi-projector display shown in
Figure 1, and found that the optimal field of view for
the tasks tested was about 100 degrees, the equivalent
of a triple monitor display. Thus, large displays actu-
ally serve to eliminate a gender bias, at least for the set
of tasks tested.

LARGE DISPLAY USABILITY ISSUES
Several of the usability issues we have identified and
describe below were observed while evaluating the
productivity benefits of large displays using formal
laboratory studies [4]. We also identified usability is-
sues by developing and deploying windowing system
logging tools to observe real Windows users in the
field, and by analyzing product support calls.

Gathering Data
It is difficult to adequately design for large displays
and multiple monitor systems without understanding
how multimon users differ from, or are similar to, sin-
gle monitor users. Therefore, we deployed a tool,
called VibeLog [7], to a group of single monitor and
multimon users to log window management activity.
We focused on window management activity in order
to discover higher-level patterns of activity for differ-
ent sized displays (e.g., number of opened windows,
frequency of window activation, and frequency of win-
dow movement). Analysis of the data collected from
this tool revealed that usage of interaction components
may change with an increase in number of monitors
and that window visibility can be a useful measure of
user display space management activity, especially for
multiple monitor users. The results from this analysis

 3

begin to fill a gap in research about real-world window
management practices, and have influenced the design
choices for many of the prototypes discussed in this
paper, as well as products in development.

Basic Usability Issues
The usability issues we have observed fall into six
broad categories:

1. Losing track of the cursor. As screen size increases,
users change mouse acceleration to compensate and it
becomes hard to keep track of where the cursor is.

2. Bezel problems with multimon displays. Bezels in-
troduce visual distortion when windows cross them and
interaction distortion as the cursor crosses them.

3. Distal access to information. As screen size in-
creases, it becomes increasingly more difficult and
time-consuming to access icons, windows, and the
Start Menu across large distances.

4. Window management problems. Large displays lead
to notification and window creation problems, as win-
dows and dialog boxes pop up in unexpected places.
Window management is made more complex on mul-
timon displays because users wish to avoid having
windows placed so that they cross bezels.

5. Task management problems. As screen size in-
creases, the number of windows that are open increases
and users engage in more complex multitasking behav-
ior – better task management mechanisms become a
necessity.

6. Configuration problems. The user interface for con-
figuring multimon displays is overly complex and hard
to use. When a monitor is removed from the display
configuration, it is possible to lose windows off-screen.
Also, different monitors may have different pixel den-
sities and there is currently poor support for dealing
properly with this sort of heterogeneity.

In the sections that follow, we will describe research
prototypes that address the problems raised by the first
five of these categories of usability issues.

WHERE IS MY CURSOR?
As screen size increases, faster mouse movement and
higher mouse acceleration settings are used in order to
traverse the screen from side to side reasonably fast.
The faster the mouse cursor moves, however, the more
likely users are to lose track of it. In addition, as screen

size increases, it becomes increasingly difficult to lo-
cate a stationary cursor.

High Density Cursor
One key reason the cursor is lost during movement is
that the cursor is rendered only once per frame, which
makes it visually jump from one rendering position to
the next, with the distance increasing with the cursor's
speed. High Density Cursor [3] addresses this issue by
using temporal supersampling. By filling the space
between the current cursor position and the previous
one with additional fill-in cursor images, the high den-
sity cursor bridges the gaps between cursor positions,
resulting in an effect similar to increasing the display
frame rate. Since all cursor images exist only for a sin-
gle frame, the high density cursor does not introduce
any lag, which makes it different from similar-looking
techniques, such as the Microsoft Windows mouse
trail, as shown in Figure 2.

Figure 2. High density cursor compared to Windows

mouse trail.

Auto-Locator Cursor
To handle the problem of finding a stationary cursor,
Windows provides a locator function as part of the
standard Mouse Properties. If this function is enabled,
it will show the cursor location whenever the control
key is pressed. It shows the location using an animated
circle centered on the cursor, starting large and shrink-
ing over the course of a one second animation. While
this works well for a stationary cursor, it works less
well for a cursor that the user simply moved too fast
and lost track of. In that case, the user’s hand is on the
mouse rather than the keyboard, so an extra action is
required.

 4

To solve this problem we introduce an Auto-Locator
Cursor . Whenever the cursor moves a long distance at
a rapid speed, it automatically invokes a similar ani-
mated location indicator. Since this happens automati-
cally only for fast and long-distance moves, it only
appears when it is needed and requires no additional
action on the part of the user.

DISTAL ACCESS
As display size increases, it becomes increasingly more
difficult to access information at a distance. In the ex-
treme case, consider a wall-sized display with the user
standing near the lower right corner. To interact with a
window or icon in the upper left corner, the user must
physically move to the far side of the display and may
not be physically able to reach the upper parts of the
display. But, this problem exists even in the case of a
more modest three monitor configuration (triplemon).
Accessing an icon or window at a distance requires
moving the cursor a long distance, which suffers from
the problems of losing the cursor mentioned in the pre-
vious section and takes time. The problem can also be
exacerbated by mixed monitor types. Consider, for
example, a large touch sensitive display like the
SmartBoard combined with a smaller display which
has no touch input. It would be difficult, or impossible,
to drag an object from the touch surface onto the non-
touch surface.

We have developed four prototypes that solve these
various problems. The Missile Mouse provides a way
to move the cursor a long distance with only a small
hand motion. The Target Chooser provides a way to
select a window from a distance with very small hand
movements. Drag-and-pop is a technique for doing
drag and drop actions at a distance. And Tablecloth is a
technique that allows the user to temporarily move
portions of the desktop to the user for interaction, and
then return them to their normal location.

Missile Mouse
Moving the mouse a long distance on a large display
takes time and much hand movement, often requiring
mouse clutching. As mentioned above, compensatory
higher mouse acceleration settings lead to the user los-
ing track of the cursor. Missile Mouse is an alternative
technique that allows a small mouse movement to
“launch a missile” (the cursor) across the screen. The
cursor continues moving in the direction and at the
speed of the original motion until the user reacquires

control of the cursor by moving the mouse again. The
Missile Mouse behavior is enabled by holding down
the shift key while initiating mouse movement. With a
little practice, we believe it is possible to move to any
location on the screen with minimal hand motion (al-
though this has not been formally tested yet).

A variation of the Missile Mouse is a “wire-guided”
missile mouse. This version is launched in the same
way, but as the cursor is in flight the user can control
its direction of movement with small motions of the
mouse, analogous to the directional guiding done with
a wire-guided missile.

Target Chooser
We know that larger displays lead to more windows
being open and un-minimized. This makes it more dif-
ficult to select a window for interaction. The desired
window may be at a distance, requiring time to acquire,
or may be obscured by other windows. The standard
Windows Alt-Tab solution no longer works well be-
cause of the number of windows involved.

Target Chooser is a technique that addresses this prob-
lem. Like Missile Mouse, it is initiated by holding
down a modifier key (like the shift key) while holding
down the left mouse button and moving the mouse. In
this case, the mouse movement casts a ray across the
screen and tentatively selects the window whose center
lies closest to the cast ray. That window is highlighted
by drawing a few visual cues on top of the window.
This highlighting is performed even if the window is
obscured behind other windows, and includes showing
the window title. The user can then use small mouse
movements to alter the tentative selection. Moving the
mouse up or down will select other windows above or
below the initial selection. Moving the mouse right or
left will select other windows to the right or left of the
initial selection. Once the desired window is tentatively
selected, the user releases the mouse button and the
window is selected and the cursor is placed in that
window.

Drag-and-pop
Drag-and-pop [2] is a technique designed to accelerate
drag-and-drop interactions on large screens. By animat-
ing potential targets and bringing them to the dragged
object, drag-and-pop reduces the user effort required
for dragging an object across the screen to a desired
target. To preserve users' spatial memory, targets are
not moved away from their original location, but are

 5

instead stretched using a rubber band-like visualization,
as shown in Figure 3.

Figure 3. Drag-and-pop showing relevant icons rubber-
banded toward object being dragged.

Figure 4. Tablecloth on a wall-sized display -- user is
standing in center and accessing left part of display.

Tablecloth
Tablecloth provides users with access to distant screen
content by adapting the notion of window scrolling to
the desktop as a whole. Users interact only with the
area right in front of them, which is conveniently ac-
cessible. To interact with all other content, Tablecloth
allows users to scroll the screen from within the focus
area until that content appears in the focus area, similar
to pulling a tablecloth in order to access a salt shaker at

the other end of the table. Tablecloth offers a variety of
incremental (dragging the screen, scrollbar, "hyper
panning") and absolute (target buttons with corre-
sponding shortcuts) methods for panning the screen. It
also allows users to drag objects between screen areas
by invoking panning methods during drag interactions.

WHAT ABOUT THE BEZELS?
The bezels in a multimon display present both oppor-
tunities and problems. The primary opportunity is for
users to organize their work into different activities that
are partitioned onto the different monitors [5]. In this
case, the bezels may actually help to differentiate be-
tween these different activities.

The problems occur when crossing bezels. If a window
is too big to fit on a single monitor, or if a window is
not carefully placed, a window may lie across one or
more bezels. At the points where a window crosses a
bezel, there is a visual discontinuity that makes it hard
to read text or correctly perceive patterns in an image.
In addition, when the cursor is moved across a bezel, it
often appears to be deflected in its path, because there
is no virtual space corresponding to the physical space
occupied by the bezel.

We have developed several techniques to address these
problems. Snapping and Bumping are used to keep
windows from accidentally being placed across a bezel.
Mouse Ether is a technique for compensating for the
apparent warping of the cursor as it is moved across a
bezel. And OneSpace is a technique that compensates
for distortions that occur in images that cross bezels.

Snapping and Bumping
Larger displays offer opportunities for more complex
window layout arrangements. In the case of multimon
displays, users try to avoid placing windows so that
they cross bezels, but this is a time consuming and er-
ror prone activity. In addition, it is easy to waste screen
real estate during window layout activity. We introduce
two techniques for making these tasks easier.

Snapping is a technique that allows a user to easily
snap a window to a bezel, another window, or any dis-
play edge. Snapping is enabled whenever a user is
moving a window. As an edge of the window being
dragged nears a bezel, window, or display edge, it will
snap to that target. The user can drag beyond the target
to unsnap it. This technique makes it much easier to
avoid leaving a window across a bezel.

 6

Bumping is a technique that allows a user to move a
window to another display or to nearby empty space.
The user indicates the direction and type of bump and
the system finds the appropriate place to move the
window. Since the user is not manually moving the
window, leaving a window across a bezel is easily
avoided.

Figure 5. Mouse Ether showing the desired apparent
shortest path.

Mouse Ether
When acquiring a target located on a different screen,
multimon users face a challenge: differences in resolu-
tion, vertical offsets, and horizontal offsets between
screens cause the mouse pointer to get warped, making
the attempt to acquire the target difficult. Mouse Ether
eliminates warping effects by applying appropriate
transformations to all mouse move events. That is, as
the cursor crosses a bezel, Mouse Ether moves the cur-
sor so that it follows the perceived trajectory it was on
in the first monitor, as shown in Figure 5. A user study
demonstrated that mouse ether improved participants’
performance on a target acquisition task across two
screens running at different resolutions by up to 28%.
Seven of the eight participants also strongly preferred
using Mouse Ether.

OneSpace
Since the computer's geometrical model of the monitor
setup does not take the monitors' bezels into account,
images displayed across multiple monitors look dis-
torted. OneSpace addresses this issue by making the
computer's geometric model reflect the actual physical
distance between monitors on the user's desk. While
this approach requires hiding image material located
"behind" the bezels, it allows users to view image ma-
terial distortion free, as shown in Figure 6. OneSpace is
meant to be applied selectively to the content windows

of image viewers, image processing tools, background
images, CAD tools, map viewers, or 3D-games; control
elements, as well as other applications running on the
same desktop, would continue to run in the traditional
clipping-free space.

Mouse Ether and OneSpace both require a geometric
calibration step to inform the system of the exact place-
ment of the bezels. As part of this configuration step,
the red arrow in Figure 6 is adjusted so that it appears
aligned across the bezels. This need be done only once
for a given configuration of multiple monitors.

Figure 6. OneSpace used to eliminate distortion in image
across a bezel.

WINDOW MANAGEMENT
Large displays pose a variety of window management
issues. When the user invokes an action that creates a
dialog box or a new window, where does that window
get placed? If the window or dialog box is placed in an
unexpected location at a distance from the user’s cur-
rent focus of attention, the user may not even notice it
and may assume that the system is broken in some
way. On the other hand, if the window is placed di-
rectly in front of the current window or cursor position,
it may obscure content that the user wished to keep
visible as part of the current multi-window activity.
While research continues on better context-awareness
for initial window placement, tools such as Snapping
and Bumping (described earlier) and GroupBar and
Scalable Fabric (described below) can help to make
overall window manipulation more efficient and make
re-positioning incorrectly-placed windows easier.

 7

Another problem posed by multimon displays is the
ambiguous nature of the “maximize” window opera-
tion. Does it mean maximize to the full screen size or
to the monitor the window is currently on? If the user
chooses to maximize on the current monitor, then there
is an additional problem if the user wants to move the
maximized window to another display. Currently, the
user must un-maximize the window, move it, then re-
maximize it. This is another case where techniques like
Bumping or GroupBar Maximize can simplify window
management on large displays. We have also built an
alternative to the maximize button that is tri-state; it
first maximizes to the current monitor, then to the
whole screen, and finally returns to the original size.

Start Anywhere
Another problem with window management on large
displays, particularly multimon displays, is where the
TaskBar and Start Menu appear. If there is a single
TaskBar, then the Start Menu may be quite a distance
away from the user, making it difficult to invoke a va-
riety of actions available from the Start Menu.

We introduce an alternative technique, called Start
Anywhere, which allows the Start Menu to be invoked
wherever the cursor is currently located, using the
Windows key or some designated mouse or keyboard
key. Using this technique, no mouse movement is re-
quired to invoke the Start Menu.

WinCuts
Each window on a computer desktop provides a view
into some information. Although users can currently
manipulate multiple windows, we assert that being able
to spatially arrange smaller regions of these windows
could help users perform certain tasks more efficiently.
This is particularly important on large displays where
the windows in question might be quite far from each
other. WinCuts [14] is a novel interaction technique
that allows users to replicate arbitrary regions of exist-
ing windows into independent windows. Each WinCut
is a live view of a region of the source window with
which users can interact. Users can also share WinCuts
across multiple devices, as shown in Figure 7.

To create a new WinCut, users hold down a keyboard
modifier combination which brings up a semi-
transparent tint over the entire desktop. They then click
and drag the mouse over a region of a window to spec-
ify a rectangular region of interest (ROI). When they
are satisfied with the ROI, they release the keyboard

keys. The tint disappears and a new WinCut appears on
top of the source window, slightly offset from the loca-
tion of the ROI. The source window is unaffected. The
WinCut is differentiated from regular windows by a
green dotted line around the content region of the
WinCut. Users may make as many WinCuts as they
wish, either from a single source window, or from mul-
tiple windows.

Figure 7. WinCuts used to send portions of two personal
laptops to a shared large display.

Each WinCut is a separate window and can be man-
aged much like a regular window. Unlike other win-
dows, however, maximizing or resizing a WinCut pre-
serves the relevant information that is shown and in-
stead rescales the content within the WinCut. This al-
lows the user to make the information fill as little or as
much space as they would like.

WinCuts contain live representations of the content that
appears within the ROI on the source window. In other
words, the user can not only view updating content
from the source window through the WinCut, but can
also directly interact with content in it, just as they
would in the original window. Since this view is teth-
ered to the source window and not a region of the
screen, users can move and even hide the source win-
dow without affecting the WinCut. This flexibility
makes it possible to arrange regions of interest near
each other, in spite of the fact that the source windows
may be quite far apart on a large display.

WinCuts bears some similarity to VNC [10]. VNC is
used to share either whole windows or the entire desk-
top and is based on the contents of the frame buffer;
hence sharing overlapped windows is problematic.

 8

WinCuts, on the other hand, allows the sharing of re-
gions of windows and uses off-screen rendering, hence
will work correctly for overlapped windows.

TASK MANAGEMENT
While working on their high-level tasks, users need
easy access to particular sets of windows and applica-
tions that contain relevant information. Hence, we as-
sert that an effective task management system should
provide convenient mechanisms for users to group
relevant sets of windows, to organize the groups and
windows within the groups, to switch between groups,
and to lay out the groups and windows on the screen.
Effective multi-window task management is critical to
a successful user experience on large displays.

Apple Exposé [1] is a window management system that
provides some assistance for dealing with large num-
bers of opened windows. However, it is window and
application based, rather than task-based. Hence, it
does not address the deeper question of how a user can
organize and manage tasks on large displays.

In this section, we present two systems that explore
different facets of task management for large displays:
GroupBar and Scalable Fabric. GroupBar adds new
semantics to the existing Microsoft Windows Taskbar
for organizing and managing tasks. Scalable Fabric
uses scaling and a focus-in-context metaphor to visual-
ize groups of related windows. In this system, all tasks
are scaled and located in the periphery so that they are
simultaneously visible.

GroupBar
We designed GroupBar [12] with the goal of providing
task management features by extending the current
Windows Taskbar metaphor. GroupBar preserves basic
Taskbar tile functionality, presenting one tile for each
open window in the system, and showing the currently
‘active’ window tile in a darker, depressed-button state.
Users can click on any tile to activate the correspond-
ing window or to minimize the window if it is already
active. Going beyond current Taskbar functionality to
offer task management support, GroupBar allows users
to drag and drop tiles that represent open windows into
high-level tasks called ‘Groups’, represented by the
green group tab shown in Figure 8. This group control
allows users to switch between tasks with a single
mouse click and perform window operations (mini-
mize, maximize, close) on the entire group at once.

With GroupBar we wanted to allow users to group and
regroup windows easily and quickly, and then allow
them to operate on groups of windows (or tasks) as
though they were a single unit. We thought that by
incorporating a wider array of spatial arrangement
preferences, offering users a higher-level organiza-
tional structure (the group), and extending existing
window manipulation functions to the group level, we
could design an improved window management ex-
perience that built upon the existing Taskbar metaphor.

Figure 8: Dragging a window tile onto another tile com-
bines both into a “Group”.

Scalable Fabric
Scalable Fabric [11] is a system based on managing
multi-window “tasks” on the Windows desktop, this
time using a focus-plus-context display to allocate
screen real estate in accordance with users’ attention.
Scalable Fabric allows users to leave windows and
clusters of windows open and visible at all times via a
process of scaling down and moving the windows to
the periphery. Scalable Fabric is a focus-plus-context
display in the sense that users focusing their attention
on a primary task are provided with the context of
other work (i.e., competing or potentially related tasks)

 9

displayed in their periphery. This use of the periphery
leverages both the user’s spatial memory and also their
visual recognition memory for images in order to fa-
cilitate task recognition and location.

 Figure 9. Scalable Fabric showing three task clusters in
the periphery.

In Scalable Fabric, the user defines a central focus area
on the display surface by moving periphery boundary
markers to desired locations (see Figure 9). The user’s
choice of focus area location and size is influenced by
the configuration and capabilities of the physical dis-
plays. For example, on a triplemon display, users may
prefer to define the central monitor as the focus area,
having no upper or lower peripheral regions and using
the side monitors as the only peripheral regions.

Within the focus area, windows behave as they nor-
mally do on the Windows desktop. The periphery con-
tains windows and clusters of windows, or tasks, which
are not currently in use, but may be put to use at any
time. Windows in the periphery are smaller so that
more tasks can be held there when the user is focusing
on something else. With this metaphor, we believe us-
ers will rarely need to close or minimize windows in
the traditional sense. Users can take advantage of extra
screen real estate to allow the peripheral windows to
always be visible.

When a user moves a window into the periphery, it
shrinks monotonically with the distance from the fo-
cus-periphery boundary, getting smaller as it nears the
edge of the screen. When the user clicks on a window
in the periphery, it returns to its last focus position; this
is the new ‘restore’ behavior, and is accomplished with
an animation of the window moving from one location
to the other. When the user ‘minimizes’ a window in
the focus area by clicking the window’s ‘minimize’

button, it returns to its last peripheral position. These
behaviors are similar to the management of sheets in
ZoomScapes [6], but have been generalized to deal
with windows and task management.

APPLICATION USE OF LARGE DISPLAYS
In the preceding sections, we described a series of large
display usability issues and prototype solutions to each
of these problems. What remains is to consider how
applications might be designed to fully utilize large
displays. There are existing applications that effec-
tively use large displays, like power plant control,
weather monitoring, financial systems, and software
development environments. Each of these cases in-
volves complex information presentations that are not
easily done on small displays.

Figure 10. SimulBrowser on a nine monitor display, with
the selected pages on the lower left monitor.

The question we pose is whether there are everyday use
applications that could effectively use large displays.
One example that we developed is SimulBrowser, an
extension to Internet Explorer designed specifically for
large displays. Figure 10 shows an example of Simul-
Browser running on a nine monitor display showing
the results of a search for “digital cameras”. This can
be configured for any multimon display or any large
display (simply by indicating how the space should be
divided). When the user does a web search, the top
eight results are displayed in eight of the monitors. The
ninth monitor is used to hold snapshots of selected
pages of interest. That is, the user can mark any of the
currently displayed pages as interesting and the snap-
shot(s) will be moved to the ninth monitor. The user

 10

can then advance to the next eight results and so on.
When the user wants to compare the selected pages,
another operation will replace the search results dis-
plays with the selected pages. SimulBrowser is an ex-
ample of an everyday use application that has been
designed or tuned for large displays. Much work re-
mains to be done to explore the design space of such
large-display-aware applications.

CONCLUSIONS
There is a clear trend in the industry toward larger dis-
plays, either as a single display surface or in multiple
monitor configurations. There is also evidence that
larger displays increase user productivity, aid user rec-
ognition memory, and in some cases can eliminate
gender bias (e.g., in 3D virtual environment naviga-
tion). User studies have identified numerous usability
problems that inhibit even better user productivity,
including: keeping track of the cursor, distal access to
windows and icons, dealing with bezels, window man-
agement, and task management. In this paper, we have
presented a series of research prototypes that demon-
strate techniques that solve each of these problems. The
work of integrating these various prototype solutions
into one system remains to be done. Correcting these
problems goes a long way toward improving the user
experience on large displays.

REFERENCES
1. Apple Exposé,

http://www.apple.com/macosx/features/expose/.
2. Baudisch, P., Cutrell, E., Robbins, D., Czerwinski,

M., Tandler, P., Bederson, B., and Zierlinger, A.
Drag-and-Pop and Drag-and-Pick: techniques for
accessing remote screen content on touch- and pen-
operated systems. In Proceedings of Interact 2003,
pp.57-64.

3. Baudisch, P. Cutrell, E, and Robertson, G. High-
density cursor: a visualization technique that helps
users keep track of fast-moving mouse cursors. In
Proceedings of Interact 2003, pp. 236-243.

4. Czerwinski, M., Smith, G., Regan, T., Meyers, B.,
Robertson, G. and Starkweather, G. (2003). Toward
characterizing the productivity benefits of very
large displays. In Proceedings of Interact 2003, pp.
9-16.

5. Grudin, J. (2002). Partitioning digital worlds: Focal
and peripheral awareness in multiple monitor use.
In Proceedings of CHI 2002, pp. 458-465.

6. Guimbretiere, F., Stone, M., and Winograd, T.
(2001). Fluid interaction with high-resolution wall-
size displays. In Proceedings of UIST 2001, pp. 21-
30.

7. Hutchings, D., Czerwinski, M., Smith, G., Meyers,
B., Robertson, G Display space usage and window
management operation comparisons between single
monitor and multiple monitor users. In Proceedings
of AVI 2004.

8. MacIntyre, B., Mynatt, E., Voida, S., Hansen, K.,
Tullio, J., Corso, G. (2001). Support for multitask-
ing and background awareness using interactive pe-
ripheral displays. In Proceedings of UIST 2001, pp.
41-50.

9. Mynatt, E., Igarashi, T., Edwards, W., and La-
Marca, A. (1999). Flatland: new dimensions in of-
fice whiteboards. In Proceedings of CHI 1999, pp.
346-353.

10.Richardson, T., Stafford-Fraser, Q., Wood, K., and
Hopper, A., Virtual Network Computing, in IEEE
Internet Computing, vol. 2, no. 1, January, 1998.

11.Robertson, G., Horvitz, E., Czerwinski, M., Baud-
isch, P., Hutchings, D., Meyers, B., Robbins, D.,
and Smith, G. (2004), Scalable Fabric: Flexible
Task Management. In Proceedings of AVI 2004 pp.
85-89.

12.Smith, G., Baudisch, P., Robertson, G., Czerwinski,
M., Meyers, B., Robbins, D., and Andrews, D.
(2003). GroupBar: The TaskBar Evolved. In Pro-
ceedings of OZCHI 2003, pp. 34-43.

13.Tan, D., Czerwinski, M., and Robertson, G. (2003).
Women Go With the (Optical) Flow. In Proceed-
ings of CHI 2003, pp. 209-215.

14.Tan, D.S., Meyers, B. & Czerwinski, M. (2004).
WinCuts: Manipulating arbitrary window regions
for more effective use of screen space. In Extended
Abstracts of Proceedings of CHI 2004, pp. 1525-
1528.

 11

George Robertson is an ACM
Fellow and a senior researcher
in the Visualization and
Interaction Research group at
Microsoft Research. His research
interests include information
visualization, 3D user interfaces,
and interaction techniques. He

received an M.S. in Computer Science from Carnegie
Mellon University. Contact him at ggr@microsoft.com.

Mary Czerwinski is a senior
researcher in the Visualization
and Interaction Research group
at Microsoft Research. Her
research interests span the ar-
eas of attention and task switch-
ing, information visualization
and adaptive user interface de-

sign. Mary received her PhD in Cognitive Psychology
from Indiana University in Bloomington. Contact her
at marycz@microsoft.com.

Patrick Baudisch is a researcher
in the Visualization and Interac-
tion Research group at Microsoft
Research. His focus is on interac-
tion techniques for very large
displays and visualization tech-
niques for large documents on
small screen devices. He holds a

PhD in Computer Science from Darmstadt University
of Technology, Germany. Contact him at Baud-
isch@microsoft.com.

Brian Meyers is a software design
engineer in the Visualization and
Interaction Research group at Mi-
crosoft Research. His interests are
interactions for ubiquitous com-
puting. He has a B.S. in Computer
Science from the University of

Puget Sound. Contact him at brianme@microsoft.com.

Daniel Robbins is a 3D user
interface designer in the
Visualization and Interaction
Research group at Microsoft
Research. His current projects
include visual presentation of

large information spaces and scalable interfaces. Dan
has a visual-arts degree from Brown University. Con-
tact him at dcr@microsoft.com.

Greg Smith is a software design
engineer in the Visualization and
Interaction Research group at
Microsoft Research. His research
interests include human-
computer interaction and data-
driven visualization. Greg
received his M.S. in Computer
Science from Stanford

University. Contact him at gregsmi@microsoft.com.

Desney Tan is a researcher in the
Visualization and Interaction
group at Microsoft Research. His
research interests center on
building interfaces for large dis-
plays as well as for computing
environments consisting of
multiple devices. Desney has a
Ph.D. in Computer Science from

Carnegie Mellon University. Contact him at des-
ney@microsoft.com.

