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Abstract

Missing feature methods of noise compensation for speech recognition operate by first identifying components of a

spectrographic representation of speech that are considered to be corrupt. Recognition is then performed either using

only the remaining reliable components, or the corrupt components are reconstructed prior to recognition. These meth-

ods require a spectrographic mask which accurately labels the reliable and corrupt regions of the spectrogram. Depend-

ing on the missing feature method applied, these masks must either contain binary values or probabilistic values.

Current mask estimation techniques rely on explicit estimation of the characteristics of the corrupting noise. The esti-

mation process usually assumes that the noise is pseudo-stationary or varies slowly with time. This is a significant draw-

back since the missing feature methods themselves have no such restrictions. We present a new mask estimation

technique that uses a Bayesian classifier to determine the reliability of spectrographic elements. Features used for clas-

sification were designed that make no assumptions about the corrupting noise signal, but rather exploit characteristics

of the speech signal itself. Experiments were performed on speech corrupted by a variety of noises, using missing feature

compensation methods which require binary masks and probabilistic masks. In all cases, the proposed Bayesian mask

estimation method resulted in significantly better recognition accuracy than conventional mask estimation approaches.
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1. Introduction

When speech is corrupted by noise, speech rec-

ognition accuracy degrades, especially when the

recognition system has been trained on clean

speech (e.g. Moreno, 1996). There have been many
algorithms proposed that compensate for the
ed.
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negative effects of noise in speech and greatly im-

prove recognition accuracy. However, many of

these methods assume that the corrupting noise

is stationary or slowly varying. If this assumption

is violated, these methods perform poorly.
Missing feature methods (e.g. Raj et al., 2000;

Raj et al., 1998; Cooke et al., 2001; Renevey,

2000) are a group of techniques developed over

the last several years for compensating for additive

noise, regardless of its stationarity. The missing

feature paradigm is based on the notion that noise

affects different time-frequency regions of speech

differently. In a spectrographic display of noisy
speech, there will be regions of low SNR and high

SNR depending on the relative energies of the

speech and the noise at each time-frequency loca-

tion. Regions with low SNR are considered ‘‘cor-

rupt’’ while regions with high SNR are dubbed

‘‘reliable’’. In conventional missing feature ap-

proaches, the low SNR components are deemed

unreliable and disregarded (hence, ‘‘missing’’).
Missing feature compensation techniques operate

on this incomplete spectrogram either by estima-

ting the proper values of unreliable components

and then performing recognition on the now-com-

plete sequence of feature vectors (Raj et al., 2000),

or by passing the incomplete feature vectors di-

rectly to a recognition system which has been mod-

ified to operate on partial vectors (Cooke et al.,
2001). We refer to the former family of methods

as feature-compensation methods and the latter

family as classifier-compensation methods (Raj

et al., 2001).

Unlike other compensation methods, these

techniques require no assumptions about the cor-

rupting noise signal, e.g. stationarity. However,

all missing feature approaches do require all com-
ponents in a spectrographic display of speech to

have a labelling describing their degree of ‘‘reliabi-

lity’’ or ‘‘corruption’’. We refer to such a labelling

as a spectrographic mask. Conventional missing

feature methods require a binary tagging of spect-

rographic locations, typically using a local SNR

criterion. That is, elements below a given SNR

are tagged as corrupt (0), while those above are la-
belled reliable (1). This labelling for all elements in

an utterance is captured in a binary spectrographic

mask.
More recent missing feature methods, such as

Barker et al. (2000), have shown improved per-

formance using soft decisions in the mask estima-

tion process. The use of binary masks forces a

hard decision to be made about whether each ele-
ment is dominated by speech or by noise. In con-

trast, the label assigned to each spectrographic

element by a soft-decision mask can take on a con-

tinuum of values between 0 and 1. This label can

be interpreted as the probability that a particular

element is dominated by speech. Elements with a

mask probability approaching 1 have strong evi-

dence that they contain primarily speech and very
little noise, while those elements with a mask prob-

ability approaching 0 are strongly believed to con-

tain primarily noise and very little speech.

Missing feature methods have been shown to be

very successful at compensating for the effects of

stationary and non-stationary noise when this

mask is computed from a priori knowledge of

the SNR of all spectrographic components. How-
ever, when the masks are unknown, these tech-

niques are unusable.

Clearly then, reliable estimation of spectro-

graphic masks is of critical importance to the suc-

cess of missing feature methods. Conventional

mask estimation methods (e.g. Vizinho et al.,

1999) rely on noise-estimation techniques, such

as those used in spectral subtraction (Boll, 1979)
to estimate the local SNR at each time-frequency

location. Each element�s SNR estimate is com-

pared to a specified threshold and the element is la-

belled accordingly. Such mask estimation methods

perform well when the corrupting noise is station-

ary or slowly-varying, as this assumption is re-

quired for spectral subtraction. However, when

the noise is non-stationary, masks estimated in this
manner can be very inaccurate. In Fig. 1, cluster-

based reconstruction (Raj et al., 2000), a feature-

compensation missing feature method, has been

applied to noisy speech using masks estimated

via spectral subtraction and ‘‘oracle’’ masks gener-

ated from full a priori knowledge of the noise sig-

nal. The figure on the left shows recognition

accuracy vs. SNR for speech that has been cor-
rupted with white noise. There is significant

improvement over baseline accuracy using spectral

subtraction to estimate the masks. The figure on
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Fig. 1. Recognition accuracy vs. SNR when missing feature methods are applied to speech that has been corrupted by white noise (left)

and speech that has been corrupted by music (right).
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the right shows the same plot for speech corrupted
by music, which is highly non-stationary. Here,

spectral subtraction-based mask estimation com-

pletely fails. In fact, recognition accuracy after

compensation using these masks is slightly worse

than the baseline uncompensated recognition.

However, the accuracy obtained using oracle

masks in both plots show the potential of missing

feature methods for noise compensation if the
masks can be estimated reliably.

The mask estimation problem is further magni-

fied when we consider the potential for larger

improvements in recognition accuracy that has

been demonstrated using missing feature methods

based on ‘‘soft’’ mask decisions. Simple noise-esti-

mation techniques do not provide the probabilistic

measurement of an element�s reliability that these
methods require. Two current methods of solving

this problem have been proposed in the literature.

The first, by Barker et al. (2000) attempts to con-

vert a boundless spectral-subtraction-based SNR

estimate into a bounded [0,1] measurement via a

warping function such as a sigmoid. This method

has been shown to be successful on speech cor-

rupted with pseudo-stationary noises. However,
because it relies on spectral-subtraction-based

SNR estimates, it is still subject to the same

stationarity assumption that hindered the spec-

tral-subtraction-based binary mask estimation

methods. It has the potentially more significant

drawback that the mask values are not actually

probabilities. They are SNR estimates presented

on a different scale. The second soft-decision mask
estimation method, by Renevey and Drygajlo
(2001), overcomes this drawback and does com-

pute actual probabilities. In this method, the noise

corrupting the speech signal is assumed to follow a

Gaussian distribution and the parameters of the

distribution are estimated using the non-speech

segments of an utterance. Using these estimated

parameters, the probability that the signal-plus-

noise to noise ratio (referred to as a posteriori

SNR in (Renevey and Drygajlo, 2001)) is above

a specified threshold is computed and used as the

mask value. However, this method, while capable

of computing true probabilities, still assumes that

the corrupting noise is both stationary and Gaus-

sian. Yet, there are many real-world noises where

both of these assumptions are invalid.

In this paper we present a mask-estimation
technique that uses a Bayesian classification strat-

egy to determine the reliability of each spectro-

graphic element (Seltzer et al., 2000).

Classification is performed using a set of features

representative of the characteristics of speech, with

no explicit reference to the noise. Casting mask

estimation as a Bayesian classification problem

has four distinct advantages. First, the problem
of mask estimation is reduced from the difficult

task of noise or SNR estimation to a simpler clas-

sification task. Second, the classification scheme

allows any information that is pertinent to be eas-

ily incorporated as features into the mask estima-

tion decision process. Third, with an appropriate

choice of features, mask estimation can be free of

assumptions about the corrupting noise. Finally,
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Fig. 2. Recognition accuracy vs. SNR on speech that has been
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by using a Bayesian classification scheme, we are

easily able to generate truly probabilistic spectro-

graphic masks.

In Section 2 we describe the feature set used by

the classifier-based mask estimator to estimate the
spectrographic masks. In Section 3 we describe the

classification strategy we use. Section 4 briefly de-

scribes the missing feature methods that we will

use to test the mask estimation method proposed.

We describe experiments that were performed to

evaluate the proposed method in Section 5. Final-

ly, we summarize our results and highlight direc-

tions for future research in Section 6.

corrupted by white noise. Missing feature compensation was

applied using oracle masks applied to both the voiced and

unvoiced segments, only the unvoiced segments, and only the

voiced segments.
2. Feature extraction

As speech recognition systems become deployed
in more areas, the variety of environments encoun-

tered and the types of noises which may corrupt

the speech signal increase. We have learned that

for robust speech recognition in unknown environ-

ments, it is preferable to extract cues directly

from the speech signal, rather than try to estimate

characteristics of the corrupting noise (Singh et al.,

2001). This choice is quite intuitive, because in any
given real-world environment, the variety of noise

sources is virtually limitless, while the speech sig-

nal remains essentially invariant. It is much easier

to study and model speech than to study and mod-

el every type of noise. With this in mind, we seek a

mask estimation classifier which utilizes features

designed to exploit the inherent characteristics of

the speech signal itself while making few, if any,
assumptions about the environmental noise. In

focusing on speech properties, it is apparent that

because voiced speech and unvoiced speech are

generated by different production mechanisms,

they have very different characteristics. As a result,

we make a distinction between features used to

estimate mask values for voiced and unvoiced seg-

ments of speech.
This distinction between voiced and unvoiced

speech is important not just in the design of fea-

tures for mask estimation, but in the performance

of missing feature compensation algorithms them-

selves. As an example, Fig. 2 shows a plot of SNR

vs. recognition accuracy for speech corrupted with
white noise using the cluster-based reconstruction

method (Raj et al., 2000). The uppermost curve

shows the performance using full oracle masks.

The dotted curve shows the recognition accuracy
when only the unvoiced segments are compen-

sated, and the voiced segments are left uncompen-

sated. Similarly, the dashed curve shows the

recognition accuracy achieved when only the

voiced segments are compensated and the un-

voiced segments are left untouched. As the figure

clearly indicates, effectively compensating for the

unvoiced segments is more important to recogni-
tion performance than compensating the voiced

regions. This make intuitive sense when we con-

sider that unvoiced speech is typically of lower en-

ergy than voiced speech. For a given global SNR,

the unvoiced segments will be more corrupt than

the voiced segments.

Yet, for a variety of reasons, the estimation of

spectrographic masks for unvoiced speech seg-
ments is more difficult than for voiced segments.

For instance, since unvoiced segments are rela-

tively low in energy compared to voiced segments,

they frequently end up as ‘‘negative energy’’ re-

gions in spectral-subtraction-based noise-estima-

tion schemes, because the energy of the noisy

speech component is less than the estimate of the

noise energy alone. This results in an erroneous
SNR estimation which may result in mask error.

These observations further suggest that desig-

ning a mask estimation scheme that is not based
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on noise-estimation techniques will result in signif-

icant improvements in performance over conven-

tional mask estimation methods. The following

sections describe the features designed for the

mask estimation classifier for voiced and unvoiced
segments of speech.
2.1. Features for voiced speech segments

Voiced speech is characterized largely by its

strong periodicity and harmonicity arising from

the strong presence of a fundamental frequency,

or pitch, and its harmonics. Additionally, voiced
speech has a definite spectral contour across fre-

quency, with more energy present in the low fre-

quencies, and tapering off at the higher

frequencies. We attempt to exploit these character-

istics with the several classification features. Of

course, in order to utilize features that exploit

the periodicity and harmonicity of voiced speech,

we require a pitch estimator that is robust to noise.
In this work we use the pitch estimator ‘‘get_f0’’

based on the RAPT algorithm (Talkin, 1995) and

provided in the Entropic xwaves package. In the

algorithm, initial pitch estimates are made using

a normalized autocorrelation function and the

final values are chosen from potential candidates

via dynamic programming. Voiced/unvoiced deci-

sions are also made by the pitch estimator.
2.1.1. Comb filter ratio

Because of the harmonic nature of voiced

speech, the majority of the energy of a clean voiced

speech signal resides in its harmonics (Morgan

et al., 1997). Additive noise does not typically have

this characteristic. When additive noise is mixed

with voiced speech, the overall signal energy in-
creases both at the harmonics of the pitch and at

the frequencies in between. Therefore, a measure

that compares the energy at the harmonics of

voiced speech to the energy outside the harmonics

is a good indicator of noise present in the signal.

A comb filter is constructed based on the pitch

estimates to capture the energy present in the har-

monics of voiced speech. We use an IIR comb fil-
ter implementation given by the following transfer

function:
H combðzÞ ¼ z�p=ð1� gz�pÞ ð1Þ
where p = 1/F0 is the pitch period and g is a tuna-
ble parameter which sets the sharpness of the teeth

of the comb. It was determined empirically that

setting g = 0.7 captures most of the harmonic

information of voiced speech. To capture the en-

ergy of the components of the signal that fall in be-

tween the harmonics, the comb filter is simply

shifted by F0/2. The transfer function for this

shifted comb filter is given by

H combshiftðzÞ ¼ �z�p=ð1þ gz�pÞ ð2Þ

If we assume that most energy in voiced speech

resides at the harmonics of the fundamental fre-

quency while noise may reside in all frequency

bands, the energy at the output of the comb filter

is a measure of speech plus noise energy while that
of the shifted comb filter is a measure of noise en-

ergy only. Thus, the log ratio of the energies of the

speech signal passed through the comb and shifted

comb filters is a measure of speech-plus-noise to

noise. The cleaner the speech signal is, the larger

this ratio will be. We call this feature the comb fil-

ter ratio (CFR). The CFR is given by

CFR½i;x� ¼ 10log10

P
ni

ycomb½ni;x�2

P
ni

ycombshift½ni;x�2

0
B@

1
CA ð3Þ

where ycomb and ycombshift are the outputs obtained

after the speech signal in frame i and subband x
has been passed through the comb and shifted

comb filters, respectively.

Fig. 3 shows a plot of the average CFR for all

voiced frames of an utterance of speech corrupted

by music and by white noise at various SNRs. As
the figure shows, the CFR is a reliable predictor of

noise-level in the signal. Additionally, the lines

show similar trajectories even though the corrupt-

ing noises are significantly different.

From an auditory scene analysis point of view,

comb filtering can be interpreted as means of iden-

tifying harmonicity cues. Alternatively, the authors

in (Barker et al., 2001) used an autocorrelelogram
to identify these cues in order to generate a ‘‘har-

monicity mask’’. Using the harmonicity mask in

conjunction with a conventional SNR-based mask



0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 5 10 15 20 25

SNR (dB)

C
om

b 
F

ilt
er

 R
at

io
 (

dB
)

speech + white noise

speech + music

Fig. 3. Average comb filter ratio (CFR) vs. SNR for all voiced

frames of an utterance corrupted by white noise and by music.

384 M.L. Seltzer et al. / Speech Communication 43 (2004) 379–393
produced improved recognition results over using
solely the SNR-based mask.

2.1.2. Autocorrelation peak ratio

Voiced speech is a quasi-periodic signal. The

secondary peaks in the autocorrelation function

of a frame of voiced speech will be less than or

equal to the height of the main peak. The less peri-

odic the signal is, the smaller the secondary peaks
will be. Adding uncorrelated noise to a signal effec-

tively reduces its periodicity, decreasing the ratio

of the height of the largest secondary peak to the

height of the main peak. We use this ratio as a

measure of periodicity. This autocorrelation peak

ratio feature will be close to one for clean speech

and decrease as the signal is increasingly corrupted

by noise.

2.1.3. Subband energy to fullband energy ratio

In addition to its characteristic harmonicity,

voiced speech has a distinct spectral shape. In gen-

eral, the energy of voiced frames is concentrated at

the lower frequencies and tails off at higher frequen-

cies. As noise is added to the speech, its spectral

shape changes as a function of the spectral charac-
teristics of the noise. We measure this impact as the

log ratio of the energy in a subband to the overall

frame energy as a measure of effect of additive noise

on a particular subband and on the overall contour.

2.1.4. Kurtosis

Higher order spectra are used to capture infor-

mation about a signal�s deviation from Gaussianity
(Donoho, 1981). Many real world audio signals,

including speech, are generally regarded as a

super-Gaussian signals; that is, their distribution

has greater kurtosis than a Gaussian signal, with

a sharper peak and more mass in the tails. When
two super-Gaussian signals are combined, the kur-

tosis of the resulting signal typically goes down

(Leblanc and De Leon, 1998). This characteristic

has been exploited in the blind-source separation

and speech enhancement literature (e.g. Leblanc

and De Leon, 1998; Gillespie et al., 2001) where

algorithms have been designed using kurtosis

maximization objective functions. We assume as
well that a clean speech signal and its noisy coun-

terpart will have different kurtoses, and that we

can capture this difference as a feature for classifi-

cation. We use the kurtosis defined in (4), where

expectations are estimated from sample averages

in each subband of each frame.

jx ¼
Efx4g

fEfx2gg2
� 3 ð4Þ
2.1.5. Flatness

As was noted earlier, voiced speech exhibits a

very definitive trajectory across frequency, and

when noise is added to speech, this spectral shape

will change. The valleys in the spectrum tend to

flatten as noise is added to a speech signal. This

‘‘flatness’’ can be characterized by the variance of

the subband energy in a neighborhood of spectro-

graphic locations around a given pixel. For a given
subband, a signal corrupted with noise tends to

have shallower, flatter valleys than its uncorrupted

counterpart. Therefore, we expect noise-corrupted

spectrographic locations to have a lower variance

than cleaner ones.
2.1.6. Subband energy to subband noise floor ratio

Having knowledge of the noise floor of a
noise-corrupted speech signal is obviously very

useful for estimating the SNR. An accurate

measure of the noise floor is difficult to obtain.

We can, however, coarsely estimate the level of

the noise floor in a particular subband by look-

ing at the distribution of the energy in that sub-

band across all frames in an utterance. These
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distributions typically have two modes, one at a

low energy value representing the silence and

low energy speech segments and one at a higher

energy representing high energy speech segments.

The idea of statistically modeling the energy dis-
tributions of speech has been used for speech

endpoint detection using HMMs (Acero et al.,

1993). We have used a much simpler technique

based on the noise-estimation technique in

(Hirsch and Ehrlicher, 1995) to get a rough esti-

mate of the noise floor. The energies of all

frames of an utterance are put into a histogram

and the lower energy peak is found. The energy
bin in the histogram corresponding to this peak

value is considered the noise floor of the noisy

speech signal. We use the ratio of the energy in

a subband of a frame of speech to the estimate

of the noise floor in that subband of the utter-

ance as a feature to help determine the likelihood

that a specific spectrographic location has been

corrupted by noise. We note that this technique
is similar to spectral subtraction in that we are

using the energy of the silence frames to estimate

the noise floor of the entire utterance. If the

noise is highly non-stationary, the noise floor

estimate will not necessarily be accurate. How-

ever, because this is one of many features in

our classifier, we do not expect this to adversely

affect the performance of the classifier in this
situation.

2.1.7. Spectral-subtraction-based SNR estimate

As mentioned in Section 1, relying on assump-

tions of noise stationarity for mask estimation

can result in poor recognition if the noise environ-

ment changes rapidly. However, in some environ-

ments, such a stationarity assumption is at least
partially valid. For example, in an automobile or

factory, the environmental noise can often be bro-

ken down into a stationary background noise and

non-stationary impulses or other phenomena. In

these quasi-stationary environments, spectro-

graphic masks based on SNR estimation are able

to provide improvement over the baseline recogni-

tion result (Vizinho et al., 1999). By including it as
one of several features in our classifier, the SNR

estimate can influence but not exclusively control

the classification decision.
2.2. Features for unvoiced speech

Unvoiced speech is much more difficult to char-

acterize than voiced speech. There is no harmoni-

city or other distinctive regularity as in voiced
speech. As a result, the pitch-related features

developed for voiced speech will be ineffective for

unvoiced speech. Unvoiced speech also has less en-

ergy than voiced speech and is therefore more af-

fected by noise than voiced frames. However, it

does have a general spectral shape that is unlike

voiced speech and most naturally occurring noises.

The features that do not rely on pitch characterize
a frame of speech in terms of the relative energy

levels in each of the subbands, spectral shape,

and statistical properties. They are useful features

because we know that adding noise to a speech sig-

nal alters these characteristics. This is true for both

voiced and unvoiced speech. For example, while

the energy distribution of unvoiced speech across

frequency is very different from that of voiced
speech, it too will be altered by additive noise.

As a result, all pitch-independent features used

for classifying voiced speech can also be used for

unvoiced speech. In our work, the mask estimation

for the unvoiced segments is therefore performed

using the features described above, with the excep-

tion of the two pitch-dependent features, the comb

filter ratio and the autocorrelation peak ratio.
3. Classification strategy

To estimate the reliability of the spectro-

graphic elements using the features described in

the previous section, a two-class Bayesian classi-

fier was designed. Each class, reliable and
corrupt, was represented by a mixture of Gaus-

sians with a single full-covariance matrix tied

across all densities in the mixture. Because the

number of features used for voiced and unvoiced

speech differ (with unvoiced speech having two

fewer features) we constructed a separate classi-

fier for each type of speech. In addition, the val-

ues of each feature can vary significantly across
frequency so a classifier was constructed for each

subband as well.
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Missing feature methods use an empirically-

derived, method-dependent SNR threshold to

determine whether a spectral component is relia-

ble or corrupt (or in the soft-decision case, the

degree of reliability or corruption). This thresh-
old is used to label the data used to train the

classifier.

The prior probabilities of the two-classes can

be estimated from training data as the fraction

of spectrographic components in each subband

whose local SNR is above or below a given

threshold. For an SNR threshold of 0 dB, Fig.

4a shows the prior probabilities of being reliable
for both voiced and unvoiced speech, for each of

the components of a log spectral vector com-

puted using twenty Mel filters. Fig. 4b shows

the average energy in each of the Mel subbands

for both voiced and unvoiced speech, also com-

puted from training data. Comparing the two fig-

ures, a clear correlation can be seen between the

variation of the probability of being reliable
across frequency and the energy profile of voiced

and unvoiced speech across frequency. However,

different missing feature methods operate differ-

ently and the effect of mask misclassifications

on their performance is also different. Therefore,

the priors estimated from the training data may

not result in the best recognition. Improved per-

formance can be obtained by tuning the prior
probabilities using a cross-validation set.
Fig. 4. (a) Prior probabilities of reliability of voiced and unvoiced spe

filter index. The threshold for reliability is 0 dB SNR. (b) Average en

function of Mel filter index.
4. Missing feature compensation methods

In missing feature compensation methods, the

mask estimation and the missing feature algorithm

itself work together to form a complete missing
feature compensation system. To test the quality

of the masks generated by the proposed Bayesian

classification method, it is not enough to simply

test mask classification accuracy against some

ground truth such as oracle masks, constructed

with full a priori knowledge of the SNR. Because

there are many stages of processing between a

missing feature algorithm and the final hypothesis
output by the recognizer, measuring performance

in terms of hits, misses, false alarms, and correct

rejections, relative to the oracle mask, will not nec-

essarily be a good indicator how the well the masks

will perform with a given missing feature algo-

rithm. Thus, the only ‘‘proper’’ measure of mask

estimation performance is the recognition accu-

racy achieved when the estimated masks are used
in conjunction with missing feature compensation

methods. In fact, in soft-decision missing feature

methods, there is no notion of ground truth for

the masks, as all spectrographic elements are

tagged in a probabilistic manner. Recognition

accuracy is the only way to evaluate these masks.

We have tested the masks generated using

two missing feature compensation methods. The
first method, cluster-based reconstruction is a
ech from the mask estimation training data as a function of Mel

ergy of voiced and unvoiced speech in each Mel subband as a
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feature-compensation method; all the processing

takes place on the features, prior to recognition

(Raj et al., 2000). It is a hard-decision method,

so it requires spectrographic masks which label ele-

ments in a binary fashion. The second method,
soft-decision bounded integration (also commonly

called soft-decision bounded marginalization) is a

classifier-compensation method; the incomplete

log spectral vectors are used directly for recogni-

tion, and the basic manner in which class likeli-

hoods are computed is modified inside the

recognizer (Barker et al., 2000). As its name sug-

gests, this is a soft-decision method. It requires
probabilistic spectrographic masks which label

the reliability of each element along a continuum

of values between 0 and 1. A brief description of

each method follows.

4.1. Cluster-based reconstruction

In the cluster-based reconstruction method, the
log-spectral vectors of a training corpus of clean

speech are grouped into a number of clusters using

conventional expectation-maximization tech-

niques (Dempster et al., 1977). The distributions

of the vectors within each cluster are assumed to

be Gaussian, and the mean, covariance, and a pri-

ori probability of each cluster are estimated from

the training data. To compensate for noisy speech,
the missing features are estimated by first identify-

ing the cluster to which each corrupted log-spec-

tral vector belongs, and then using the

distributions of these clusters to estimate the miss-

ing elements of the vector. Cluster membership is

given by the cluster k that has the highest likeli-

hood of generating the noisy vector S(t).

kSðtÞ ¼ argmax
k

fP ðSðtÞjkÞP ðkÞg ð5Þ

However, because S(t) has unreliable elements,

cluster membership cannot be identified in this

way. The unreliable elements must first be inte-

grated out of the cluster distributions so that clus-

ter membership is estimated only from the

components in vector that are present. Because

the observed value (considered noisy or corrupt)

represents the combined energy of the speech and

the additive noise, we can use it as an upper bound
for integration. Cluster membership is now given

by (6) where Sm(t) is a vector of the missing ele-

ments of vector S(t) and Ym(t) is the vector of their

observed values.

k̂SðtÞ ¼ argmax
k

P ðkÞ
Z Y mðtÞ

�1
P ðSðtÞjkÞdSmðtÞ

	 


ð6Þ

Once the cluster membership k of a vector has

been determined, missing feature reconstruction

is performed using bounded MAP estimates based

on the Gaussian distribution of the appropriate

cluster and the upper bounds given by the ob-
served corrupt values, as shown in (7).

ŜmðtÞ ¼ argmax
Sm

P ðSmðtÞjS0ðtÞ; lk̂SðtÞ
;

n

Rk̂SðtÞ
; SmðtÞ6 Y mðtÞÞ

o
ð7Þ

After the missing features have been recon-

structed, cepstral coefficients can be extracted from
the now-complete log spectral vectors in the usual

manner and passed to a conventional HMM rec-

ognizer for decoding.

4.2. Soft-decision bounded integration

In general, bounded integration missing feature

methods operate by marginalizing the components
of the feature vector labelled as unreliable out of

the HMM state distributions, again using the

known value of the noisy element as an upper

bound on the value of the component. The likeli-

hood of each class is then computed using only

the remaining ‘‘reliable’’ elements in the vector.

This is considered bounded integration using hard

decisions (Cooke et al., 2001). This method has re-
cently been extended in (Barker et al., 2000) to use

soft decisions on the element reliability. Under the

soft-decision framework, each element Yi(t) is as-

signed a probability a that it is reliable and domi-

nated by speech rather than noise. Likewise, each

of these elements is assigned a probability (1 � a)
that the element is noise-dominated. Assuming

all components in the vector are independent, the
total likelihood of each component then becomes

a weighted sum of the likelihood of the component



388 M.L. Seltzer et al. / Speech Communication 43 (2004) 379–393
and its normalized cumulative probability. Mathe-

matically, this can be expressed as

P ðY ðtÞjCÞ ¼
Y
i

�
aðP ðY iðtÞjCÞÞ

þð1� aÞ 1

Y iðtÞ

Z Y iðtÞ

0

P ðSiðtÞjCÞdSi

�

ð8Þ

In practice, state output densities are modelled

by Gaussian mixtures with diagonal covariance

matrices, and vector components are only assumed

independent conditional on the Gaussian identity.

In this case, (8) is applied to the individual Gaus-

sians within the mixture.
5. Experimental results

Experiments in classifier-based mask estima-

tion were performed using the DARPA Resource

Management (RM) corpus (Price et al., 1988),

corrupted by three different noise environments:
stationary white noise, factory noise, consisting

of quasi-stationary background noise mixed with

non-stationary impulsive noises, and music from

the ‘‘Marketplace’’ radio program, which is highly

non-stationary, and in places, highly harmonic.

The experimental procedures described in the fol-

lowing paragraphs were followed for each of the

three noise environments.
Noise-corrupted speech was passed through a

Mel filterbank consisting of twenty triangular

FIR filters. For each frame and each subband,

the features for mask estimation were extracted

along with the log spectra for missing feature com-

pensation and recognition.

The mask estimation classifier was trained on

2880 utterances from RM, corrupted by noise to
various SNRs. For each frame and each subband,

the features were extracted as described in the Sec-

tion 2. For training, the pitch estimates required

for the pitch-dependent features were obtained

from clean speech using the xwaves ‘‘get_f0’’ pitch

estimation package. The local SNR was computed

for every time-frequency location, and the training

data were labelled by comparing the SNR to a
threshold. For the cluster-based reconstruction,
the SNR threshold for reliability was �5 dB

(Raj, 2000), while the soft-decision bounded inte-

gration method has a threshold of 0 dB (Barker

et al., 2001). For each subband and each type of

speech (voiced or unvoiced), mixtures of three
Gaussians were estimated using conventional

EM. A global full-covariance matrix was also esti-

mated for each mixture.

A cross-validation data set of 200 utterances

from RM was used to estimate the prior probabi-

lities of reliability. A single prior probability esti-

mate was used across all SNRs and subbands for

the mask estimation classifiers for both the voiced
and unvoiced speech segments. Although this is

believed to be sub-optimal, performing a compre-

hensive search for the best set of prior probabilities

for each subband was considered to be too com-

putationally costly. There was no overlap between

the cross-validation, training, and test sets.

The test set consisted of 400 utterances from

RM. The pitch estimates for the test set were de-
rived directly from the noisy speech for all envi-

ronments. Frames with a non-zero pitch estimate

were classified using the voiced speech mask esti-

mation classifier for the appropriate subband,

while those with no pitch estimate were classified

using the unvoiced mask classifiers. For mask esti-

mation purposes, no distinction was made between

silence segments and unvoiced speech, nor was any
segmentation performed. For each utterance the

posterior probability of reliability was estimated

for every spectrographic location to generate a

probabilistic spectrographic mask. For the clus-

ter-based missing feature approach, the probabilis-

tic mask was converted to a binary mask using a

probability of 0.5 as the threshold.

The spectrographic masks were estimated from
the noise-corrupted test data. For comparison,

masks were also estimated using the conventional

noise-estimation-based techniques described in

Section 1. Binary masks were estimated using the

spectral subtraction approach with a threshold of

2.5 dB. This threshold was empirically determined

to be optimal for spectral-subtraction-based masks

applied to cluster-based reconstruction in (Raj,
2000). For the soft-decision bounded integration

method, soft masks were developed using spec-

tral-subtraction-based noise estimates using a
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threshold of 0 dB in conjunction with a sigmoid

warping function, as described in (Barker et al.,

2000; Barker et al., 2001). A sigmoid is described

by two parameters a and b. We initially set the sig-

moid parameters to a = 3.0, b = 0.0 which the
authors reported in (Barker et al., 2001) to be opti-

mal, but we obtained better performance with

a = 0.5.

Examples of masks estimated using each of

these techniques are shown in Fig. 5 for a small

segment of a test utterance. The black pixels repre-

sent reliable regions and the white pixels represent

corrupt regions. Compared to the masks estimated
using the noise-estimation-based techniques, the

Bayesian masks capture more of the reliable re-

gions of speech. Some of the reliable regions

missed by the binary masks are present as shades

of gray in both soft-decision masks. However,

these regions are a darker gray in the Bayes mask,

correctly indicating a higher probability of being

reliable.
Fig. 5. Examples of spectrographic masks for a speech signal corrup

‘‘EARLIER’’. Reliable regions are shown in black and corrupt regions

from a priori knowledge of the local SNR, and estimated binary m

classifier method. The bottom row shows soft-decision masks estima

classifier method, and the Bayes classifier method trained on white n
Once estimated, the masks were then used by

each of the missing feature techniques for compen-

sation. For cluster-based reconstruction, the fea-

tures labelled as missing by the mask were

reconstructed. After reconstruction, the now-com-
plete twenty-dimensional log spectral vectors were

converted to thirteen-dimensional cepstra via a

DCT. Recognition was performed using the

SPHINX-3 speech recognition system (Placeway

et al., 1997). The system was trained on clean

speech using the same 2880 utterances used to

train the mask estimation classifier. Context-

dependent continuous density HMMs were trained
with one Gaussian per state. No delta or delta–del-

ta features were used.

For the soft-decision bounded integration

experiments, the noise-corrupted log spectra and

the estimated spectrographic masks were proc-

essed by a modified version of SPHINX-3. Since

this method operates exclusively in the log spec-

tral domain, the training set was used to train
ted by factory noise to 10 dB SNR. The utterance is the word

are shown in white. The top row shows the oracle mask created

asks created by spectral subtraction and the proposed Bayes

ted using the spectral-subtraction sigmoid method, the Bayes

oise.
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Fig. 6. Recognition accuracy vs. SNR using cluster-based

feature reconstruction on speech corrupted by (a) white noise,

(b) factory noise, and (c) music, with binary spectrographic

masks estimated using the spectral-subtraction method, the

proposed Bayes method, and in (b) and (c), the Bayes method

using the mask classifier from (a) trained only on white noise.
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Fig. 7. Recognition accuracy vs. SNR using soft-decision

bounded integration on speech corrupted by (a) white noise,

(b) factory noise, and (c) music, with soft spectrographic masks

estimated using the spectral-subtraction sigmoid method, the

proposed Bayes method, and in (b, c), the Bayes method using

the mask classifier from (a) trained only on white noise.
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context-dependent continuous density HMMs on

twenty-dimensional log spectra. Again, one Gaus-
sian per state was used, and no delta or delta–delta

features were used.

The recognition accuracies obtained for the

three noise conditions using estimated masks with

cluster-based reconstruction and soft-decision

bounded integration are shown in Figs. 6 and 7,

respectively. Figs. 6a and 7a show the performance

for speech corrupted with white noise, Figs. 6b and
7b, speech corrupted by factory noise and Figs. 6c

and 7c, speech corrupted by music. As the plots

indicate, significant improvements in recognition
accuracy were achieved for both missing feature

methods using the proposed Bayesian mask esti-

mation method, as compared to the noise-estima-

tion-based techniques.

In the previous series of experiments, the noise

environment, though not the SNR, was assumed

to be known a priori. In some situations, this is a
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realistic assumption. However, there are many sit-

uations, e.g. mobile telephony, where this assump-

tion is not valid. Furthermore, the authors of

Barker et al. (2000) noted that the sigmoid-based

mask estimation technique is capable of better per-
formance if the sigmoid parameters are tuned to

match the test conditions.

To both test the performance of our mask esti-

mation scheme in unknown environments and

provide a fairer comparison to the sigmoid-based

masks in the soft-decision case, the masks for the

factory and music noise conditions were re-esti-

mated, using the mask-estimation classifier that
had been trained on speech corrupted only by

white noise. Now, both the SNR and the noise type

are unknown to the mask estimator. The last mask

in Fig. 5 has been estimated in this manner. It has

correctly identified almost all of the major blocks

labelled by the mask trained with a matched noise

type. However, it seems to be making more

‘‘extreme’’ decisions, as there are fewer grey
regions compared to its matched-environment

counterpart.

The performance of environment-independent

mask estimation is shown by the dotted curves in

plots (b) and (c) of Figs. 6 and 7 for the feature-

reconstruction method and the bounded integra-

tion method, respectively. As the plots in Fig. 6

indicate, the recognition accuracy obtained with
the feature reconstruction method using classi-

fier-based masks trained only on white noise is vir-

tually identical to the accuracy obtained when the

mask estimator has been trained on the matching

noise type. For bounded integration, the recogni-

tion accuracy obtained using the environment-

independent masks is somewhat lower than that

achieved when the mask estimation classifier oper-
ates in a known environment. However, as Fig. 7

indicates, this performance is still better than that

obtained by the noise-estimation-based masks.

In addition, classifier-based mask estimation

was performed on clean speech, uncorrupted by

additive noise. In this case, the mask estimator

should, in principle, label all spectrographic com-

ponents as ‘‘reliable’’. Although the mask estima-
tor did mark several components as ‘‘corrupt’’

(predominantly in the silence regions), applying

missing feature compensation to clean speech
using the estimated mask resulted in no degrada-

tion in speech recognition accuracy.
6. Conclusions and future work

In this paper we have presented a new Bayesian

classifier for spectrographic mask estimation for

missing feature compensation. Our classifier-based

technique operates on the principle that it is better

to concentrate on information we can extract from

the noisy signal about the underlying speech,

rather than trying to estimate properties of the
noise. We have shown significant and consistent

improvements over conventional noise-estimation

based mask techniques under a variety of noise

types and SNRs using two different missing feature

techniques, one requiring binary masks and one

requiring probabilistic masks. Our classifier has

been shown to operate successfully across multiple

SNRs and noise types. We were also able to main-
tain good performance in situations where the

environment is unknown to the mask estimator.

This last result validates our goal of speech-fo-

cused features, rather than noise-focused features.

When the noise changes, the features remain

informative.

However, compared to previous methods, our

classifier-based method is significantly more com-
plicated. There are many more parameters to

optimize. Indeed, we believe the current mask esti-

mator is performing sub-optimally as a result of

assumptions made for the sake of expediency.

For example, we know that the prior probabilities

are not equal across subbands and voiced and un-

voiced speech. However, doing an exhaustive

search of all combinations of priors is simply not
feasible. Similarly, it may be the case that not all

features perform equally well in all subbands.

For example, the pitch-based features may be less

informative in the higher subbands, since the en-

ergy in the higher harmonics is relatively low,

and therefore, perhaps their contribution to the

mask estimation decision should be de-weighted

in those bands.
In addition, while Figs. 6 and 7 show our clas-

sifier-based mask estimation methods consistently

improve over previous mask estimation methods
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in a variety of environments, the plots of speech

corrupted by music show the smallest relative

improvement. In environments where both the

speech and the corrupting noise are harmonic,

accurate pitch estimation is a difficult problem,
especially as low SNRs. As a result, the pitch-

dependent mask estimation features may be un-

reliable. To improve the performance in these

conditions, pitch estimation algorithms capable

of processing multiple harmonic streams may be

required.

Casting the mask estimation problem as one of

Bayesian classification provides many opportuni-
ties to improve mask estimation performance.

For example, we can apply unsupervised adapta-

tion using MAP techniques or MLLR (Leggetter

and Woodland, 1994) to improve mask estimation

performance. Additionally, this work has demon-

strated the importance of accurate mask estima-

tion in the unvoiced speech segments. To

improve performance in this area, we need to de-
velop more informative features for unvoiced

speech. These can easily then be incorporated into

the classification scheme. In addition, the current

classification scheme treats each spectrographic

element independently. However, it is clear from

observing the spectrographic masks that there is

a high correlation between the reliability of neigh-

boring pixels, indicated by the block-like nature of
the reliable and corrupt regions. We plan to try to

capture this information by incorporating context

information around a given pixel into the classifi-

cation framework, e.g. using a larger feature vec-

tor composed of an element�s features and the

features of its neighbors, and by exploring image

processing techniques to post-process the mask

estimates. Preliminary work in these areas was per-
formed in (Seltzer, 2000).

Finally, the most challenging task remains

developing a framework in which the missing fea-

ture methods and the speech recognizer are incor-

porated into the mask estimation procedure. This

would allow estimated masks to be optimized di-

rectly for speech recognition performance, rather

than mask estimation accuracy. Such an approach
would provide the means for a more principled

and ideally unsupervised search for optimal values

of the parameters for mask estimation, which we
believe will greatly improve the mask estimation

performance.
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