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ABSTRACT

In recent years, BitTorrent has emerged as a very popular
and scalable peer-to-peer file distribution mechanism. It has
been very successful at distributing large files quickly and
efficiently without overwhelming the capacity of the origin
server, even under extreme flash crowd conditions.

In this paper, we present a simulation-based study of Bit-
Torrent. The goal is to deconstruct the BitTorrent system
and evaluate the impact of its core mechanisms, both indi-
vidually and in combination, on overall system performance
under a variety of workloads. Our evaluation focuses on
several important metrics, including peer link utilization,
file download time, and fairness amongst peers in terms of
volume of content served. Our results show that BitTor-
rent performs near-optimally in terms of uplink utilization,
download time, and fairness, except under certain extreme
conditions. We present and evaluate simple techniques de-
signed to alleviate the suboptimal behavior encountered un-
der such workloads. On the whole, our findings point to the
remarkable robustness of BitTorrent’s performance despite
(or perhaps due to) the simplicity of its mechanisms.

1. INTRODUCTION

We consider the problem of delivering a large file from an
origin server to large audiences in a scalable manner. In such
a scenario, the demand for the file is often unpredictable
and can shoot up by several orders of magnitude within
a short span of time (i.e., a “flash crowd”). This makes
it difficult and expensive to engineer a central server-based
distribution mechanism. The peer-to-peer (P2P) paradigm
is a promising alternative. In this approach, peers not only
download content from the origin server but also serve it to
other interested peers in the system. Hence, in principle,
the serving capacity of the system grows with size, making
the system self-scaling.

BitTorrent [3] has emerged as a popular and scalable P2P
tool for distributing large files. In BitTorrent, a file is bro-
ken down into a large number of blocks and peers can start
serving other peers as soon as they have downloaded the
first block. Peers preferentially download blocks that are
rarest among their local peers so as to maximize their use-
fulness to other peers. These strategies allow BitTorrent to
use bandwidth between peers (i.e.perpendicular bandwidth
[5]) effectively and handle flash crowds well. This is in con-
trast to many previous P2P file sharing systems where a
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peer needed to download the complete file before it could
serve any part of it. In addition, BitTorrent incorporates
a tit-for-tat (TFT) incentive mechanism for swapping data.
Nodes preferentially upload to peers from whom they are
able to download in return. This mechanism is especially
important since studies have shown that nodes in P2P sys-
tems tend to download content without serving anything
[8]. Earlier systems either lacked incentive mechanisms or
employed mechanisms that could be easily thwarted by mod-
ified clients [17].

The goal of this paper is to explore the impact of Bit-
Torrent’s mechanisms and parameters on its overall perfor-
mance.! First, we would like to know if BitTorrent is able to
keep all the uplinks in the system active and fully utilized.
Full utilization translates into optimal mean download time
as well as optimal load on the origin server. There are a
number of reasons why uplink utilization may be less than
full. One is that nodes make independent decisions for down-
loading file-blocks. As a results, it is possible that neighbors
gather a similar set of blocks, thereby decreasing their util-
ity to each other. How blocks get replicated is, in turn,
governed by the block-selection policy employed by peers.
The policy used by BitTorrent, Local Rarest First (LRF),
may not necessarily be optimal. We would like to under-
stand if other policies can work equally well and under what
workloads the choice of the policy becomes crucial.

Second, it is unclear if BitTorrent’s incentive mechanism
successfully enforces fairness in environments where nodes
have heterogeneous bandwidth constraints. Even if it does
succeed at enforcing fairness, TFT constrains the connec-
tion between peers: it can result in a situation where a node
decides not to serve its peer, despite having useful blocks
to serve. Setting up effective “barter” exchanges can be-
come especially hard under situations where nodes are in-
terested in disjoint sets of blocks (for example, under post
flash-crowd conditions).

Finally, the key mechanisms of BitTorrent depend on pa-
rameters such as the number of peers each node interacts
with, the maximum number of concurrent uploads permit-
ted, etc. These mechanisms interact in complex ways, and
performance may be influenced by the particular choice of
parameter settings. Our goal is to analyze these interactions
and expose suboptimal behavior, if any, within the BitTor-
rent system. We do this with respect to multiple metrics,
including download performance, fairness in terms of the

IWe only focus of the performance of the data plane. We do
not consider control-plane issues such as the performance of the
centralized tracker used for finding peers.



volume of content served by each node, and load imposed on
the origin server. To this end, we have built a discrete-event
simulator, which models protocol interactions of a BitTor-
rent network. Our key findings are: (a) BitTorrent scales
very well with the number of nodes (i.e., downloaders) in
the system, (b) origin server bandwidth is a precious re-
source and must be used carefully, especially when it is low,
(c) LRF policy is important for small network sizes as well
as under post flash-crowd workloads, (d) BitTorrent’s TFT
mechanisms can result in systematic unfairness in terms of
volume of data served by nodes. These findings motivate us
to consider variants of and alternatives to the core BitTor-
rent mechanisms to alleviate suboptimal behavior.

The rest of the paper is organized as follows: in Section 2,
we present a brief overview of the BitTorrent system as well
as discuss related analytical and measurement-based stud-
ies. Section 3 describes our simulation environment and the
evaluation metrics. Section 4 presents simulation results un-
der a variety of workloads. Finally, Section 5 concludes.

2. BACKGROUND AND RELATED WORK

In this section, we present a brief overview of the BitTor-
rent system and discuss related analytical and measurement-
studies of BitTorrent.

2.1 BitTorrent Overview

BitTorrent [3] is a P2P application whose goal is to en-
able fast and efficient distribution of large files by leveraging
the upload bandwidth of the downloading peers. The basic
idea is to divide the file into equal-sized blocks (typically 32-
256 KB) and have nodes download the blocks from multiple
peers concurrently. The blocks are further subdivided into
sub-blocks to enable pipelining of requests so as to mask the
request-response latency [4].

Corresponding to each large file available for download
(called a torrent), there is a central component called the
tracker that keeps track of the nodes currently in the system.
The tracker receives updates from nodes periodically (every
30 minutes) as well as when nodes join or leave the torrent.

Nodes in the system are either seeds, i.e., nodes that have
a complete copy of the file and are willing to serve it to
others, or leechers, i.e., nodes that are still downloading the
file but are willing to serve the blocks that they already have
to others.

When a new node joins a torrent, it contacts the tracker
to obtain a list containing a random subset of the nodes
currently in the system (both seeds and leechers). The new
node then attempts to establish connections to about 40 ex-
isting nodes, which then become its neighbors. If the number
of neighbors of a node ever dips below 20, say due to the
departure of peers, the node contacts the tracker again to
obtain a list of additional peers it could connect to.

Each node looks for opportunities to download blocks
from and upload blocks to its neighbors. In general, a node
has a choice of several blocks that it could download. It
employs a local rarest first (LRF) policy in picking which
block to download: it tries to download a block that is least
replicated among its neighbors. The goal is to maximize the
diversity of content in the system, i.e., make the number of
replicas of each block as equal as possible. This makes it
unlikely that the system will get bogged down because of
“rare” blocks that are difficult to find.

An exception to the local rarest first policy is made in the

case of a new node that has not downloaded any blocks yet.
It is important for such a node to quickly bootstrap itself,
o it uses the first available opportunity (i.e., an optimistic
unchoke, as discussed below) to download a random block.
From that point on, it switches to the local rarest first policy.

A tit-for-tat (TFT) policy is employed to guard against
free-riding: a node preferentially uploads to neighbors that
provide it the best download rates. Thus it is in each node’s
interest to upload at a good rate to its neighbors. For this
reason, and to avoid having lots of competing TCP connec-
tions on its uplink, each node limits the number of concur-
rent uploads to a small number, typically 5. Seeds have
nothing to download, but they follow a similar policy: they
upload to up to 5 nodes that have the highest download rate.

The mechanism used to limit the number of concurrent
uploads is called choking, which is the temporary refusal of
a node to upload to a neighbor. Only the connections to
the chosen neighbors (up to 5) are unchoked at any point in
time. A node reevaluates the download rate that it is receiv-
ing from its neighbors every 10 seconds to decide whether a
currently unchoked neighbor should be choked and replaced
with a different neighbor. Note that in general the set of
neighbors that a node is uploading to (i.e., its unchoke set)
may not exactly coincide with the set of neighbors it is down-
loading from.

BitTorrent also incorporates an optimistic unchoke pol-
icy, wherein a node, in addition to the normal unchokes
described above, unchokes a randomly chosen neighbor re-
gardless of the download rate achieved from that neighbor.
Optimistic unchokes are typically performed every 30 sec-
onds, and serve two purposes. First, they allow a node to
discover neighbors that might offer higher download rates
than the peers it is currently downloading from. Second,
they give new nodes, that have nothing to offer, the op-
portunity to download their first block. A strict TFT policy
would make it impossible for new nodes to get bootstrapped.

2.2 BitTorrent-specific Studies

There have been analytical as well as measurement-based
studies of the BitTorrent system. At the analytical end,
Qiu and Srikant [18] have considered a simple fluid model of
BitTorrent and obtained expressions for the average number
of seeds and downloaders in the system as well as the average
download time as functions of the node arrival and departure
rates and node bandwidth. Their main findings are that the
system scales very well (i.e., the average download time is
not dependent on the node arrival rate) and that file sharing
is very effective (i.e, there is a high likelihood that a node
holds a block that is useful to its peers).

A measurement-based study of BitTorrent is presented in
[10]. The study is based on data from the “tracker” log for a
popular torrent (corresponding to the Linux Redhat 9 distri-
bution) as well data gathered using an instrumented client
that participated in the torrent. The main findings are that
(a) peers that have completed their download tend to remain
connected (as seeds) for an additional 6.5 hours (although
the authors note that this could simply be because the Bit-
Torrent client needs explicit user action to be terminated
and disconnected from the network after a download com-
pletes), (b) the average download rate is consistently high
(over 500 kbps), (c) as soon as a node has obtained a few
chunks, it is able to start uploading to its peers (i.e., the
local rarest first policy works), and (d) the node download



and upload rates are positively correlated (i.e., the tit-for-tat
policy works).

Another study based on a 8-month long trace of BitTor-
rent activity is presented in [16]. Some of the findings in
this study are different from those reported in [10], perhaps
because of the broader range of activities recorded in the
trace (statistics are reported for over 60,000 files). The av-
erage download bandwidth is only 240 Kbps and only 17%
of the peers stay on for one hour or more after they have
finished downloading. In general, there are a few highly re-
liable seeds for each torrent, and these are far more critical
for file availability than the much larger number of short-
lived seeds. The workload used for our simulations is based
on this finding — we typically have one or a small number
of long-lived seeds and assume that the other nodes depart
as soon as they have finished downloading.

Gkantsidis and Rodriguez [9] present a simulation-based
study of a BitTorrent-like system. They show results indi-
cating that the download time of a BitTorrent-like system
is far from optimal, especially in settings where there is het-
erogeneity in node bandwidth. They go on to propose a net-
work coding [1] based scheme called Avalanche that allevi-
ates these problems. We also find that suboptimal behavior
arises in BitTorrent. However, such behavior is only lim-
ited to extreme configurations which, in many cases, may
not be practically interesting (e.g., low seed bandwidth).
Furthermore, we show that the problems can be remedied
with relatively simple fixes, including the use of source-based
FEC. Such source coding avoids the computational com-
plexity and security challenges of network coding, since the
source can sign the coded packets as authentic.

2.3 Other Systemsfor LargeFile Distribution

A number of other approaches have been proposed for
the efficient distribution of large files in the Internet. Some
of these have been based on the multicast paradigm, where
the content is transmitted down a distribution tree rooted at
the source. In the Digital Fountain approach [6], both the
source blocks and FEC blocks are multicast continuously,
and clients join and stay tuned in until they have received
a sufficient number of blocks to be able to reconstruct the
file.

Although the original Digital Fountain proposal was based
on IP multicast, it can in principle also work with overlay
multicast [7, 12]. One problem, however, is that disruption
of the distribution tree due to the failure or departure of
ancestors, or due to network congestion would result in pro-
gressively lower throughput as we go deeper down the tree.
This problem can be alleviated by employing multiple, di-
verse distribution trees and striping data across the trees,
as in CoopNet [15].

There have also been proposals for mesh-based (i.e., BitTorrent-

like) rather than tree-based distribution topologies. Byers
et al. [5] present an approach for informed content delivery.
The digital fountain encoding scheme is used to generate re-
dundant blocks, which are then exchanged by peers that are
connected in an overlay mesh topology. The main contri-
bution of [5] is a set of algorithms for efficient estimation,
summarization, and reconciliation of the blocks held by each
peer. This problem is much simpler in BitTorrent since only
(unencoded) source blocks are distributed.

Finally, Bullet [14] is another system for mesh-based data
dissemination. It is quite similar to BitTorrent, but uses the

distributed RanSub mechanism [13] rather than a central-
ized tracker as the peer discovery mechanism.

3. METHODOLOGY

We have adopted a simulation-based approach for under-
standing and deconstructing BitTorrent performance. Our
choice is motivated by the observation that BitTorrent is
composed of several interesting mechanisms that interact in
many complex ways depending on the workload offered. Us-
ing a simulator provides the flexibility of carefully control-
ling the input parameters of these mechanisms or even se-
lectively turning off certain mechanisms and replacing them
with alternatives. This would be difficult or even impossi-
ble to achieve using live Internet measurement techniques
(e.g., using tracker logs [10, 16] or by participating in a
live-torrent). In this section, we present the details of our
simulator and define the metrics we focus on in our evalua-
tion.

3.1 Simulator Details

For our study, we built a discrete-event simulator of Bit-
Torrent. The simulator models peer activity (joins, leaves,
block exchanges) as well as many of the associated BitTor-
rent mechanisms (local rarest first, tit-for-tat, etc.) in de-
tail. The network model associates a downlink and an uplink
bandwidth for each node, which allows modeling asymmetric
access networks. The simulator uses these bandwidth set-
tings to appropriately delay the blocks exchanged by nodes.
The delay calculation takes into account the number of flows
that are sharing the uplink or downlink at either end, which
may vary with time. Doing this computation for each block
transmission is expensive enough that we have to limit the
maximum scale of our experiments to 5000 nodes on a P4
2.7GHz, 1GB RAM machine. Where appropriate, we point
out how this limits our ability to extrapolate our findings.

Given the computational complexity of even the simple
model above, we decided to simplify our network model in
the following ways. First, we do not model network propaga-
tion delay, which is relevant only for the small-sized control
packets (e.g., the packets used by nodes to request blocks
from their neighbors). We believe that this simplification
does not have a significant impact on our results because
(a) the download time is dominated by the data traffic (i.e.,
block transfers), and (b) BitTorrent’s pipelining mechanism
(Section 2.1) masks much of the control traffic latency in
practice. Second, we do not model the dynamics of TCP
connections. Instead, we use a fluid model of connections,
which assumes that the flows traversing a link share the link
bandwidth equally. Although this simplification means that
TCP “anomalies” (e.g., certain connections making faster
progress than others) are not modeled, the long length of the
connections at least makes short-term anomalies less signifi-
cant. Finally, we do not model shared bottleneck links in the
interior of the network. We assume that the bottleneck link
is either the uplink of the sending node or the downlink of
the receiving node. While Akella et al. [2] characterize band-
width bottlenecks in the interior of the network, their study
specifically ignores edge-bottlenecks by conducting measure-
ments only from well-connected sites (e.g., academic sites).
The interior-bottlenecks they find are generally fast enough
(> 5 Mbps) that the edge-bottleneck is likely to dominate
in most realistic settings. Hence we believe that our focus
on just edge-bottlenecks is reasonable.



We also make one simplification in modeling BitTorrent
itself. We ignore the endgame mode[4], which is used by
BitTorrent to make the end of a download faster by allowing
a node to request the sub-blocks it is looking for in parallel
from multiple peers. However, neglecting the endgame mode
does not qualitatively impact any of the results presented
here, since our evaluation focuses primarily on the steady-
state performance. Also, this simplification has little or no
impact on metrics such as fairness and diversity.

For some of our experiments we also augment the core
BitTorrent mechanisms with some new features including
block-level TFT policies, bandwidth estimation, etc. Sec-
tion 4 provides the details at the relevant places.

3.2 Maetrics

We quantify the effectiveness of BitTorrent in terms of the
following metrics: (a) link utilization, (b) mean download
time, (c) content diversity, (d) load on the seed(s), and (e)
fairness in terms of the volume of content served. The rest of
the section presents a brief discussion of the above metrics.

Link wutilization: We use the mean utilization of the
peers’ uplinks and downlinks over time as the main metric
for evaluating BitTorrent’s efficacy.? The utilization at any
point in time is computed as the ratio of the aggregate traffic
flow on all uplinks/downlinks to the aggregate capacity of
all uplinks/downlinks in the system.

Given the ad-hoc construction of the BitTorrent network
and its decentralized operation, it is unclear at the outset
how well the system can utilize the “perpendicular” band-
width between peers. For instance, since download decisions
are made independently by each node, it is possible that a
set of nodes decide to download a similar set of blocks, re-
ducing the opportunities for exchanging blocks with each
other.

Notice that if all the uplinks in the system are saturated,
the system as a whole is serving data at the maximum pos-
sible rate. While downlink utilization is also an important
metric to consider, the asymmetry in most Internet access
links makes the uplink the key determinant of performance.
Furthermore, by design, duplicate file blocks (i.e., blocks
that a leecher already has) are never downloaded again.
Hence, the mean download time for a leecher is inversely re-
lated to the average uplink utilization. Because of this and
the fact that observed uplink utilization is easier to com-
pare against the optimal value (100%), we do not explicitly
present numbers for mean download time for most of our
experiments.

Content diversity: As noted above, the system’s effec-
tiveness in utilizing perpendicular bandwidth depends on
the diversity of blocks held by the leechers in the system.
So we would like to measure the effectiveness of BitTorrent’s
local rarest first (LRF) mechanism (Section 2.1) in achiev-
ing diversity. We quantify diversity using the distribution of
the number of replicas of each block in the system. Ideally,
the distribution should be relatively flat, i.e., the number of
replicas of each block should approximately be the same.

Load on the seed(s): This is defined as the number of
blocks served by the seed(s) in the system. In our presen-
tation here, we normalize this metric by dividing it by the

2In our discussion, we use the terms upload/download utilization
synonymously with uplink/downlink utilization.

number of blocks in the file. So, for example, a normal-
ized load of 1.5 means that the seed serves a volume of data
equivalent to 1.5 copies of the file.

In the specific scenario where nodes depart as soon as they
finish their download, this metric is equivalent to the load
on the origin server, which is the sole seed in the system. For
the system to be scalable, the load per seed should remain
constant (or increase only slightly) as the number of leechers
in the system increases.

Fairness: The system should be fair in terms of the num-
ber of blocks served by the individual nodes. No node should
be asked to upload much more than it has downloaded (un-
less it has volunteered to serve the system as a seed). Fair-
ness is important for there to be an incentive for nodes to
participate, especially in settings where ISPs charge based
on uplink usage or uplink bandwidth is scarce.

As described in Section 2.1, BitTorrent incorporates a tit-
for-tat (TFT) mechanism to block free-riders, i.e., nodes
that receive data without serving anything in return. How-
ever, it is important to note that this is only a rate-based
or rank-based TFT algorithm. For example, a node with a
T1 uplink can still open upload connections to a group of
modems, if it knows of no alternative peers. In such a case,
it will end up serving many more blocks than it receives
in return. Also, with the optimistic unchoke mechanism, a
node willingly delivers content to a peer for 30 seconds even
if it does not receive any data from the peer. These fac-
tors can potentially result in unfairness in the system. Our
objective is to quantify the amount of unfairness and also
to propose mechanisms designed to prevent such unfairness
without sacrificing performance (in terms of link utilization
or download time).

4. EXPERIMENTS
4.1 Roadmap of Experiments

We use the following default settings in our experiments,
although we do vary these settings in specific experiments,
as noted in later sections:

e File size: 102400 KB = 100 MB (400 blocks of 265 KB
each)

e Number of initial seeds: 1 (the origin server, which
stays on throughout the duration of the experiment)

e Seed uplink bandwidth: 6000 Kbps
e Number of leechers that join the system (n): 1000
e Leecher downlink/uplink bandwidth: 1500/400 Kbps

e Join/leave process: a flash crowd where all nodes join
within a 10-second interval. Leechers depart as soon
as they finish downloading.

e Node degree (d): 60 (i.e., leechers try to maintain be-
tween 40 and 80 neighbors). Node degree defines the
size of the neighborhood used to search for the local
rarest block.

e Limit on the number of concurrent upload transfers
(u): 5 (includes the connection that is optimistically
unchoked)



We start in Section 4.2 with a set of experiments that
consider a homogeneous setting where all leechers have the
same downlink/uplink bandwidth (1500/400 Kbps by de-
fault, as noted above). We vary several parameters individ-
ually: the number of leechers, the number of initial seeds,
aggregate bandwidth of seeds, bandwidth of leechers, the
number of blocks in the file, and the number of concurrent
upload transfers (u). We also evaluate BitTorrent’s LRF
policy for picking blocks for different settings of node de-
gree (d), and compare it with simpler alternatives such as
random block picking.

Then in Section 4.3 we turn to a heterogeneous setting
where there is a wide range in leecher bandwidth. We con-
sider 3 kinds of connectivity for leechers: high-end cable
(6000,/3000 Kbps), high-end DSL (1500/400 Kbps), and low-
end DSL (784/128 Kbps). Our evaluation focuses on the
issue of fairness, which is important since, for instance, a
high-end cable node is in a position to upload to a low-end
DSL node much faster than the DSL node can upload in
return. We consider smarter strategies for optimistic un-
choke, which reduce the likelihood of a node optimistically
unchoking a neighbor from whom it is unlikely to be able to
download at a fast rate in return. We also evaluate variants
of the TF'T policy that explicitly try to enforce fairness.

Finally, in Section 4.4, we consider workloads other than
the extreme flash crowd scenario considered thus far. We
consider a more gradual arrival pattern and also a bursty
arrival pattern with multiple bursts spaced apart in time.
We also consider a scenario where nodes that already have
a partial copy of the file join the network. Our objective in
considering these alternative workloads is to determine how
well BitTorrent’s mechanisms (in particular, LRF) work in
a setting where there is potentially a wide variation in the
objectives pursued by the leechers in the system (e.g., an old
node might be looking for a few specific blocks to complete
its download whereas a newcomer would be happy down-
loading any block). Finally, we consider the arrival pattern
observed for an actual torrent (the one corresponding to the
Linux Redhat 9 distribution [10]), which includes both a
flash crowd and a post-flash-crowd phase.

4.2 Homogeneous Environment

In this section, we study the performance of BitTorrent
in a setting consisting of a homogeneous (with respect to
bandwidth) collection of leechers. Unless specified other-
wise, we use the default settings noted in Section 4.1 for
file size (102400 KB), seed bandwidth (6000 Kbps), leecher
bandwidth (1500/400 Kbps), and join/leave process (1000
leechers join during the first 10 seconds and leave as soon as
they finish downloading).

4.2.1 Number of nodes

First we examine the performance of the system with in-
creasing network size. We vary the number of nodes (i.e.,
leechers) that join the system from 50 to 5000. All nodes
join during a 10 second period, and remain in the system
until they have completed the download. The goal is to un-
derstand how performance varies with scale. Figure 1 plots
the mean utilization of the aggregate upload and download
capacity of the system (i.e., averaged across all nodes and all
time). We find that the upload capacity utilization is close
to 100% regardless of system size. (Utilization is a little
short of 100% because of the start-up phase when nodes are

unable to utilize their uplinks effectively.) The high uplink
utilization indicates that the system is performing almost
optimally in terms of mean download time. The downlink
utilization, on the other hand, is considerably lower. Clearly
the total download rate cannot exceed the total upload rate
plus the seed’s rate. Thus the download utilization will gen-
erally be limited by the upload capacity (when leechers have
greater download than upload capacity). An exception is
when the number of leechers is so small that they can di-
rectly receive significant bandwidth from the seed; this can
be seen in Figure 1 by the slight rise in download utilization
when the network size is under fifty nodes.
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Figure 1: Mean upload and download utilization of the
system as the flash-crowd size increases. Observe that
the mean upload utilization is almost 100 %, even as
the network size increases. The download utilization is
upper bounded by the ratio of the leechers upload to
download bandwidths.

Another important measure of scalability is how the work
done by the seed varies with the number of leechers. We
measure this in terms of the normalized number of blocks
served, i.e., the number of blocks served divided by the num-
ber of blocks in one full copy of the file. Ideally, we would
like the work done by the seed to remain constant or in-
crease very slowly with system size. Figure 2 shows that
this is actually the case. The normalized number of blocks
served by the seed rises sharply initially (as seen from the
extreme left of Figure 2) but then flattens out. The initial
rise indicates that the seed is called upon to do much of
the serving when the system size is very small, but once the
system has a critical mass of 50 or so nodes, peer-to-peer
serving becomes very effective and the seed has to do little
additional work even as the system size grows to 5000.

In summary, BitTorrent performance scales very well with
system size both in terms of bandwidth utilization and the
work done by the seed.

4.2.2 Number of seeds and bandwidths of seeds

Next we consider the impact of numbers of seeds and ag-
gregate seed bandwidth on the performance of BitTorrent.
We first consider the case where there is a single seed, and
then move on to the case of multiple seeds. We fix the num-
ber of leechers that join the system to 1000.

Figure 3 shows the mean upload utilization (which in turn
determines the mean file download time) as the bandwidth
of a single seed varies from 200 Kbps to 1000 Kbps. The
“nosmartseed” curve corresponds to default BitTorrent be-
havior. We see that upload utilization is very low (under
40%) when the seed bandwidth is only 200 Kbps. This is
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Figure 2: Contribution of the seed as the flash-crowd size
increases. Observe that the amount of work done by the
seed is almost independent of the network size, indicating
that (at least in this scenario) the system scales very well.

not surprising since the low seed bandwidth is not sufficient
to keep the uplink bandwidth of the leechers (400 Kbps) fully
utilized, at least during the start-up phase. However, even
when the seed bandwidth is increased to 400 or 600 Kbps,
the upload utilization is still considerably below optimal.
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Figure 3: Upload utilization as the bandwidth of the seed
is varied. When the seed has low bandwidth it is inca-
pable of providing enough capacity to the system to keep
the leechers upload pipes fully utilized. Observe also
the difference between the default BitTorrent strategy
“nosmartseed” and an improved “smartseed” strategy
where the seed avoids serving duplicate blocks prema-
turely. The “smartseed” strategy improves the diversity
of blocks in the system, without imposing additional bur-
den on the seed.

Part of the reason for poor upload utilization is that seed
bandwidth is wasted serving duplicate blocks prematurely,
i.e., even before one full copy of the file has been served.
To see that this is so, examine the ‘nosmartseed” curve in
Figure 4. This plots the total number of blocks served by
the seed by the time one full copy of the file is served, as a
function of seed bandwidth. Whenever this total number of
blocks served is higher than the unique number of blocks in
the file (400), it indicates that duplicate blocks were served
prematurely. We believe this to be a problem since it de-
creases the block diversity in the network. That is, despite
the Local Rarest First (LRF) policy, multiple leechers con-
nected to the seed can operate in an uncoordinated manner
and independently request the same block.

Once identified there is a simple fix for this problem. We
have implemented a smartseed policy, which has two com-
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Figure 4: The total number of blocks served by the seed
before it has served at least one copy of each block in the
file. If we use the default BitTorrent strategy (indicated
by “nosmartseed”) duplicate blocks are often served be-
fore the whole file is served. For example at seed band-
width 600 kbps approximately 700 blocks were served
before each of the 400 blocks had been served at least
once. The “smartseed” strategy ensures that no block is
served twice before every block has been served once.

ponents: (a) The seed does not choke a leecher to which it
has transferred an incomplete block. This maximizes the op-
portunity for leechers to download and hence serve complete
blocks. (b) For connections to the seed, the LRF policy is
replaced with the following: among the blocks that a leecher
is looking for, the seed serves the one that it has served the
least. This policy improves the diversity of blocks in the
system, and also eliminates premature duplicate blocks, as
shown in Figure 4. This results in noticeable improvement
in upload utilization, especially when seed bandwidth is lim-
ited and precious (Figure 3).
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Figure 5: Upload utilization for a single seed versus mul-
tiple independent seeds. The lack of coordination among
the independent seeds results in duplicate blocks being
served by different seeds and a corresponding penalty in
uplink utilization.

Finally, Figure 5 compares the cases of having a single
seed and having multiple independent seeds, each with 200
Kbps bandwidth, such that the aggregate seed bandwidth
is the same in both cases. All seeds employ the smartseed
policy. The upload utilization suffers in the case of multiple
seeds because the independent operation of the seeds results
in duplicate blocks being served by different seeds, despite
the smartseed policy employed by each seed.

In summary, we find that seed bandwidth is a precious re-
source and it is important not to waste it on duplicate blocks



until all blocks have been served at least once. The “smart-
seed” policy, which modifies LRF and the choking policy for
the seeds’ connections, results in a noticeable improvement
in system performance.

4.2.3 Impact of node degree and block choosing pol-
icy

Next we address the question of the block choosing policy.
As mentioned earlier the LRF policy appears to be one of
the key ingredients in BitTorrent. Here, we investigate how
important it is, and show when it matters and when it does
not. We will assume that the seed employs the smartseed
strategy introduced in the last section and comment only
qualitatively on the results otherwise.

Before describing our experiments let us quickly revisit the
intuition behind the LRF policy. Since any rare block will
automatically be requested by many leechers, it is unlikely
to remain rare for long. For example, if a rare block is pos-
sessed by only one leecher, it will be among the first blocks
requested by any nodes unchoked by that leecher. This, of
course, decreases its rareness until it is as common in the
network as any other block. This should reduce the coupon
collector or “last block problem” that has plagued many file
distribution systems [6]. These arguments are qualitative.
The goal of this section is to measure how well LRF actually
performs.

We investigate 3 issues. First, we compare LRF with an
alternative block choosing policy in which each leecher asks
for a block picked at random from the set that it does not
yet possess but that is held by its neighbors. Second, we
examine how the effectiveness of LRF varies as the seed
bandwidth is varied. Since a high-bandwidth seed delivers
more blocks to the network, the risk of blocks becoming rare
is lower. Third, we examine the impact of varying the node
degree, d, which defines the size of the neighborhood used
for searching in the LRF and random policies.

Figure 6 summarizes the results with regard to the fol-
lowing issues: (a) random vs.LRF, (b) low seed bandwidth
(400 Kbps) wvs.high seed bandwidth (6000 Kbps), and (c)
node degree, d = 4,7, and 15. In all cases, the leechers had
down/up bandwidths of 1500/400 Kbps. Observe that the
low bandwidth seed has only as much upload capacity as
one of the leechers.

The general trend is that uplink utilization improves with
increases in both seed bandwidth and node degree. When
node degree is low (d = 4), leechers have a very restricted
local view. So LRF is not effective in evening out the dis-
tribution of blocks at a global level, and performs no bet-
ter than the random policy. However, when node degree is
larger (d = 7 or 15) and seed bandwidth is low, LRF out-
performs the random policy by ensuring greater diversity in
the set of blocks held in the system. Finally, when the seed
bandwidth is high, the seed’s ability to inject diverse blocks
into the system improves utilization and also eliminates the
performance gap between LRF and the random policy. In
summary, LRF makes a difference only when node degree is
large enough to make the local neighborhood representative
of the global state and seed bandwidth is constrained.

In Figure 7 we graph the average number of interesting
connections available to each leecher in the network for the
case of d = 7. The connection between a node and its peer
is called interesting if the node can send useful data to its
peer. As stated in the caption, each point here represents
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Figure 6: Upload utilization for LRF and Random poli-
cies for different values of the node degree, d. LRF per-
forms better only when the node degree is large and the
seed bandwidth is low.

the mean number of interesting connections (averaged over
all the nodes in the system) at a particular point in time.
Observe that in the high seed bandwidth case there is little
difference between the LRF and the random block choosing
policies (the top 2 curves in Figure 7). In the low seed
bandwidth case the difference is very pronounced. Observe
that the LRF policy manages to find far more interesting
connections, especially towards the end of the download.
This underlines the importance of the LRF policy in the
case where seed bandwidth is very limited.
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Figure 7: Variation of the number of interesting connec-
tions over time for d = 7 and various settings of seed
bandwidth and block choosing policy. Each point repre-
sents the mean across all nodes present in the system at
that time.

Next we plot in Figure 8 the inter-arrival times for blocks
in the case of a low bandwidth seed. This is the time between
the receipt of consecutive distinct blocks, averaged across
all nodes. We plot this for both the LRF and the random
block choosing policies, and d = 7 in both cases. Recall
that the file size is 400 blocks. The sharp upswing in the
curve corresponding to the random policy clearly indicates
the last-block problem. There is no such upswing with LRF.

Finally, we saw in Figure 6 that for very small d, utiliza-
tion suffered. When leechers followed a LRF block choosing
policy, but had only a set of d = 4 neighbors diversity was
adversely affected. However, when d was increased to 7,
the problem disappeared. A natural question is how large
the set of neighbors needs to be, and whether this thresh-
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Figure 8: Inter-arrival times for blocks at the tail end of
the file. Each point represents the mean time to receive
the k' block, where the mean is taken over all nodes.
Random clearly shows the last-block problem.
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Figure 9: Utilization when d = 7 and number of nodes is
increased. Observe that utilization drops very slowly

with increasing n, indicating that even with a small
neighbor set the LRF

old increases with the size of the network. In Figure 9 we
graph the mean upload utilization for d = 7 as the number
of nodes in the network n increases. We see a very slight
drop in the utilization; however, this drop is only because
the initial ramp up time to get all uplinks going increases
as the number of nodes increases. We conclude that for the
LRF policy to not degenerate, it is only necessary that d be
above a certain small constant. In other words, d does not
have to scale with n for ensuring efficient behavior (at least
up to the limit of n = 5000 considered in our experiments).

4.2.4 Number of blocks and impact on parallelism

In this section we explore the effect of block size on uti-
lization. For a fixed file size, Figure 10 shows the impact of
number of file-blocks (N) on the overall upload utilization.
If N is too small, each block becomes proportionately larger
in size, thereby increasing the block-transfer quantum. This
in turn implies that it takes longer for a peer that is down-
loading a block to turn around and start serving it, thus re-
ducing the utilization of perpendicular bandwidth. On the
other hand, if N is too large, it can result in significant over-
head for communicating metadata. Figure 10 shows that for
N > 400, BitTorrent is able to utilize perpendicular band-
width effectively.

4.2.5 Concurrent Uploads

In BitTorrent, each node uploads to no more than a fixed
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Figure 10: Variation of link utilization as the number of
blocks in the file, N, varies. Observe that for small N
utilization is very low.

number of nodes (u = 5, by default) at a time. This fixed
upload degree limit presents two potential problems. First,
having too many concurrent uploads delays the availability
of full blocks to the network. That is, if a leecher’s upload
capacity is divided between u nodes, there can be a consider-
able delay before any of them has a complete block that they
can start serving to others. Second, low peer downlink band-
width can constrain uplink utilization. That is, a leecher
uploading to a peer can find its upload pipe underutilized if
the receiving node actually becomes the bottleneck on the
transfer (i.e., has insufficient available download bandwidth
to receive as rapidly as the sender can transmit).
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Figure 11: Utilization for different values of the maxi-
mum number of concurrent uploads (u).

Figure 11 graphs the mean upload utilization as a func-
tion of the maximum number of concurrent uploads permit-
ted (i.e., u) for low and high bandwidth seeds. We show the
results both with and without the smartseed fix. As u in-
creases (and the smartseed fix is not applied), the probabil-
ity that duplicate data is requested from the seed increases,
causing link utilization to drop. The drop in utilization is
very severe when seed bandwidth is low, since in such cases,
as we have seen before, good performance critically depends
on the effective utilization of the seed’s uplink. We see uti-
lization dropping gradually even when the smartseed fix is
applied. The reason is that a large u causes the seed’s uplink
to get fragmented, increasing the time it takes for a node to
fully download a block that it can then serve to others.

To address both the problems of underutilization and frag-
mentation of the seed’s uplink, we propose the following fix:
instead of having a fixed upload degree, a node should un-



choke the minimum number of connections needed to fill its
upload link. We plan to investigate this in future work.

4.3 Heterogeneous Environment

In this section, we study the behavior of BitTorrent when
node bandwidth is heterogeneous. As described in Sec-
tion 3.2, a key concern in such environments is fairness in
terms of the volume of data served by nodes. This is espe-
cially important since uplink bandwidth is generally a scarce
resource. BitTorrent only implements a rate-based TF'T pol-
icy, which can still result in unfairness. This section quan-
tifies the extent of the problem and presents mechanisms
that enforce stricter fairness without hurting uplink utiliza-
tion significantly.

A node in BitTorrent unchokes those peers from whom it
is getting the best download rate. The goal of this policy is
to match up nodes with similar bandwidth capabilities. For
example, a high-bandwidth node would likely receive the
best download rate from other high-bandwidth nodes, and
so would likely be uploading to such high-bandwidth nodes
in return. To help nodes discover better peers, BitTorrent
also incorporates an optimistic unchoke mechanism. How-
ever, this mechanism significantly increases the chance that
a high bandwidth node unchokes and transfers data to nodes
with poorer connectivity. Not only can this lead to decrease
in uplink utilization ( since the download capacity of the
peer can become the bottleneck), it can also result in the
high bandwidth node serving a larger volume of data than
it receives in return. This also implies that the download
times of lower bandwidth nodes will improve at the cost of
higher bandwidth nodes.

We now describe two simple mechanisms that can poten-
tially reduce such unfairness: (a) Instantaneous bandwidth
estimation (IBE), and (b) Pairwise block-level TFT. Note
that enforcing fairness implies that the download time of a
node will be inversely related to its upload capacity (assum-
ing that its uplink is slower than its downlink).

4.3.1 Instantaneous Bandwidth Estimation

In BitTorrent, optimistically unchoked peers are rotated
every 30 seconds. The assumption here is that 30 seconds
is a long enough duration to establish a reverse transfer and
ascertain the upload bandwidth of the peer in considera-
tion. Furthermore, BitTorrent estimates bandwidth only on
the transfer of blocks; since all of a node’s peers may not
have interesting data at a particular time, opportunity for
discovering good peers is lost.

Instead, if we assume (somewhat unrealistically) that band-
widths for all d peers can be estimated instantaneously with-
out much overhead, optimistic unchokes are not needed. A
node can simply unchoke the top u peers sorted by decreas-
ing estimated upload rates. In this case, nodes do not have
to participate in data exchanges to discover the upload rate
of peers.

While instantaneous bandwidth estimation (IBE) may not
be feasible in practice, there exist many lightweight band-
width estimation schemes [20] that incur much less overhead
than a full block transfer. Also, information derived from
the history of past interactions with a peer could be used to
estimate its upload bandwidth. So we believe that the IBE
results presented here can be approximated in practice.

4.3.2 Pairwise Block-Level Tit-for-Tat

The basic idea here is to enforce fairness directly in terms
of blocks transferred rather than depending on rate-based
TFT to match peers based on their upload rates. Sup-
pose that node A has uploaded U, blocks to node B and
downloaded D, blocks from B. With pairwise block-level
TFT, A allows a block to be uploaded to B if and only if
Uab < Dap+ A, where A represents the unfairness threshold
on this peer-to-peer connection. This ensures that the max-
imum number of extra blocks served by a node (in excess of
what it has downloaded) is bounded by dA, where d is the
size of its neighborhood. Note that with this policy in place,
a connection is (un)choked depending on whether the above
condition is satisfied or not. Also, there is no need for the
choker to be invoked periodically.

Thus, provided that A is at least one (implying that new
nodes can start exchanges), this policy replaces the opti-
mistic unchoke mechanism and bounds the disparity in the
volume of content served. However, it is important to note
that there is a trade-off here. The block-level TFT policy
may place a tighter restriction on data exchanges between
nodes. It may so happen, for example, that a node refuses to
upload to any of its neighbors because the block-level TFT
constraint is not satisfied, reducing uplink utilization. We
quantify this trade-off in the evaluation presented next.

4.3.3 Results

We now present performance results for vanilla BitTor-
rent as well as the new mechanisms described above with
respect to three metrics: (a) mean upload utilization (Fig-
ure 12), (b) unfairness as measured by the maximum num-
ber of blocks served by a node (Figure 13), and (c) mean
download time for nodes of various categories (Figure 14).
All experiments in this section use the following settings: a
flash-crowd of 1000 nodes joins the torrent during the first
10 seconds. In each experiment, there are an equal number
of nodes with high-end cable modem (6000 Kbps down; 3000
Kbps up), high-end DSL (1500 Kbps down; 400 Kbps up),
and low-end DSL (784 Kbps down; 128 Kbps up) connec-
tivity. We vary the bandwidth of the seed from 800 Kbps to
6000 Kbps. Seeds always utilize the smartseed fix.
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Figure 12: Mean upload utilization for a) vanilla BitTor-
rent, b) BitTorrent with Instantaneous Bandwidth Esti-
mation, and ¢) with a pairwise block-level TFT policy.
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Figure 12 shows the mean upload utilization of BitTor-
rent and other policies in a heterogeneous setting. We find
that utilization is low for BitTorrent when seed bandwidth
is low. This is because of two factors: first, high-bandwidth
nodes (cable modems) have uplink capacities greater than
the seed’s uplink capacity and hence cannot fully utilize their



uplink. This is similar to the effect seen in Figure 3. Sec-
ond, and more importantly, high-bandwidth nodes can end
up unchoking and transferring data to nodes whose down-
load capacity is saturated. The fixed limit on the number
of upload connections (u) means that uplink utilization suf-
fers further. We see that if nodes are “matched” properly,
as is done by the ideal IBE heuristic, utilization improves
significantly. Also, from Figure 12, it appears that these dif-
ferences diminish rapidly as the seed bandwidth increases.
This is simply because a faster seed implies high-bandwidth
nodes finish much faster and leave the system, thus reducing
the impact of low utilization of their uplinks on the overall
uplink utilization.
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Figure 13: Maximum number of blocks (normalized by
file size) served by any node during an experiment for
(a) vanilla BitTorrent, (b) BitTorrent with Instantaneous
Bandwidth Estimation, and (c) with a pairwise block-
level TFT policy.

As described earlier in this section, the fact that high-
bandwidth nodes can end up interacting with low-bandwidth
nodes also manifests itself in the disparity of volume of data
served by nodes. Figure 13 plots the maximum number of
blocks served by a node normalized by the number of blocks
in the file. The seed node is not included while computing
this metric. We would like to point out that Jain’s fairness
index [11], computed over the number of blocks served by
each node, is consistently close to 1 for all schemes implying
the schemes are fair “on the whole”.

However, as Figure 13 shows, some nodes can still be very
unlucky, serving more than 7 times as many blocks as they
receive in certain situations. It turns out (not shown in the
graphs) that these unlucky nodes are all high-bandwidth
cable modems. As the seed bandwidth increases, the up-
link utilization of the high-bandwidth nodes also increases
(due to more unique blocks being available in the system for
serving). So the high-bandwidth nodes end up serving more
data to lower bandwidth nodes, resulting in greater unfair-
ness. At very high seed bandwidths, however, the download
times of the high bandwidth nodes fall significantly. Hence
such nodes depart the system quickly, reducing the potential
for unfairness.

We find that the new mechanisms for reducing fairness
are very effective. The IBE heuristic does well because it
reduces the number of rate-mismatched transfers between
high-bandwidth and low-bandwidth nodes. While the pair-
wise block-level TFT policy is expected to reduce fairness by
design, an important question is how the tighter constraint
it imposes impacts uplink utilization. Figure 12 shows that
uplink utilization does suffer by about 6-7% for pairwise
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block-level TFT as compared to vanilla BitTorrent or IBE.
The reason is that when a high-bandwidth node is paired up
with a low-bandwidth node (which is more likely to happen
towards the end of the former’s download, when it is looking
for a few specific blocks), the insistence of pairwise block-
level TF'T limits the upload rate of the high-bandwidth node
to that of the low-bandwidth node, thus hurting the former’s
uplink utilization. Although this penalty is non-negligible,
we believe it might be a reasonable price to pay for guaran-
teeing bounded unfairness; a contributing peer now can be
assured that it will not be taken advantage of to an arbitrary
degree.
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Figure 14: Download times for nodes of different cate-
gories for various schemes.

Finally, Figure 14 presents another view of the perfor-
mance of these policies by plotting the mean download time
for each category of nodes. We present results for BitTorrent
and block-level TFT for two settings: low seed bandwidth
(800 kbps) and high seed bandwidth (6000 kbps). We see
that, with vanilla BitTorrent and low seed bandwidth, even
nodes with low uplink bandwidth can finish fast since they
can get connected to high-bandwidth nodes. The block-level
TFT policy achieves its goal of restoring this to a situation
where the download times are roughly proportional to the
node uplink capacities. Block-level TF'T helps decrease the
download time of high-bandwidth nodes by a small amount;
however, this reduces the number of blocks served by these
nodes by a significant amount, as shown in Figure 13. When
the seed bandwidth is high, differences between BitTorrent
and block-level TFT are less evident. This is because in both
cases the high-bandwidth nodes finish downloading and de-
part the system quickly, denying the lower bandwidth nodes
the opportunity to download much from the high-bandwidth
nodes.

In summary, we find that the optimistic unchoke mech-
anism in BitTorrent results in nodes with disparate band-
widths communicating with each other. This results in lower
uplink utilization and also creates unfairness in terms of vol-
ume of data served by nodes. However, simple alternative
policies — IBE and pairwise block-level TF'T — can remedy
the situation.

4.4 Other Arrival Patterns

Thus far we have focused on the performance of BitTor-
rent in flash-crowd scenarios. While performance in a flash-
crowd setting is an important concern, most realistic work-
loads also involve a non-trivial post flash-crowd phase. It
is important for participants to get good download perfor-
mance in the latter settings as well. The goal of this section



is to evaluate BitTorrent’s performance from the perspective
of post flash-crowd nodes.

441 Variationin Download Goals

A post flash-crowd scenario is different from a flash-crowd
in that there may be a wide range in the fraction of the
download completed by each node. Nodes that have been
present in the system longer are typically looking for a more
specific set of blocks. Thus, it may be harder for a newcomer
to establish a TFT exchange with such older nodes, which
could lead to increased download times as well as greater
load on the seed. We present results from experiments de-
signed to investigate this issue.

Performance of Nodes in the Post-Flash Crowd Phase

In the first experiment, we start with a flash crowd of 1000
nodes joining in the first 10 seconds of the experiment. Then,
a batch of 10 nodes is introduced into the system at 1800 sec-
onds, when the flash-crowd nodes have finished download-
ing approximately 80% of the file-blocks. All nodes have
down/up bandwidths of 1500/400 Kbps. We use two set-
tings for seed bandwidth: 800 Kbps (low) and 6000 Kbps
(high). The seed node utilizes the smartseed fix.
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Figure 15: Number of interesting outgoing connections
of a randomly sampled post flash-crowd node for various
configurations.

Figure 15 plots the number of interesting outgoing connec-
tions over time for a randomly chosen post flash-crowd node
until all the flash-crowd nodes leave. An outgoing connec-
tion is deemed interesting if the node in question has some
block that its peer needs. Note that the newcomer would
be interested in content from almost all its peers during the
first several seconds since it does not have any block to start
with. Thus, for every interesting connection, the newcomer
can establish a TFT exchange with its peer.

Figure 15 shows that irrespective of the block-selection
policy (LRF or random) or the seed bandwidth, a newcomer
is quickly able to gather blocks that are interesting to at
least a few of its peers, as seen from the non-zero count of
interesting connections in the figure. This is not surprising:
if p is the probability that a downloaded block is interesting
to some neighbor, and if this probability is the same and
independent for each neighbor, then the probability that a
downloaded block is useful to at least one neighbor is 1 —
(1—p)¢. This probability increases very quickly with d, even
if p is relatively small. Thus, we conclude that while a large
degree, d, may not be necessary for a flash-crowd situation
(Figure 9), making the degree very small can significantly
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impact TFT performance for nodes in the post flash-crowd
phase.

Although both the LRF and random policies perform well,
LRF performs better in general and results in a larger count
of interesting connections. One exception, however, is when
the seed bandwidth is low. As shown in Figure 15, the num-
ber of interesting connections starts off higher with the ran-
dom policy (“lobw-random”) compared to the LRF policy
(“lobw-LRF”). The reason for this inversion is that the low-
bandwidth seed is still injecting new blocks into the system.
Since such new blocks are by definition rare and there are
not many other rare blocks in the system (since the existing
nodes have already downloaded 80% of the blocks), the LRF
policy will impel all nodes — existing nodes as well as new
nodes — to preferentially download such a new block at the
same time. However, this common and concurrent interest
in the same rare block diminishes the ability of a new node
to find peers that are interested in subsequently download-
ing the same block from it. The new node would actually be
better off had it picked a block to download at random, as
seen from the larger number of interesting connections for
“lobw-random” at the very beginning.

Thus it is important for a new node to switch to LRF
only after downloading the first few blocks. It is interest-
ing to note that BitTorrent currently employs this heuristic,
but for a different reason [4], viz., to enable a new node to
download its first block quickly.

Performance of Pre-seeded Nodes

The second experiment we perform is a slight variation of the
first. Again, we start with a flash-crowd of 1000 nodes join-
ing in the first 10 seconds. After that, a new node is intro-
duced every 200 seconds into the system. Furthermore, each
new node is seeded with a random selection of k% blocks —
this simulates a situation where the node completed k% of
its download, disconnected, and then re-joined during a sub-
sequent flash-crowd to finish its download. We would like to
see a node with k% blocks taking approximately (1 — ﬁI:o)T
time to download the remaining blocks, where T is the mean
download time for leechers. (T' = 2000 seconds, for this set-
ting.) The key question, however, is whether the pre-seeded
node takes longer than it should to complete its download,
because of a mismatch between its goal (which is to down-
load the (few) specific blocks that it does not have) and that
of the other nodes in the system (which typically have fewer
blocks and hence have more choices for blocks to download).
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Figure 16: Download time ratios for pre-seeded nodes
introduced into the system at various times in the ex-
periment. This experiment used vanilla BitTorrent.



Figure 16 plots the ratio of actual download time to the
expected download time for such “pre-seeded” nodes, for
different values of k. A ratio close to 1.0 indicates that a
pre-seeded node does not have to wait substantially longer
than ideal. We use a seed bandwidth of 6000 Kbps in this
experiment; thus, the seed has injected at least one copy of
each block into the system at approximately 135 seconds.

From Figure 16, we find that as the number of blocks
required by the pre-seeded node decreases, the likelihood
of the node taking longer than ideal to finish increases.?
There are two reasons for this behavior: first, each block
takes a non-trivial amount of time to spread from the seed
to every node in the system. The maximum possible fanout
of this distribution tree is bounded by u = 5 (refer Sec-
tion 4.1). Furthermore, the degree d of the pre-seeded node
determines how quickly it can “intercept” this distribution
tree. The second reason is that a pre-seeded node is looking
for specific blocks, and would like these blocks to be repli-
cated quickly. However, BitTorrent’s LRF policy dictates
that all blocks get replicated equally so that none remains
rare. This resource-sharing across blocks decreases the dis-
tribution rate of the specific blocks desired by the pre-seeded
node, resulting in larger download times.

Notice that pre-seeded nodes are delayed basically be-
cause they are looking for specific blocks. If the source
were to employ FEC and inject a large number of equiv-
alent coded blocks into the system, pre-seeded nodes would
have more choices for blocks to download and hence should
be able to reduce the download time penalty. We repeated
the above experiment with the source introducing 100% ad-
ditional FEC coded blocks, and confirmed this prediction.
The download time ratios for all pre-seeded nodes and for
all values of k decreased to below 2.0.

4.4.2 Premature Seed Departure

We also experimented with flash-crowd scenarios where
the origin server leaves the system after serving exactly one
copy of each block. If blocks are dispersed quickly and
widely by BitTorrent, this should not matter and most nodes
in the flash-crowd should be able to finish. We observed this
behavior consistently except in heterogeneous environments
where seed bandwidth was low. In such cases, the higher
bandwidth nodes which are connected to the seed get their
last block from the seed and exit immediately without serv-
ing these blocks to any other node. If the seed bandwidth
is not constrained, all unique blocks are injected into the
system by the seed much earlier than any individual node
finishes. This ensures that these very rare and crucial blocks
get replicated at least a few times.

Hence, we conjecture that if leechers stay on to serve a
small number (1-2) of extra blocks in the system after fin-
ishing their downloads, all nodes can finish with high prob-
ability even when the origin server departs.

4.4.3 Workload Derived from a Real Torrent

Our goal in this section is to verify that the results pre-
sented in previous sections hold under realistic workloads.
We consider two important workload parameters: (a) node
arrival pattern, and (b) uplink and downlink bandwidth dis-
tribution. To derive realistic arrival patterns, we use the
tracker log for the Redhat 9 distribution torrent [10]. Ta-

3Note that this increase is in the ratio of the actual to ideal down-
load times, not in the absolute difference between these times.
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Downlink | Uplink | Fraction
(kbps) (kbps)

784 128 0.2
1500 384 0.4
3000 1000 0.25
10000 5000 0.15

Table 1: Bandwidth distribution of nodes

ble 1 describes the distribution of peer bandwidth, which
was derived from the Gnutella study reported in [19]. While
discretizing the CDF's presented in [19], we excluded the tail
of the distribution. This means that (a) dial-up modems
are eliminated, since it is unlikely that they will partici-
pate in such large downloads, and (b) very high bandwidth
nodes are eliminated, making the setting more bandwidth
constrained. We set the seed bandwidth to 6000 kbps.

In order to make the simulations tractable, we made two
changes. First, we used a file size of 200 MB (with a block
size 256 KB), which is much smaller than the actual size of
the Redhat torrent (1.7 GB). This means the download time
for a node is smaller and the number of nodes in the system
at any single point is also correspondingly smaller. Second,
we present results only for the second day of the flash crowd.
This day witnesses over 10000 node arrivals; however, due to
the smaller file download time, the maximum number of ac-
tive nodes in the system at any time during our simulations
was about 300.

Metric Vanilla BitTorrent
Uplink utilization 91%
Normalized seed load 127.05
Normalized max. #blocks served 6.26

Table 2: Performance of BitTorrent with arrival pattern
from Redhat 9 tracker log, and node bandwidths from
Gnutella study.

Table 2 shows the performance of BitTorrent with the
workload described above. We conclude that, even under a
post-flash-crowd arrival pattern that is spread out over time,
the results observed in earlier sections hold true, viz., uplink
utilization is very high and there is considerable unfairness
in the amount of data delivered by nodes.

5. CONCLUSION

In this paper, we have described a series of experiments
aimed at analyzing and understanding the performance of
BitTorrent in a range of scenarios. We focused our attention
on two main metrics: utilization of the upload capacity of
nodes, and unfairness in terms of the volume of data served
by nodes.

We find that BitTorrent performance scales very well with
the system size: even a seed with a modest capacity can
handle large flash crowds while keeping uplink bandwidth
utilization high. We show that while block-selection policies
are an important factor in achieving high uplink utilization,
the choice is not critical in many common settings (e.g., a
well-provisioned seed). At the same time, the Local Rarest
First policy employed by BitTorrent plays a key role in en-
suring diversity, especially when the seed bandwidth is low
and under post flash-crowd conditions. In general, our con-
clusion is that seed bandwidth must be utilized carefully



when it is scarce.

Finally, we show that BitTorrent’s rate-based tit-for-tat
policy, with the accompanying optimistic unchoke mecha-
nism, can result in systematic unfairness, with some nodes
serving much more than they download. We explore possible
solutions and show that peer-to-peer block-level tit-for-tat
can bound such unfairness without hurting utilization sig-
nificantly.
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