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1 Introduction

There has been much interest in peer-to-peer data sharing and
content distribution applications. They are used by millions
of users and they represent a large fraction of the traffic in the
Internet [29]. These applications are built on top of large-scale
network overlays that provide mechanisms to discover data
stored by overlay nodes. There are proposals for two types of
overlays: unstructured and structured. This paper presents a
detailed comparison of structured and unstructured overlays,
and derives a hybrid overlay that can outperform both.

Unstructured overlays, for example Gnutella [1], organize
nodes into a random graph and use floods or random walks
to discover data stored by overlay nodes. Each node visited
during a flood or random walk evaluates the query locally on
the data items that it stores. This approach supports arbitrar-
ily complex queries and it does not impose any constraints on
the node graph or on data placement, for example, each node
can choose any other node to be its neighbour in the overlay
and it can store the data it owns. But unstructured overlays
cannot find rare data items efficiently because this requires
visiting a large fraction of overlay nodes. There has been a
large amount of work on improving unstructured overlays, for
example [10, 14, 22]. The most recent, Gia [10], provides the
best performance.

Structured overlays, for example, [24, 31, 27, 34], were de-
veloped to improve the performance of data discovery. They
impose constraints both on the node graph and on data place-
ment to enable efficient discovery of data. Each data item is
identified by a key and nodes are organized into a structured
graph that maps each key to a responsible node. The data
or a pointer to the data is stored at the node responsible for
its key. These constraints provide efficient support for exact-
match queries; they enable discovery of a data item given its
key in only O(logN) hops with only O(logN) graph neigh-
bours per node. It is possible to support more complex queries
by building indices on top of structured overlays but current
solutions perform worse than unstructured overlays when re-
trieving popular items [20].

It is commonly believed that unstructured overlays provide
better support for current mass-market data sharing applica-
tions than structured overlays because peers are extremely
transient and complex queries are important in this applica-
tion. For example, recent work [10] has argued that unstruc-
tured overlays can cope better with churn and heterogeneity,
and that they support complex queries for popular data items,
which are the most common, more efficiently.

This paper provides a detailed comparison of structured and
unstructured overlays. It explores the design space by de-
coupling overlay graph maintenance from data placement and
search mechanisms. Our findings contradict current wisdom.

We show that structured graphs do not have a fundamental
problem in coping with churn and that they can exploit hetero-
geneity effectively to improve scalability. We present a tech-

nique that exploits structure to achieve robustness to churn
with low maintenance overhead. It eliminates redundant fail-
ure detection probes by using structure to partition failure de-
tection responsibility and to locate nodes that need to be in-
formed about failures and new node arrivals. We also de-
scribe how to exploit heterogeneity by modifying any prox-
imity neighbour selection algorithm [7, 34, 17] to adapt the
topology to match different node capacities.

The paper presents results of detailed comparisons between
several representative structured and unstructured graph main-
tenance algorithms. These results were obtained using simu-
lations driven by real-world traces of node arrivals and de-
partures [28]. The results show that our techniques enable
a structured graph to cope with churn and to exploit hetero-
geneity with a maintenance overhead lower than unstructured
graphs in real-world scenarios.

Inspired by these results, we developed a hybrid system that
uses the graph from structured overlays with the data place-
ment and data discovery strategies of unstructured overlays.
The hybrid system can use either floods or random walks to
locate data but it takes advantage of structure to ensure that
nodes are visited only once during a query and to control the
number of nodes that are visited accurately. Additionally,
it provides applications with the option to leverage efficient
exact-match queries for some items, for example, rare items.

We also compared the performance of data discovery in the
hybrid system and several representative unstructured over-
lays using simulations. We used a real trace of content dis-
tribution across nodes in a deployed peer-to-peer overlay to
guide the simulation [13]. The results show that the hybrid
system can discover data more often, faster, and with lower
overhead in realistic scenarios.

In Section 2 we describe and compare structured and un-
structured graph maintenance protocols assuming a homoge-
neous setting. Section 3 extends the structured graph main-
tenance protocol to exploit heterogeneity in peers’ resources
and compares this with unstructured graph maintenance pro-
tocols which exploit heterogeneity. Section 4 compares the
performance of content discovery using random walks and
flooding on both structured and unstructured graphs. Section
5 discusses future work and Section 6 concludes.

2 Coping with churn

Measurement studies of deployed peer-to-peer overlays have
observed a high rate of churn [4, 18, 28]; nodes join and leave
these overlays constantly. Therefore, peer-to-peer overlays
should be able to cope with a high rate of churn; they should
be able to ensure a high probability of success when routing a
message between a pair of nodes in the overlay.

Can unstructured graphs cope with churn better than struc-
tured graphs ?

Both types of graphs can improve robustness to churn at the



expense of increased maintenance overhead by increasing the
number of neighbours per node and probing them more fre-
quently to detect and replace failed neighbours.

It is believed that maintaining a structured graph in the pres-
ence of churn is more expensive than maintaining an unstruc-
tured graph because of the constraints on neighbour selection.
This section shows that this is not necessarily the case. It
is possible to use structure to achieve better robustness with
lower maintenance overhead in a structured graph.

Structured overlays also impose constraints on data placement
that can result in high overhead under churn. We study struc-
tured graphs without these constraints to keep the evaluation
independent of any particular application. Data placement
constraints do not result in significant overhead in several ap-
plications (for example, multicast [8]) and our hybrid system
does not constrain data placement at all.

This section describes the implementation of structured and
unstructured graph maintenance protocols in an homogeneous
setting and compares their performance. The next section ex-
plains how to exploit heterogeneity.

2.1 Unstructured graph

We implemented an unstructured graph maintenance protocol
based on the specification of Gnutella version 0.4 [16] but we
added several optimizations to the protocol to ensure a fair
comparison.

Gnutella 0.4 organizes overlay nodes into a random graph.
Each node in the overlay maintains a neighbour table with
the network addresses of its neighbours in the graph. The
neighbour tables are symmetric; if node x has node y in its
neighbour table then node y has node x in its neighbour table.
There is an upper and lower bound on the number of entries
in each node’s neighbour table.

A joining node uses a random walk starting from a bootstrap
node, which is randomly chosen from the set of nodes already
in the graph, to find other nodes to fill its neighbour table. It
sends the bootstrap node a neighbour discovery message with
a counter that is initialized to the number of nodes required to
fill its neighbour table. Upon receiving a discovery message,
a node checks whether it has less neighbours than the upper
bound. If this is the case, the node sends a message to the join-
ing node inviting it to become a neighbour and decrements the
counter in the neighbour discovery message. In either case,
the neighbour discovery message is forwarded to a randomly
chosen neighbour if the counter is still greater than zero. To
increase resilience to node and network failures, all neighbour
discovery messages are acknowledged. If a node does not re-
ceive an acknowledgement within a timeout, it selects another
neighbour at random and forwards the neighbour discovery
message to that neighbour.

In addition to joins, nodes need to detect failures and replace
faulty neighbours. Every t seconds each node sends an I’m

alive message to every node in its neighbour table. Since all
nodes do the same and neighbour tables are symmetric, each
node should receive a message from each neighbour in each t
seconds. If a node does not receive a message from a neigh-
bour, it explicitly probes them and if no reply is received the
node is assumed to be faulty. We used t = 30 seconds in this
paper. Nodes maintain a cache of other nodes that they use to
replace failed neighbours. If the cache is empty, they obtain
new neighbours by sending a neighbour discovery message to
a randomly chosen neighbour. All messages sent between the
nodes are used to replace explicit I’m alive messages.

Simulation results show that this protocol does not produce
sufficiently random graphs in the presence of churn, which
leads to poor query performance. This happens because the
neighbour table of a joining node and those of its neighbours
are likely to share some nodes, creating a clustering effect.
We overcome this problem by forwarding the neighbour dis-
covery message over a number of random hops after each
neighbour invitation is sent. We add a hop counter to dis-
covery messages that is set to R by every node that replies
with a neighbour invitation. Nodes decrement the hop counter
when they forward a discovery message and they only con-
sider sending a neighbour invitation when the counter is less
than or equal to zero. We used R = 5 in this paper.

We use unbiased random walks because we found that bias-
ing the random walk to nodes with low degree reduces over-
head but results in poor query performance. We also experi-
mented with flooding of discovery messages (as specified in
the Gnutella 0.4 protocol) but this results in additional over-
head without improved robustness or query performance.

2.2 Structured graph

There are several structured graph maintenance protocols. We
chose an implementation of Pastry [27] called MS Pastry [23,
5] because it has good performance under churn and it has an
efficient implementation of proximity neighbour selection [7]
that we modified to exploit heterogeneity (as described in the
next section).

Structured overlays map keys to overlay nodes. Overlay nodes
are assigned nodeIds selected from a large identifier space and
application objects are identified by keys selected from the
same identifier space. Pastry selects nodeIds and keys uni-
formly at random from the set of 128-bit unsigned integers
and it maps a key k to the node whose identifier is numeri-
cally closest to k modulo 2128. This node is called the key’s
root. Given a message and a destination key, Pastry routes the
message to the key’s root node. Each node maintains a routing
table and a leaf set to route messages.

NodeIds and keys are interpreted as a sequence of digits in
base 2b. We use b = 1 in this paper. The routing table is a ma-
trix with 128/b rows and 2b columns. The entry in row r and
column c of the routing table contains a random nodeId that
shares the first r digits with the local node’s nodeId, and has



the (r+1)th digit equal to c. If there is no such nodeId, the en-
try is left empty. The uniform random distribution of nodeIds
ensures that only log2bN rows have non-empty entries on av-
erage. Additionally, the column in row r corresponding to the
value of the (r + 1)th digit of the local node’s nodeId remains
empty.

Nodes use a neighbour selection function to select between
two candidates for the same routing table slot. Given two
candidates y and z for slot (r, c) in node x’s routing table,
x selects z if z’s nodeId is numerically closer than y’s to the
nodeId obtained by replacing the (r + 1)th digit of x’s nodeId
by c. This neighbour selection function promotes stability in
routing tables while distributing load. We chose not to use
proximity neighbour selection because it increases overhead
slightly and low delay routes do not seem important for the
applications we study in this paper.

The leaf set contains the l/2 closest nodeIds clockwise from
the local nodeId and the l/2 closest nodeIds counter clock-
wise. The leaf set ensures reliable message delivery. We use
l = 32 in this paper, which provides high robustness to large
scale failures and high churn rates.

At each routing step, the local node normally forwards the
message to a node whose nodeId shares a prefix with the key
that is at least one digit longer than the prefix that the key
shares with the local node’s nodeId. If no such node is known,
the message is forwarded to a node whose nodeId is numeri-
cally closer to the key and shares a prefix with the key at least
as long. The leaf set is used to determine the destination node
in the last hop.

Exploiting structure to reduce maintenance overhead
Structured overlays can use structure to reduce maintenance
overhead in several ways. First, several structured overlays
use structure to initialize the routing tables of joining nodes
efficiently and to announce their arrival.

Node joining in Pastry exploits the graph structure as follows.
A joining node x picks a random nodeId X and asks a boot-
strap node a to route a special join message using X as the
destination key. This message is routed to the node z with
nodeId numerically closest to X . The nodes along the overlay
route add routing table rows to the message; node x obtains
the rth row of its routing table from the node encountered
along the route whose nodeId matches x’s in the first r − 1
digits and its leaf set from z. After initializing its routing ta-
ble, x sends the rth row of the table to each node in that row.
This serves both to announce x’s presence and to gossip in-
formation about nodes that joined previously. Each node that
receives a row considers using the new nodes to replace en-
tries in its routing table.

Additionally, structured overlays can eliminate redundant fail-
ure detection probes by using structure to partition failure de-
tection responsibility and to locate nodes that need to be in-

formed when a failure is detected. For example, MS Pastry
uses this technique to reduce the number of liveness probes
in the leaf set by a factor of 32. Each node sends a single
I’m alive message every tl seconds to its left neighbour in the
id space. If a node does not receive a message from its right
neighbour, it probes the neighbour and marks it faulty if it
does not reply. When it marks the neighbour faulty, it dis-
covers the new member of its leaf set by querying the right
neighbour of the failed node and informs all the members of
the new leaf set about the failed node. If several consecutive
nodes in the ring fail, the left neighbor of the leftmost node
will detect the failure and repair provided the number of con-
secutive nodes that failed is less than l/2− 1. We use tl = 30
seconds in this paper, which is equal to the period between
I’m alive messages in the unstructured graphs.

The technique can be extended to eliminate fault detection
probes sent to routing table entries. This can be done in
routing tables that constrain each node x to point to nodes
whose identifiers are the closest to specific points in the iden-
tifier space derived from x’s nodeId, for example, the origi-
nal Chord [31] finger table and Pastry’s constrained routing
table [6]. For example, Pastry’s constrained routing table en-
ables a node that detects the failure of its right neighbour to
locate all nodes with routing table entries pointing to the failed
node with an expected cost of O(log N) messages. We chose
not to use the constrained routing table because it eliminates
the flexibility necessary to cope with heterogeneous peers as
described in the next section.

MS Pastry uses a different strategy to detect failures in the
routing table. Since the routing table is not symmetrical, a
node explicitly probes every member every tr seconds to de-
tect failures. The routing table probing period tr is set dy-
namically by each node based on the node failure rate in the
overlay observed by the node [5]. We configured MS Pastry
to achieve a 1% loss rate, i.e., a message routed between a pair
of nodes has a probability of 99% of reaching the destination
even in the absence of retransmissions.

Pastry also has a periodic routing table maintenance protocol
to repair failed entries. Each node x asks a node in each row
of the routing table for the corresponding row in its routing
table. x chooses between the new entries in received rows
and the entries in its routing table using the neighbour selec-
tion function defined above. This is repeated periodically, for
example, every 20 minutes in the current implementation. Ad-
ditionally, Pastry has a passive routing table repair protocol:
when a routing table slot is found empty during routing, the
next hop node is asked to return any entry it may have for that
slot.

2.3 Experimental comparison

We compare the maintenance overhead of the different graphs
using a packet-level discrete-event simulator. We simulated a
transit-stub network topology [33] with 5050 routers. There
are 10 transit domains at the top level with an average of 5



routers in each. Each transit router has an average of 10 stub
domains attached, and each stub has an average of 10 routers.
Routing is performed using the routing policy weights of the
topology generator [33]. The simulator models the propaga-
tion delay on the physical links. The average delay of router-
router links was 40.7ms. In the experiments, each end system
node was attached to a randomly selected stub router with a
link delay of 1ms.

The simulation is driven using a real-world trace of node ar-
rivals and failures from a measurement study of Gnutella. The
study [28] monitored 17,000 unique nodes in the Gnutella
overlay over a period of 60 hours. It probed each node ev-
ery seven minutes to check if it was still part of the overlay.
The average session time over the trace was approximately
2.3 hours and the number of active nodes in the overlay varied
between 1,300 and 2,700. The failure rate and arrival rates
are similar but there are large daily variations (more than a
factor of 3). There was no application-level traffic during this
experiment to isolate the graph maintenance overhead.

We compare the maintenance overhead of Gnutella 0.4 and
Pastry. We used two configurations of Gnutella 0.4: Gnutella
0.4 (4) bounds the number of neighbours to be at least 4 and no
more than 12, Gnutella 0.4 (8) bounds the number of neigh-
bours to be at least 8 and no more than 32. We chose these pa-
rameters because Gnutella 0.4 (4) has a maintenance overhead
lower than Pastry whereas Gnutella 0.4 (8) has a higher over-
head. Figure 1 shows the maintenance overhead measured as
the average number of messages per second per node. The
x-axis represents simulation time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60
Time(hours)

M
es

sa
g

es
 / 

se
co

n
d

 / 
n

o
d

e Gnutella 0.4 (8)
Gnutella 0.4 (4)
Pastry

Figure 1: Maintenance overhead in messages per second per
node over time for the Gnutella 0.4 and Pastry graphs.

Most of the overhead is due to fault detection messages in
the three graphs. In the Gnutella overlay, nodes send I’m
alive messages to each of their neighbours every 30 seconds.
The average number of links per node over the trace is 5.8 in
Gnutella 0.4 (4) and 11.0 in Gnutella 0.4 (8). Therefore, the
expected overhead due to fault detection is 0.19 and 0.37 mes-
sages per second per node in Gnutella 0.4 (4) and Gnutella 0.4
(8), respectively.

Pastry’s maintenance overhead is between the overhead of

Gnutella 0.4 (4) and Gnutella 0.4 (8) most of the time. Pas-
try is significantly more robust than either of them because it
maintains considerably more neighbours. Each node has 32
neighbours in the leaf set alone and it detects their failure as
fast as the unstructured graphs detect neighbour failures. A
node only gets partitioned from the overlay if 15 nodes fail in
Pastry whereas it only takes 6 nodes to fail in Gnutella 0.4 (4)
and 11 in Gnutella 0.4 (8).

Pastry is able to achieve low maintenance overhead because
it exploits structure. The overhead for fault detection of leaf
set members is only 0.03 messages per second per node even
though there are 32 nodes in each node’s leaf set. Addition-
ally, Pastry tunes the routing table probing period to achieve
1% loss rate (using the techniques described in [5]). This en-
sures that it uses the minimum probe rate that achieves the
desired reliability. Pastry’s maintenance overhead varies with
the failure rate observed during the trace because the self-
tuning technique increases the probe rate when the node fail-
ure rate increases.

It is important to note that the maintenance overhead is neg-
ligible in the three system. For example, the average number
of messages per second per node over the trace is only 0.26 in
Pastry. Furthermore, the vast majority of these messages are
smaller than 100 bytes on the wire. Therefore, the overhead
is less than 26 bytes per second, which is negligible even for
users with slow dialup connections.

The maintenance overhead is constant in the unstructured
graph but grows with N in the structured graph. However,
it grows very slowly. The fault detection traffic, which ac-
counts for most of the maintenance overhead, is constant for
leaf set members and it is proportional to log2(N) for rout-
ing table entries. For example, increasing N to one billion
nodes with a similar pattern of node arrivals and departures
would increase maintenance traffic in the structured graph to
less than 0.69 messages per second per node (or less than 69
bytes per second per node), which is still negligible.

3 Exploiting heterogeneity

Nodes in deployed peer-to-peer overlays are heteroge-
neous [28]; they have different bandwidth, storage, and pro-
cessing capacities. An overlay that ignores the different node
capacities must bound the load on any node to be below the
load that the least capable nodes are able to sustain; otherwise,
it risks congestion collapse. Hence, it is important to exploit
heterogeneity to improve scalability.

Can unstructured graphs exploit heterogeneity more effec-
tively than structured graphs ?

Structured graphs have constraints on the graph topology that
reduce flexibility to adapt the topology to exploit heterogene-
ity. However, some structured graphs have significant flexibil-
ity in the choice of some overlay neighbours, which is impor-
tant to implement proximity neighbour selection [34, 27, 17].



These structured graphs can exploit heterogeneity by modi-
fying the proximity neighbour selection algorithm to choose
nodes with high capacity as overlay neighbours. We show that
this is as effective as recent proposals to adapt unstructured
graphs [10].

This section describes the implementation of several struc-
tured and unstructured graph maintenance protocols that ex-
ploit heterogeneity and compares their performance.

3.1 Unstructured graphs

We implemented two unstructured graph maintenance algo-
rithms that exploit heterogeneity: a version of Gnutella 0.6 [2]
and a version of Gia [10].

Gnutella 0.6 extends the Gnutella 0.4 protocol by adding the
concept of super-peers [3]. Nodes that are capable of con-
tributing enough resources to the overlay are classified as
super-peers and organized into a random graph using the op-
timized version of the Gnutella 0.4 protocol (which was de-
scribed in the previous section). Ordinary nodes are not part
of the random graph. Instead, each ordinary node attaches to
a small number of randomly selected super-peers and proxies
its data discovery queries through them. Ordinary nodes se-
lect super-peers to attach to using a random walk with a modi-
fied neighbour discovery message and they exchange I’m alive
messages with the selected super-peers to detect failures. This
topology places most of the data discovery and graph mainte-
nance load on super-peers.

Gia [10] provides a more fine-grained adaptation to hetero-
geneity. Each node selects a numerical capacity value that ab-
stracts the amount of resources that it is willing to contribute
to the overlay. Gia adapts the graph topology such that nodes
with higher capacity have higher degree. Since high-degree
nodes receive a larger fraction of the traffic, this ensures that
they have the capacity to handle this traffic. Gia’s fine-grained
approach to exploit heterogeneity can perform better than sim-
ply using super-peers [10].

We implemented Gia exactly as described in [10]. Node dis-
covery is implemented using a random walk (as described for
Gnutella 0.4) but the nodes use Gia’s pick neighbor to drop
function [10] to decide whether to send back a neighbour in-
vitation message. Topology adaptation is driven by Gia’s sat-
isfaction level function, which increases with the sum of the
ratio between the capacity and degree of each neighbour. This
function is evaluated periodically and nodes with a low satis-
faction level attempt to find a new neighbour to increase the
level. The adaptation interval is computed as in Gia (with the
parameters K = 256 and T = 10 seconds).

3.2 Structured graphs

We implemented two structured graph maintenance protocols
based on Pastry that exploit heterogeneity: SuperPastry uses
super-peers like Gnutella 0.6 and HeteroPastry uses topology
adaptation like Gia.

It is simple to exploit the super-peers concept in a structured
overlay. The super-peers are organized into a structured graph
using the Pastry algorithm described in the previous section.
Ordinary peers do not join this graph. Instead they attach to
a small number of super-peers as in Gnutella 0.6. Ordinary
peers select super-peers to attach to by routing to random des-
tination keys through a bootstrap super-peer. They exchange
I’m alive messages with the selected super-peers to detect fail-
ures as in Gnutella 0.6.

The implementation of capacity-aware topology adaptation
in structured graphs is less obvious. We propose a simple
solution based on existing proximity neighbour selection al-
gorithms [27, 34, 17]. These algorithms select the closest
neighbours in the underlying network subject to the structural
constraints on the graph. They can be modified to provide
capacity-aware topology adaptation by using a proximity met-
ric that reflects node capacity.

HeteroPastry uses the Pastry algorithm described in the pre-
vious section except that it achieves capacity-aware topology
adaptation by modifying the neighbour selection function to
take node capacity into account. Given two candidates y and
z for slot (r, c) in node x’s routing table, x selects z if it has
capacity greater than y or if z and y have the same capacity
and z’s nodeId is numerically closer than y’s to the nodeId ob-
tained by replacing the (r + 1)th digit of x’s nodeId by c. We
assume that node capacities are quantized into a few discrete
values for the randomization based on nodeIds to be effec-
tive at distributing load. It is possible to design more complex
neighbour selection functions that combine several capacity
metrics and even network proximity.

In addition to specifying capacity, nodes can specify an upper
bound on their indegree, i.e., the number of nodes with rout-
ing table entries pointing to them. This bound is likely to be a
function of their capacity. We modified Pastry to ensure that
the number of routing table entries pointing to a node does
not exceed the specified bound. Each node x keeps track of
nodes with routing table entries that point to x (backpointers)
and sends backoff messages when the number of backpointers
exceeds the indegree bound. It is necessary to keep track of
backpointers because neighbour links in Pastry routing tables
are not symmetric. Neighbour links in the leaf set are sym-
metric and their number is fixed at 32 in this paper. They are
not counted as part of the indegree of x unless they also have
a routing table entry pointing to x.

Nodes keep track of backpointers by passively monitoring
messages received from other nodes. They add a node to the
backpointer set when they receive a message from the node
and, every D seconds, they remove nodes from which they
did not receive messages for more than 2D seconds. D is set
to the routing table probing period because nodes send probes
to their routing table entries every routing table period.

If the number of backpointers exceeds the bound after adding
a new node, the local node x selects one of the backpointers



for removal and sends that node a backoff message. For each
backpointer y with x in slot (r, c) of its routing table, the nu-
merical distance between x’s nodeId and the nodeId obtained
by replacing the (r+1)th digit of y’s nodeId by c is computed.
x selects the node with the maximal distance for eviction. This
policy is dual of the neighbour selection function (except that
it is oblivious to capacity) to provide stability.

Nodes that receive a backoff message remove the sender from
their routing tables and insert the sender in a backoff cache.
We modified the neighbour selection function to ensure that it
never selects nodes in the backoff cache. The current imple-
mentation removes entries from the backoff cache after four
routing table probing periods.

Our solution is not applicable to some structured graphs that
provide no flexibility at all in the selection of neighbours, for
example, the original Chord [31] and CAN [24]. It is possible
to use virtual nodes [31] to adapt these structured graphs to
different node capacities. Each physical node can simulate a
number of virtual overlay nodes proportional to its capacity.
The problem is that node capacities can vary by several order
of magnitude. Therefore, the number of virtual nodes must be
much larger than the number of physical nodes, which results
in a large increase in maintenance traffic.

3.3 Experimental comparison

We compared the maintenance overhead of the different graph
maintenance algorithms that exploit heterogeneity to achieve
scalability. We used the experimental setup in Section 2.3,
which does not include any query traffic, to isolate the main-
tenance overheads.

Gnutella 0.6 and SuperPastry were configured with similar
parameters to allow a fair comparison. Each ordinary node
selected 3 super-peers as proxies and each super-peer acted
as a proxy for up to 30 ordinary nodes. Each super-peer in
Gnutella 0.6 had at least 10 super-peer neighbours and at most
32. The indegree bound of super-peers in SuperPastry was
also 32. The simulator provided each joining node with a ran-
domly selected super-peer to bootstrap the joining process and
joining nodes were marked super-peers with a probability of
0.2. Figure 2 shows the maintenance overhead measured as
the number of messages sent per second per node.

The maintenance overhead is dominated by the cost of failure
detection as before. In Gnutella 0.6, a node has 7.5 neighbours
on average, which results in 0.25 I’m alive messages per sec-
ond per node on average. This accounts for most of the control
traffic has shown in the figure. Both systems incur the same
communication overhead between ordinary peers and super-
peers. SuperPastry achieves lower overhead than Gnutella 0.6
because it exploits structure to reduce failure detection over-
head.

We also ran experiments to compare the maintenance over-
head of Gia and HeteroPastry. Gia was configured us-
ing the parameters in [10]. The lower bound on the num-
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Figure 2: Maintenance overhead in messages per second per
node over time for the two graphs using super-peers.

Capacity Probability
1 0.2

10 0.45
100 0.3
1000 0.049

10000 0.001

Table 1: Node capacity distribution

ber of neighbours in Gia is 3 and the upper bound is
max(3, min(128, C

4
)) [10], where C is the capacity of the

node. We use the same bounds on the indegree of nodes in
HeteroPastry. The capacity of a node (in both overlays) is se-
lected when it joins according to the probabilities in Table 1,
which were taken from [10].

Figure 3 plots the maintenance overhead in messages per sec-
ond per node against time for Gia and HeteroPastry. Fail-
ure detection messages account for most of the overhead as in
previous experiments. Nodes in Gia have 15.6 neighbours on
average, which results in 0.52 I’m alive messages per second
per node. The overhead of HeteroPastry is almost identical to
the overhead incurred by the version of Pastry that does not
exploit heterogeneity and does not bound indegrees (which is
shown in Figure 1).
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Figure 3: Maintenance overhead in messages per second per
node over time for Gia and HeteroPastry.



Figure 3 shows that the overhead of topology adaptation in
HeteroPastry is negligible. The next set of results show that
this topology adaptation is also effective.

We examined the routing tables of live HeteroPastry nodes
five hours into the trace and calculated the average capacity
of the nodes in routing table entries at each routing table level
across the 2627 live nodes. Figure 4 shows the results.
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Figure 4: Average capacity of nodes in routing table entries at
each level in HeteroPastry.

Topology adaptation fills routing tables with high capacity
nodes. The average capacity of nodes in levels up to 5 is above
897. The capacity decreases when the level increases because
of stronger structural constraints. A node in level l of the rout-
ing table must match the nodeId of the local node in the first l
digits. The size of the set of nodes that can be selected to fill
slots at level l + 1 is half the size of the set of nodes that can
fill slots at level l. Therefore, the probability that these sets
include high capacity nodes decreases as the level increases.
Since most nodes have less than 12 (log2(2627)) levels in their
routing tables, there is some noise for levels above 12.

We also measured the average indegree of nodes with each
capacity value at the same point in time. The results are in
Figure 5. The average indegree of the two nodes with ca-
pacity 10000 is above the indegree bound of 128. This hap-
pens because nodes are very likely to select nodes with capac-
ity 10000 for the top levels of their routing tables and these
pointers are only removed after the node receives a backoff
message. The results show that topology adaptation in Het-
eroPastry is effective at distributing the indegree according to
capacity.

4 Discovering data

Complex queries are important in mass-market data sharing
applications [10]. Since users do not know the exact names of
the files they want to retrieve, the exact-match queries offered
by structured overlays are not directly useful in these applica-
tions. Users discover data with keyword searches, which are
readily supported by unstructured overlays that visit a subset
of random nodes in the overlay and execute the search query
locally at each visited node.
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Figure 5: Average indegree of nodes with each capacity value.

Can unstructured graphs support complex queries more effi-
ciently than structured graphs ?

Several research prototypes support keyword searches using
the exact-match queries of structured overlays [26, 32, 15, 19]
to implement inverted indices. The basic idea is to use the
structured graph to map keywords to overlay nodes. The node
responsible for a keyword stores an index with the location of
all documents that contain the keyword. When a file is added
to the system, the nodes responsible for the keywords in the
file are contacted to update the appropriate indices. A query
for documents containing a set of keywords contacts the nodes
responsible for those keywords and intersects their indices.

Unfortunately, this approach has several problems. Maintain-
ing the indices up to date in the presence of churn is expensive
and popular keywords may be mapped to low capacity nodes
that cannot cope with the load [10]. Additionally, the queries
can be expensive because they require computing the intersec-
tion of large indices. The analysis in [20] shows that this ap-
proach performs worse than flooding queries to 60,000 nodes
in a random graph. Therefore, this approach performs signif-
icantly worse than recent unstructured overlays like Gia [10].
Additionally, unstructured overlays can support even more so-
phisticated queries that are not supported by the inverted in-
dices approach, for example, regular expressions and range
queries on multiple attributes.

This section explores a different approach to supporting com-
plex queries in structured graphs. We developed a hybrid sys-
tem that uses the graph from structured overlays with the data
placement and data discovery strategies of unstructured over-
lays. It can support arbitrarily complex queries using either
floods or random walks over the structured graph but it takes
advantage of structure to ensure that nodes are visited only
once during a query and to control the number of nodes that
are visited accurately.

The results in the previous sections show that it is possible to
maintain a structured graph that exploits heterogeneity with
low maintenance overhead. Additionally, the hybrid system
does not constrain data placement; nodes do not have to incur
the overhead of updating distributed indices for each keyword



in their files.

This section compares the performance of random walks and
floods on the graphs described in the previous sections.

4.1 Unstructured graphs

We used random walks to discover data because they have
been shown to induce lower overhead than the constrained
floods [21] used by current versions of Gnutella. These ran-
dom walks are biased to prefer nodes with higher degree in
Gia and are unbiased in the other unstructured graphs. The
original Gia [10] biased the random walks to prefer nodes with
higher capacity but our experimental results indicate that pre-
ferring nodes with higher degree yields both higher success
rate and lower delay. We present results for the more efficient
variant of Gia.

We observed that random walks in Gia were likely to visit the
same node more than once, which resulted in worse search
performance. We added a list to each query with all the nodes
already visited by the query to prevent this. Nodes do not
forward a query to a node that is in this list.

All unstructured graphs use one hop replication, which has
been shown to improve search performance in unstructured
overlays [10]. A node replicates an index of its content at
each of its neighbours. In Gnutella 0.6, these indices are only
replicated at super peers.

4.2 Structured graphs

The hybrid system exploits structure to implement random
walks and constrained floods more efficiently.

Flooding in random graphs is inefficient because each node is
likely to be visited more than once. In a graph with an average
degree of k, a flood that visits all nodes will send on average
(k − 1) × N messages (where N is the size of the overlay).
Additionally, it is difficult to control the number of nodes vis-
ited during a constrained flood. Floods are constrained using
a time-to-live field in the query message that is decremented
every time the query is forwarded. The query is not forwarded
when the time-to-live field drops to zero. This provides very
coarse control over the number of nodes visited.

The hybrid system can do better by replacing flooding with the
broadcast mechanisms that have been proposed for structured
overlays [25, 9, 12]. We use Pastry’s broadcast mechanism [9]
to flood queries to overlay nodes. A node y broadcasts a query
by sending the query to all the nodes x in its routing table.
Each query is tagged with the routing table row r of node x.
When a node receives a query tagged with r, it forwards the
query to all nodes in its routing table in rows greater than r if
any.

A node may have a missing entry in a slot in its routing table,
for example, because it pointed to a node that failed. The
broadcast overcomes this problem by using Pastry to route
the query to a node with the appropriate nodeId to fill the slot

(if there is any) [9]. Almost all nodes receive the query only
once but the technique to deal with empty routing table slots
may result in a small number of duplicates.

We place an upper bound on the row number of entries to
which the query is forwarded to constrain the flood. This
bounds the number of nodes visited to a power of two. It
is simple to extend this mechanism to provide arbitrarily fine
grained control over the number of nodes visited.

It is simple to modify this mechanism to perform random
walks rather than floods by adding a set of nodes to visit in
the query message. A random walk query message includes
the tag r, an array q with queues of nodes indexed by routing
table row, and a bound d on the maximum row number to tra-
verse. When the query is received at node x, it appends the
nodes in each routing table row r′ to queue q[r′] provided that
r < r′ ≤ d. Then, if queue q[r] is not empty, x removes the
next node from the queue and forwards the query to this node.
If q[r] is empty, the query is forwarded to the first node in
queue q[r + 1] and r is incremented. If all queues are empty,
the random walk is complete.

The results in the previous section show that the average ca-
pacity of the nodes in routing table entries in HeteroPastry
decreases as the row number increases. Therefore, the mecha-
nism that we use to bound the floods and random walks biases
them to visit nodes with higher capacity in HeteroPastry.

We could implement random walks simply by walking along
the ring formed by neighbouring nodes in the id space. This
is an effective random walk over the content because nodeIds
are independent of the content stored by the nodes. However,
this implementation does not achieve biased random walks in
HeteroPastry.

We also implement one hop replication in the hybrid sys-
tem. Each node replicates an index of its local content on
the nodes in its routing table. Therefore, it replicates its index
in log2(N) other nodes. Since routing tables are not symmet-
ric, this number is independent of its indegree; the number of
routing table entries pointing to the node could even be zero.
The unstructured overlays do not have this flexibility because
neighbour tables are symmetric. This flexibility improves the
performance of HeteroPastry.

4.3 Experimental comparison

We compared the performance of random walks on struc-
tured and unstructured graphs. We used the basic experimen-
tal setup described in the previous sections but we simulated
queries and node file stores.

We used a real-world trace of files stored by eDonkey [13]
peers to model the sets of files stored by simulated nodes.
There are 37,000 peers in the trace and, for each peer, there is
a record with the identifiers of the files stored by the peer. Fig-
ure 6 shows the distribution of the number of files stored by
each peer. It excludes the 25,172 peers that have no files. We



model the set of files stored by each node as follows: when
a node joins, the simulator chooses a random unused record
from the trace and assigns the files in the record to the node.
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Figure 6: Distribution of the number of files per node for the
eDonkey file trace [13].

There are approximately 923,000 unique files. File copies ex-
hibit a heavy-tailed zipf-like distribution as shown in Figure 7.
Full details about trace can be found in [13].
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Figure 7: Number of files versus file rank for the eDonkey file
trace [13].

The eDonkey trace does not include queries but the num-
ber of copies of a file is strongly correlated with the number
of queries that it satisfies. Therefore, our query distribution
matches the distribution of the number of copies of files.

Each node generates 0.01 query messages per second using
a Poisson process and each query searches for a file in the
trace. The simulator maintains the distribution of the num-
ber of copies of files stored by nodes that are currently in the
overlay. The target file for each query is chosen from this
distribution (which is a sample of the distribution in 7). This
ensures that at least a copy of the target file is stored in the
overlay when the query is initiated.

In all the experiments, we bound random walks to visit at most
128 nodes. When a node x receives a query, it checks if the
target file is stored locally or if it is stored by nodes whose
indices are replicated locally. In the first case, the query is sat-
isfied and x does not forward the query further. In the second

case, x contacts a random node y which it believes has a copy
of the file. If y has the file, the query is satisfied and y sends an
acknowledgment back to x. If x receives the acknowledgment
before a timeout, it stops forwarding the query. Otherwise, x
contacts another random node that it believes has the file or it
forwards the query if there are no more such nodes.

We measured the fraction of queries that are satisfied and the
delay from the moment a query is initiated until it is satis-
fied. We also measured the load by counting the number of
messages sent per second per node.

4.3.1 Homogeneous

We first compare the overlays that do not exploit heterogene-
ity: Gnutella 0.4 and Pastry. Figure 8 shows the number of
messages per second per node and Figure 9 shows the success
rate of queries.
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Figure 8: Messages per second per node.

In the absence of queries, Gnutella 0.4 (4) had lower message
overhead than Gnutella 0.4 (8) because nodes have less neigh-
bours on average. This is reversed with queries because most
failure detection traffic is suppressed by application traffic and
more neighbours result in more replicated indices. Gnutella
0.4 (8) has approximately two times more replicas of node in-
dices, which results in a higher success probability and shorter
random walks.
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Figure 9: Query success rate.

Pastry’s success rate is significantly higher than the success



rate of the two Gnutella configurations. This happens because
Pastry has 33% more index replicas than Gnutella 0.4 (8) and
the distribution of indegrees (and the number of index repli-
cas) is less uniform in Pastry. The nodes with higher inde-
gree are more likely to be visited by random walks, which
increases the success rate and reduces average overhead. This
imbalance in the distribution of indegree also results in a slight
load imbalance; the most loaded Pastry node services twice
as many messages per second as the most loaded node in
Gnutella 0.4 (8).

Figure 10 shows the average delay for a successful query. Pas-
try has lower delay for the same reason that its success rate is
higher.
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Figure 10: Query delay for successful queries.

4.3.2 Heterogeneous

We compared the performance of data discovery on the graphs
that exploit heterogeneity. Figure 11 shows the query suc-
cess rate, Figure 12 shows the delay for successful queries,
and Figure 13 shows the overhead in messages per second
per node. The results show that fine-grained topology adapta-
tion performs better than using super-peers or not exploiting
heterogeneity. HeteroPastry achieves significantly higher suc-
cess rate, and lower delay and overhead than SuperPastry and
Pastry. They also show that search in structured graphs can
perform better than in unstructured graphs.

HeteroPastry achieves the highest success rate, the lowest de-
lay, and the lowest overhead. This demonstrates that Het-
eroPastry can exploit heterogeneity effectively to improve
scalability; the high success rate indicates that the bound on
the length of random walks can be small and the low delay
shows that they are likely to terminate early, which results in
low overhead. The other systems would require longer ran-
dom walks to achieve the success rate of HeteroPastry, which
would increase their overhead.

All the graph maintenance algorithms benefit from suppres-
sion of failure detection traffic by query traffic. For exam-
ple, Gia’s overhead without queries is approximately twice
the overhead of Gnutella 0.6. The overheads of the two are
comparable with queries because of the suppression of fail-
ure detection traffic and shorter random walks. HeteroPastry
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Figure 11: Query success rate.
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Figure 12: Query delay for successful queries.

has lower overhead than Pastry (compare Figure 8 with Fig-
ure 13) because random walks are shorter as demonstrated by
the lower delay.
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Figure 13: Messages per second per node.

So far we have considered the overhead averaged over all live
nodes in each 10 minute window in the trace. Since both
Gia and HeteroPastry adapt the topology to distribute load ac-
cording to node capacity, we looked at the distribution of the
number of messages per second per node in the ten minutes
preceding the 5 hour mark in the trace. The total number of
messages received in this 10 minute window was 2.4 times
higher for Gia than HeteroPastry. Figures 14 and 15 show the
cumulative distribution of the number of messages per second



per node for each capacity value in HeteroPastry and Gia.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100
Messages / second

F
ra

ct
io

n 
of

 n
od

es

1
10
100
1000
10000

Figure 14: Cumulative distribution of messages per second
per node for each capacity value in HeteroPastry.
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Figure 15: Cumulative distribution of messages per second
per node for each capacity value in Gia.

The maximum message rate observed was only 42.63 for Gia
and 26.48 for HeteroPastry. Both systems do a good job of
distributing message load according to capacity; nodes with
higher capacity receive more messages. The message rate for
nodes with capacity 1 is low; the median is only 0.17 and the
95th percentile is only 0.30 in HeteroPastry, and the median
is 0.11 and the 95th percentile is 0.13 in Gia. For the nodes
with capacity 10 in HeteroPastry, the median is also 0.17 and
the 95th percentile is 0.32, and the median is 0.11 and the 9th
percentile is 0.14 in Gia. Since the indegree of 1- and 10-
capacity nodes is bounded to the same value, this is not sur-
prising. In both Gia and HeteroPastry, the 100-capacity nodes
incur a higher overhead than the 1- and 10-capacity nodes but
a lower overhead than the 1000-capacity nodes.

The figures also show that the load on any node is sufficiently
low (with a query rate of 0.01 queries per second per node)
that flow control is not necessary. Gia’s flow control mecha-
nism [10] can be applied to HeteroPastry to enable scaling to
higher query rates.

We also studied the distribution of replicas of node indices,
which is another indicator of the effectiveness of both sys-
tems in adapting the topology to diffferent node capacities.

Capacity 1 10 100 1000 10000

Gia Mean 3 3 23.56 126.02 128
Median 3 3 24 128 128

95th 3 3 25 128 128
Hetero- Mean 2.15 2.38 14.50 104.66 128
Pastry Median 2 3 15 25 128

95th 3 3 24 128 128

Table 2: Distribution of replicas of node indices for different
capacity values in Gia and HeteroPastry.

Table 2 summarises the distribution of replicas of indices for
each capacity value in both systems. The total numbers of
index replicas is 27,707 in HeteroPastry and 38,153 in Gia.
Both systems do a good job at distributing index replicas (and
indegree) according to node capacity. Gia replicates more be-
cause it is more effective at pushing replicas to nodes with
capacity 100 and 1000.

Poisson traces The experiments described so far use a trace
of node arrivals and departures collected in a real Gnutella
deployment. The next set of experiments compare the per-
formance of Gia and HeteroPastry using artificial traces with
more nodes and different rates of churn. These traces have
Poisson node arrivals and an exponential distribution of node
session times with the same rate. We generated traces with
session times of 5, 15, 30, 60, 120 and 600 minutes and in
all cases the average number of nodes was 10,000. We used
the same data and query distribution as in the previous exper-
iments. It is important to note that a session time of 5 minutes
is very small; it is 28 times smaller than the average session
time of 2.3 hours in the Gnutella trace.

Figure 16 shows the total number of messages per second per
node for the different session times. Both Gia and HeteroPas-
try have low overhead across all session times.

Gia’s overhead is almost constant across all session times.
Short session times increase Gia’s overhead because of in-
creased retransmissions and traffic to fill neighbour tables.
However, this is offset by a decrease in fault detection traf-
fic due to a decrease in the average number of neighbours;
there are 15.1 neighbours when the session time is 600 and
10.7 when it is 5.

HeteroPastry has a lower message overhead than Gia for ses-
sion times of 30 minutes or greater. This overhead decreases
between 60 and 600 minutes because HeteroPastry adapts the
routing table probing rate to match the failure rate. HeteroPas-
try incurs a higher message overhead than Gia for extremely
high churn rates mostly due to the overhead of maintaining
the leaf set. This overhead could be reduced without impact-
ing query success rate and delay by using a smaller leaf set
or disabling the mechanisms to ensure strong leaf set consis-
tency [5], which are not important in this application.

Figure 17 shows the lookup success rate for the different ses-
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Figure 16: Messages per second per node for Gia and Het-
eroPastry versus session time.

sion times. As in previous experiments, HeteroPastry achieves
a success rate higher than Gia across all session times.

The success rates with 10,000 nodes are lower than those
observed before because there are more nodes. There are
only between 1,300 and 2,700 active nodes at any time in the
Gnutella trace. This also results in higher message overhead
with 10,000 nodes even with a session time of 600 minutes.
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Figure 17: Query success rate for Gia and HeteroPastry versus
session time.

The delay incurred for successful lookups is similar in both
HeteroPastry and Gia. HeteroPastry achieves a lower aver-
age delay per lookup because it has a higher success rate and
failed lookups take longer to complete on average than suc-
cessful lookups. A failed lookup will take at least 64,000ms
to complete on average because the random walk has 128 hops
and the average delay per hop is 500ms. Message losses and
failures can increase this value further. Therefore, HeteroPas-
try achieves a delay at least 12% lower than Gia with 5 minute
session times and at least 43% lower with 600 minutes session
time.

4.3.3 Constrained floods

We also compared the performance of constrained flood-
ing and random walks in HeteroPastry. We configured con-
strained floods to visit at most 128 nodes as with the random

walks. Both algorithms visit exactly the same 128 nodes when
the query fails so they have the same success rate.
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Figure 18: Query delay when using constrained flooding and
random walks in HeteroPastry.

Figure 18 shows the delay for successful queries using both
constrained floods and random walks. It shows that con-
strained flooding can locate content faster than random walks.
This is not surprising because constrained flooding visits
nodes in parallel; all 128 nodes are visited after only 7 hops.
It takes 128 hops to visit all the nodes with the random walk.
Additionally, random walks use acknowledgments and re-
transmissions to recover when the query is forwarded to a
node that fails. This introduces delays that increase when
the failure rate in the trace increases (as shown in Figure 18).
The delay of constrained floods remains constant because we
do not use acknowledgments and retransmissions and instead
rely on redundancy to cope with node failures. We observed
the same success rate for both flooding and random walks,
which demonstrates the effectiveness of using redundancy to
cope with node failure during constrained floods.

Figure 19 shows the number of messages per second per node
when using constrained floods and random walks in Het-
eroPastry. It demonstrates the advantage of random walks
over flooding; random walks result in lower overhead because
they stop when they find a copy of the file and visit less nodes
than constrained floods on average. It is interesting to note
that the overhead with constrained floods is comparable to
the overhead in the unstructured overlays. Additionally, some
peer-to-peer applications discover multiple nodes with match-
ing content, for example, to enable more efficient downloads
with a some form of striping. The benefit of random walks
over constrained floods decreases in this case. Constrained
floods are likely to be the best strategy for many applications.

5 Future work

It would be interesting to perform a comparative study of the
security properties of structured and unstructured graphs. Pre-
vious work [30, 6] identified several attacks and proposed so-
lutions to secure structured overlays. The solutions proposed
in [11, 6] can be used to protect both structured and unstruc-
tured graphs from Sybil attacks [11] and removing constraints
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Figure 19: Messages per second per node when using con-
strained floods and random walks in HeteroPastry.

on data placement removes several attacks.

However, there is an attack that seems hard for unstructured
graph maintenance algorithms to defend against. These al-
gorithms populate their neighbour tables by obtaining neigh-
bours from (or through) other nodes. The problem is that
some of these nodes may be malicious. In an overlay where
a fraction f of the nodes is malicious, honest nodes return
malicious nodes with probability f but malicious nodes can
return malicious nodes with probability 1. The result is an
increasing fraction of malicious neighbours in the neighbour
tables of honest nodes. There are mechanisms to protect struc-
tured overlays against this attack in [6] but they rely on a
constrained routing table that imposes very strong structural
constraints on the graph. This defence cannot be applied to
unstructured overlays and it disallows the topology adapta-
tion technique that we used in HeteroPastry. Another problem
with topology adaptation is that malicious nodes can advertise
large capacities to be inserted in the neighbour tables of hon-
est nodes and disrupt data discovery. Security is not a large
concern in current applications but these problems must be
addressed before several interesting applications can be sup-
ported.

HeteroPastry provides efficient support for complex queries
but it also provides applications with the option to leverage
the efficient exact-match queries supported by the structured
graph. For example, applications could leverage exact-match
queries to find rare files while using constrained floods and
random walks to find popular ones. This is an interesting area
of future work.

6 Conclusion

It is commonly believed that unstructured graphs cope with
churn better, exploit heterogeneity more effectively, and sup-
port complex queries more efficiently than structured graphs.
This paper shows that this is not a fundamental problem.

This paper presented a detailed simulation driven comparison
of structured and unstructured graphs. The simulation used a
real-world trace and showed that structured graphs can cope

with churn better than unstructured graphs. Then, a structured
graph maintenance protocol was extended to exploit hetero-
geneity to improve scalability and validated its performance
and effectiveness under churn. Finally, we developed a hybrid
system that uses a structured graph but exploits the data place-
ment and search mechanisms currently used with unstructured
overlays. Simulation results using a real-world trace show that
the hybrid system can support complex queries with lower
message overhead while providing higher query success rates
and lower response times than systems based on unstructured
graphs.
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