
Typestates for Objects

Robert DeLine and Manuel Fähndrich

Microsoft Research
One Microsoft Way

Redmond, WA 98052-6399 USA
{rdeline,maf}@microsoft.com

Abstract. Today’s mainstream object-oriented compilers and tools do
not support declaring and statically checking simple pre- and postcon-
ditions on methods and invariants on object representations. The main
technical problem preventing static verification is reasoning about the
sharing relationships among objects as well as where object invariants
should hold. We have developed a programming model of typestates
for objects with a sound modular checking algorithm. The programming
model handles typical aspects of object-oriented programs such as down-
casting, virtual dispatch, direct calls, and subclassing. The model also
permits subclasses to extend the interpretation of typestates and to in-
troduce additional typestates. We handle aliasing by adapting our previ-
ous work on practical linear types developed in the context of the Vault
system. We have implemented these ideas in a tool called Fugue for spec-
ifying and checking typestates on Microsoft .NET-based programs.

1 Introduction

Although mainstream object-oriented languages, like C] and Java, automatically
catch or prevent many programming errors through compile-time checks and
automatic memory management, there remain two related sources of error that
often manifest as runtime exceptions. First, a developer must obey the rules
for properly calling an object’s methods, including calling them in an allowed
order and obeying the preconditions on the methods’ arguments. Today, such
rules are captured in the class’s documentation, if at all. Second, a developer
implementing a class must ensure that each public method upholds the class’s
representation invariant, including any invariants inherited from the superclass.

Types are the main mechanism through which programmers currently spec-
ify mechanically checked preconditions, postconditions and representation in-
variants. These mechanical checks are critical for spotting errors early in the
development cycle, when they are cheapest to fix. Types, however, are a very
limited specification tool, particularly in imperative programming languages,
where objects change state over time. Using standard type systems, we cannot
address the sources of errors described above. On the other hand, providing
the programmer with a rich logic for writing preconditions, postconditions, and

2

object invariants quickly runs into decidability problems. For example, the ES-
C/Java system [1] supports rich specifications, but does not fully verify object
invariants.

In this paper, we propose a statically checkable typestate system to declare
and verify state transitions and invariants in imperative object-oriented pro-
grams. Typestates [2] specify extra properties of objects beyond the usual pro-
gramming language types. As the name implies, typestates capture aspects of
the state of an object. When an object’s state changes, its typestate may change
as well. Typestates provide an abstraction mechanism for predicates over ob-
ject graphs, but retain some of the simplicity and feel of types. Typestates can
be used to restrict valid parameters, return values, or field values, and thereby
provide extra guarantees on internal object properties.

Previous research demonstrated the utility of typestates for capturing inter-
face rules in non-object-oriented, imperative languages [2, 3]. In this paper, we
adapt and extend the programming methodology [3, 4] that we developed for
reasoning about non-object oriented imperative programs to the object-oriented
setting. The technical contributions are the following:

Typestates are modular. A typestate is a description of the contents of all
of an object’s fields. However, at a given program point, a modular static
checker only knows about those fields declared in an object’s declared type
or its superclasses. Hence, some of the object’s state (introduced by sub-
classes) is unknown. Typestates are a good match for this problem, since
typestates provide names for abstract predicates over field state. A modu-
lar static checker can know an object’s state by name without knowing the
exact invariant that an unknown subclass associates with that name. This
approach allows a clean description of how subclasses can extend the inter-
pretation of a typestate and the language features of upcasts, downcasts,
and virtual method invocation. We also describe the limits of expressiveness
of our typestate formulation.

Typestates generalize object invariants. Commonly, an object invariant (or
representation invariant) is a predicate that is established during object con-
struction that remains true throughout the object’s lifetime. We believe in
practice that this view is too limiting, since objects tend to satisfy different
properties at different stages of their lifetimes. Instead, we view an object as
having different typestates over its lifetime, where each typestate is a named
predicate over the object’s concrete state. By making the object typestate
explicit at pre- and postconditions of all methods, we also avoid the prob-
lem of defining where object invariants must hold, which in the past has
been approached using ad-hoc notions of “visible states” [5]. In our model,
traditional object invariants are simply properties that are common to all
typestates of the object.

Typestates support incremental object state changes. Any given method
implementation only has a partial view of an object. Hence, describing how
an object’s state (including the statically unknown subclass state) changes is
nontrivial. Furthermore, because an object’s state change is necessarily im-

3

[TypeStates(”Open”, ”Closed”)]
class WebPageFetcher {

[Post(”Closed”), NotAliased]
WebPageFetcher([NotNull] string s)
{

this . site = s;
}

[Pre(”Closed”), Post(”Open”), NotAliased]
virtual void Open()
{

this .cxn = new Socket();
this .cxn.Bind(this . site);
this .cxn.Connect();

}

[Pre(”Open”), Post(”Closed”), NotAliased]
virtual void Close() {

this .cxn.Close ();
this .cxn = null ;

}

[Pre(”Open”)]
[return : NotNull]
virtual string GetPage([NotNull] string path) {

return this .cxn.Receive ();
}

[Pre(”Closed”)]
virtual void SetSite ([NotNull] string site) {

this .cxn = site ;
}

[NotNull(WhenEnclosingState=”Open”)]
[NotAliased(WhenEnclosingState=”Open”)]
[InState(”Connected”, WhenEnclosingState=”Open”)]
[Null(WhenEnclosingState=”Closed”)]
private Socket cxn;

[NotNull]
private string site ;

}

Open

Closed

CloseOpen

GetPage

SetSite

(a) (b)

Open(o)
def
=

o.cxn 6= null∧
notaliased(o.cxn) ∧
Connected(o.cxn) ∧

o.site 6= null

Closed(o)
def
=

o.cxn = null∧
o.site 6= null

CloseOpen

GetPage

SetSite

(c)

Fig. 1. Web page fetcher example

plemented incrementally (by changing individual fields), typestates must be
able to describe intermediate states, where different parts of an object have
different states. We introduce frame typestates and sliding method signatures

to address these issues.

2 Motivating example

This section informally introduces typestates for objects and illustrates some of
its expressive power, as well as technical aspects that we will further discuss
in the rest of the paper. In our examples, we use C] syntax and attributes (in
brackets) to record typestates, pre-, and postconditions. Later, in Section 6, we

4

[TypeStates(”Raw”, ”Bound”, ”Connected”, ”Closed”)]
class Socket {

[Post(”Raw”), NotAliased]
Socket();

[Pre(”Raw”), Post(”Bound”), NotAliased]
void Bind(string endpoint);

[Pre(”Bound”), Post(”Connected”), NotAliased]
void Connect();

[Pre(”Connected”)]
void Send(string data);

[Pre(”Connected”)]
string Receive ();

[Pre(”Connected”), Post(”Closed”), NotAliased]
void Close ();

}

Fig. 2. Simplified socket interface

will introduce a small formal language to make these examples precise. Fig. 1(a)
contains the source of a simple class WebPageFetcher providing the functionality
to open a particular web server, to fetch pages from the server, and to close
the connection to the server. A WebPageFetcher object can be in one of two
typestates, Open and Closed. The constructor produces an object in typestate
Closed, the method Open changes the object’s typestate from Closed to Open,
and the method Close changes the typestate back from Open to Closed. Method
GetPage can be called only when the object satisfies typestate Open, but does
not change the typestate. Similarly, method SetSite can only be called when
the object satisfies typestate Closed. These state changes can be pictured as the
finite state machine in Fig. 1(b).

The Pre and Post annotations on methods restrict the order of operations
that clients can invoke on the object. Such order restrictions are useful because
a method’s implementation makes assumptions about the object’s state when
it is invoked. For example, calling GetPage on a Closed object results in a null
dereference exception because the method’s code assumes that the field cxn is
not null. In our approach, we make the relationship between typestate and object
invariants explicit.

The annotations on the fields cxn and site define each typestate in terms of
what properties of the object’s concrete state hold in that typestate. If the object
is in state Closed, the private Socket cxn to the web server is null. If the object is in
state Open, then the private Socket cxn is non-null and in typestate Connected,
which is a typestate of the Socket class, as shown in Fig. 2. The annotation
NotNull on field site specifies a classic invariant, since it is not qualified by a
particular typestate and therefore holds in all typestates.

5

o Closed(o) Open(o)

WebPageFetcher o.cxn = null ∧
o.site 6= null

o.cxn 6= null ∧
notaliased(o.cxn) ∧
Connected(o.cxn) ∧
o.site 6= null

Fig. 3. Typestate interpretation

In short, a typestate is a predicate over an object’s field state. To a client,
this predicate is an uninterpreted function to be matched by name; to an im-
plementor, the predicate is defined in terms of predicates over the fields’ values.
Fig. 1(c) shows the same state machine as in (b), with each state enlarged to
show the predicate that holds in that typestate. The state machine in (b) is the
client’s view of a WebPageFetcher object, while the state machine in (c) is the
implementor’s view.

Given these annotations, we can mechanically verify that every method im-
plementation assumes only the stated precondition and guarantees the stated
postcondition. Starting with the constructor, we observe that it sets field site to
the non-null constructor argument s. That satisfies the invariant of field site in
typestate Closed. However, field cxn is not assigned. In our approach, we assume
that the implicit pre-state of objects in constructors is typestate Zeroed, in which
all fields are initialized to their zero-equivalent value. In state Zeroed, field cxn
contains null and therefore satisfies the necessary condition for typestate Closed.
Since both of the WebPageFetcher’s fields satisfy the conditions for typestate
Closed at the end of the constructor, the constructor satisfies its postcondition.

Method Open is interesting in that it changes the typestate of the receiver
from Closed to Open. It does so by initializing field cxn to a fresh socket. After
the constructor call, the socket has typestate Raw (see Fig. 2). Thus, before
satisfying the postcondition of method Open, the socket has to be put into the
right typestate by calling methods Bind and Connect in that order, according to
the Pre and Post annotations in class Socket. After calling Bind and Connect, the
field cxn is in typestate Connected and the field site is unchanged (and therefore
still non-null). Hence, the receiver is in typestate Open and, the method Open
satisfies its postcondition.

So far, we have ignored two issues: 1) the annotations NotAliased appearing
in the code, and 2) the fact that there could be subclasses of WebPageFetch-
er. The next two sections deal with object typestates and subclasses. Section 5
describes a programming model that allows static tracking of typestates in the
presence of aliasing.

3 Object typestate

Consider again the typestates of our WebPageFetcher example. We can view these
in the form of the table in Figure 3. The table maps a class and typestate to a

6

formula over the fields of an object of that class. The formula consists of atomic
predicates such as value equalities, aliasing assumptions, as well as recursive
typestate assumptions about the state of objects referenced through fields. In
this paper we assume that formulae include at least equalities and disequalities
between variables and null. In practice, any richer theory for which there are
decidable satisfiability checkers is suitable.

As we can see from this table, the typestates we have used so far in our
examples were really not typestates of an entire object, but only frame typestates,
i.e., a typestate of a particular class frame of an object. A class frame of an
object is the set of fields of the object declared in that particular class, not
in any super- or sub classes. In our example so far, we used frame typestates
expressing properties of the WebPageFetcher frame.

To obtain an object typestate, we must be able to describe properties of all
frames of an object, leading to the following issues:

Modularity of the typestate definition The meaning of an object types-
tate cannot be fully defined when the typestate is introduced, subclasses
must be able to give new interpretations of typestates for their own fields.
Nevertheless, a typestate should describe all parts of an object, even un-
known subclasses. We address these issues in Section 3.1.

Non-uniformity of typestates Because a change in typestate is implemented
as individual field updates, an object’s typestate changes only gradually.
Hence, typestates must be able to describe intermediate states of objects,
where part of the object is in state A, other parts in state B. Section 4
discusses this issue in more detail.

To accommodate the above problems we define an object typestate to be a collec-
tion of frame typestates, one per class frame of the object’s allocated (dynamic)
type. In other words, we use one frame typestate for the static type frame of
a reference, one for each super class frame, and one for each potential subclass
frame. Since we are interested in a modular system, we cannot statically know
the subclasses of a particular type. Therefore, our object typestates require an
abstraction that gives a uniform typestate to all unknown subclass frames. For-
mally, an object typestate takes the form σC :

(object typestate) σC ::= χC :: rest@s | χC :: •
(frames) χC ::= χB :: C@s where B = baseclass(C)

| Object@s where C = Object

An object typestate σC is a collection of frame typestates χC and either a rest
typestate s (specifying that all possible subclass frames of C satisfy s), or no
rest state indicating that the dynamic object type is exactly C (for example,
right after new, or because class C is restricted from having subclasses, as with
sealed classes in C]). A collection of frame typestates χC consists of a frame
typestate for frame C and each supertype of C. Class C in an object typestate
σC corresponds to the traditional static type of an object.

7

Object

WebPageFetcher

CachingFetcher

...

An object decomposed into class frames.
The ellipsis reflects that the object’s dy-
namic type may be more derived than its
declared type.

Object@s1
WebPageFetcher@s2
CachingFetcher@s3

rest@s4

A frame typestate per frame (s1..s3) and
one frame typestate (s4) for statically un-
known subclasses.

Fig. 4. Illustration of class frames and frame typestates

Object@s1
WebPageFetcher@s2

rest@s3

−−−−−−→
downcast

←−−−−
upcast

Object@s1
WebPageFetcher@s2
CachingFetcher@s3

rest@s3

Fig. 5. Illustration of upcast and downcast with typestates

To keep the presentation simple, our formulation assumes a single typestate
per class frame whereas in principle, an object can satisfy multiple compatible
typestates.

Fig. 4 graphically illustrates the idea of separate frame typestates in an object
and the rest state for all subclasses. Our model contains the restriction that a
frame typestate can only constrain fields in that frame, but not in any frames of
superclasses. This restriction enables modular reasoning in that writing a field
of a particular frame can only affect that frame’s typestate, but none of the
typestates of any subclass frames.

Fig. 5 illustrates how upcasts and downcasts work in the presence of type-
states. To downcast to an immediate subclass, the newly materialized frame
typestate is simply equal to the original rest typestate for the subclasses (s3).
For an upcast, the disappearing frame must have the same typestate as the rest
state that absorbs the frame; otherwise, the upcast is illegal.

Typestate shorthands in examples Explicitly specifying each frame typestate of
an object in our examples is a nuisance. We use the following convention to spec-
ify entire object typestates. By default, a typestate specification applies to the
class frame that introduces the typestate name (via the TypeStates annotation
on the class) and to all subclass frames. Alternatively, each typestate annotation
can be targeted at a particular frame C using the qualifier Type=C, or at the
frames of all subclasses using the qualifier Type=Subclasses in Pre, Post, or In-
State annotations. The root class Object has a single typestate Default, which all

8

classes inherit. Those frames for which no explicit typestate is given are assumed
to be in typestate Default.

Given this description, we can now interpret the object typestates specified in
class WebPageFetcher. Method WebPageFetcher::Open, for instance, specifies the
receiver precondition object typestate Object@Default :: WebPageFetcher@Closed ::
rest@Closed, and method WebPageFetcher.GetPage specifies the receiver precon-
dition Object@Default :: WebPageFetcher@Open :: rest@Open.

3.1 Typestates and subclasses

Let us now turn to the subclass CachingFetcher in Fig. 6 to see how typestates
work in the presence of object extensions. The caching web page fetcher has a
new cache field to hold a cache of already fetched pages. The natural invariants
for this field are that it is null when the fetcher is Closed and non-null when
the fetcher is Open. Since the subclass can provide it’s own interpretation for
typestates Open and Closed, adding this invariant is not a problem. The following
table summarizes the frame typestates for a CachingFetcher object.

o Default(o) Closed(o) Open(o) CacheOnly(o)
Object true Default(o) Default(o) Default(o)
WebPageFetcher o.cxn 6= null∧

maybealiased(o.cxn)∧
Default(o.cxn)∧
o.site 6= null

o.cxn = null∧
o.site 6= null

o.cxn 6= null∧
notaliased(o.cxn) ∧
Connected(o.cxn)∧
o.site 6= null

Default(o)

CachingFetcher o.cache 6= null o.cache = null o.cache 6= null o.cache 6= null

This table illustrates the two ways in which a subclass can extend its superclasses’
typestates: (1) by associating its own field invariants to a typestate defined in a
superclass (e.g., the invariants on field cache); and (2) by adding new typestates
(e.g., the typestate CacheOnly). Notice that when a typestate is not defined for
a given frame, we use the typestate Default.

Looking at method override CachingFetcher.GetPage, we see how this method
can take advantage of the object typestate precondition on the receiver. Since
the parent method WebPageFetcher.GetPage specified frame typestate Open for
all subclass frames (an abstract specification, since these typestate have not
been defined at that point), the overriding method can rely on the extra prop-
erties provided by its frame typestate. If we had instead limited the typestate
of subclasses to a known predicate (e.g., true), subclasses could not make any
assumptions about their own fields in such overridden methods. In our example,
CachingFetcher.GetPage assumes that field cache is not null.

4 Sliding methods

Given the ideas presented so far, there is a problem with methods that purport
to change the typestates of subclass frames, such as WebPageFetcher::Open. Its
Post specification states that all frames, including all unknown subclasses, will be
in typestate Open at the end of the method body. As written, this specification is
unfortunately not satisfied by the implementation. The method can assign only

9

[TypeStates(”CacheOnly”)]
class CachingFetcher : WebPageFetcher {

[Post(”Closed”), NotAliased]
CachingFetcher(string site) : base(site) {}

[Pre(”Closed”), Post(”Open”), NotAliased]
override void Open()
{

base.Open();
this .cache = new Hashtable();

}

[Pre(”Open”), Post(”Closed”), NotAliased]
override void Close()
{

base.Close ();
this .cache = null ;

}

[Pre(”Open”)]
[return : NotNull]
override string GetPage([NotNull] string path)
{

string page = this .cache.GetValue(path);
if (page == null) {

page = base.GetPage(path);
this .cache.Add(path, page);

}
return page;

}

[Null(WhenEnclosingState=”Closed”), NotNull(WhenEnclosingState=”Open,CacheOnly”)]
private Hashtable cache;

[Pre(”Open”), Post(”CacheOnly”), Post(”Closed”, Type=WebPageFetcher), NotAliased]
void CloseKeepCache()
{

base.Close ();
}

[Pre(”CacheOnly”), Pre(”Closed”, Type=WebPageFetcher)]
[return :MayBeNull]
string GetCachedPage(string path)
{

string page = this .cache.GetValue(path);
return page;

}

[Pre(”CacheOnly”), Pre(”Closed”, Type=WebPageFetcher), Post(”Closed”), NotAliased]
void DeleteCache() {

this .cache = null ;
}

}

Fig. 6. Caching web page fetcher

to fields that are visible through the static type and therefore cannot have any
effect on fields of subclasses. Thus, on exit, the subclass typestates must still
be Closed. This begs the question how a method can possibly change subclass
states.

10

A method can only directly affect fields of its frame or the fields of super-
classes. In order to change the typestate of subclasses, a virtual method call to
a sliding method is required. The idea behind a sliding method is that each sub-
class implements a slightly stronger state change, namely each subclass changes
the typestate of its frame and all frames of superclasses, but leaves the subclass
typestates unchanged. As long as each subclass correctly implements such a slid-
ing method, a virtual call to a sliding method is guaranteed to change the entire
object typestate, since it dispatches to the dynamic type (the lowest class frame)
and changes that frame as well as all super class frames.

We call such methods sliding because the typestate of the class introducing
the method keeps sliding down the class hierarchy with each subtype, overriding
the rest state. Graphically, we can illustrate this as follows:

WebPageFetcher::Open
Object@Default

WebPageFetcher@Closed
rest@Closed

−→
Object@Default

WebPageFetcher@Open
rest@Closed

CachingFetcher::Open

Object@Default
WebPageFetcher@Closed
CachingFetcher@Closed

rest@Closed

−→

Object@Default
WebPageFetcher@Open
CachingFetcher@Open

rest@Closed

In the limit, i.e., the effect observed for a virtual call, the signature is simply:

virtual call to Open
Object@Default

WebPageFetcher@Closed
rest@Closed

−→
Object@Default

WebPageFetcher@Open
rest@Open

We fix our example by relaxing the post typestate of subclasses to remain
Closed in methods Open and Close, and by treating these methods as sliding
methods. For method Open in both classes WebPageFetcher and CachingFetcher,
the corrected annotations are:

[Pre(”Closed”), Post(”Open”), Post(”Closed”, Type=Subclasses)]
virtual void Open () { ... }

4.1 Sliding signatures

In general, for each virtual method M , we thus have a family of related method
signatures: the virtual signature virtSigC (used at a virtual call site), and one
implementation signature implSigD per implementation of the method by class
D. These signatures are derived from the implementation signature of M in class
C which introduces virtual method M . The signature relations are illustrated in
Figure 7 and formally defined in Figure 15. We assume that class C introduces
sliding method M , and D is some subclass of C (notation D � C). The pre and
post states of base classes of C are χpre

B and χpost
B .

11

implSigC

χpre
B

C@s

rest@r

−→
χpost

B

C@t

rest@r′

implSigD

D� C

χpre
B

C@s
...

D@s

rest@r

−→

χpost
B

C@t
...

D@t

rest@r′

virtSigC

χpre
B

C@s

rest@s
−→

χpost
B

C@t

rest@t

Fig. 7. Relation between typestates of this in signatures of sliding method implemen-
tations and the virtual call signature

Note that the rest states r and r′ used in the implementation method sig-
natures can be arbitrary (they need not be related to the pre-state s or the
post-state t). It is instructive to study the different possible scenarios and what
they imply for implementations.

For method Open, we have C = WebPageFetcher, D = CachingFetcher, s =
Closed, t = Open, and r = r′ = Closed. This specification requires that the
implementation of CachingFetcher::Open calls the base-class Open method before

changing its own frame state, for otherwise, the pre-condition at the base-class
call is not satisfied for its frame. An alternative is to pick r = r′ = Open, which
forces implementations of Open to first change their own frame to state Open
before calling the base-class method. Finally, if r = r′ is yet a third state, then
implementations must first change their own frame to r, then call the base-class
method, then change their own frame from r to Open.

In most signatures, rest states r and r′ are equal. However, there are useful
cases where that is not the case. Consider for instance a wrapper method con-
taining a virtual call to Open. It would have s = Closed, r = Closed, t = Open,
and r′ = Open.

Given these definitions, we can now illustrate how to prove that method
CachingFetcher::Open implements its signature correctly. Note how CachingFetch-
er::Open calls the base class Open method before changing its own frame. This
base call is non-virtual, and therefore the method signature implSigWebPageFetcher

applies (rather than the virtual signature). We thus have the progression of the
receiver object through the following typestates:

– on entry (implSigCachingFetcher)

Object@Default :: WebPageFetcher@Closed :: CachingFetcher@Closed :: rest@Closed

– upcast for direct base-call to WebPageFetcher::Open

12

Object@Default :: WebPageFetcher@Closed :: rest@Closed

– direct base-call to WebPageFetcher::Open (implSigWebPageFetcher)

Object@Default :: WebPageFetcher@Open :: rest@Closed

– safe down-cast to CachingFetcher

Object@Default :: WebPageFetcher@Open :: CachingFetcher@Closed :: rest@Closed

– after update to field cache and post of implSigCachingFetcher

Object@Default :: WebPageFetcher@Open :: CachingFetcher@Open :: rest@Closed

We now illustrate the situation at a virtual call site.

– Assume x has typestate

Object@Default :: WebPageFetcher@Closed :: CachingFetcher@Closed :: rest@Closed

– upcast for virtual call to Open

Object@Default :: WebPageFetcher@Closed :: rest@Closed

– virtual call to Open (virtSigWebPageFetcher)

Object@Default :: WebPageFetcher@Open :: rest@Open

– after safe down-cast to CachingFetcher

Object@Default :: WebPageFetcher@Open :: CachingFetcher@Open :: rest@Open

The virtual call to Open changes all frames to typestate Open, since, dynamically,
every frame of the object is changed.

5 Alias confinement

Any sound static checker of object invariants must be aware of all the refer-
ences to an object in order not to miss any of the object’s state transitions.
We use a version of the adoption and focus model [4] for dealing with aliasing.
We distinguish two modes for each object and statically track this mode for
all pointers to objects. An object is either NotAliased, meaning that we stati-
cally know perfect aliasing information for this object (all must-aliases and no
may-aliases). Otherwise, the object is MayBeAliased, in which case there can be
arbitrary may-aliasing to the object among pointers tracked as MayBeAliased.

At allocation, an object is not-aliased. Objects can undergo arbitrary state
changes when not-aliased, since we can statically track their state. Explicit deal-
location of NotAliased objects is safe, but in this paper we don’t discuss it further.

A NotAliased parameter guarantees to a method that it can access the object
only through the given parameter or copies of the pointer that it makes, but the
method cannot reach this object through any other access paths. At the same
time, NotAliased guarantees to the caller that, upon return, the method will not
have produced more aliases to the object. On fields, NotAliased specifies that the
object with that field holds the only pointer to the referenced object. NotAliased
objects can be transferred in and out of fields at any point. NotAliased objects

13

can be returned from methods, guaranteeing to the caller that no other aliases
are still alive.

A NotAliased object can also leak, i.e., transition to the MayBeAliased mode.1

When an object leaks, all references to the object are considered MayBeAliased
and may be copied arbitrarily. References to a MayBeAliased object are typestate-
invariant; the object’s typestate can no longer change. Thus, the moment an
object leaks, its typestate is essentially frozen to the current typestate. We make
this simplifying assumption to make the system tractable. A focus operation [4]
can be used for temporarily changing the typestate of maybe-aliased objects,
but for simplicity we ignore focus in this paper.

Since we allow a not-aliased object to leak, we must choose the rules for ac-
cessing the leaked object’s not-aliased fields. There are three reasonable options:

Recursively leak Treat NotAliased fields of MayBeAliased objects as MayBe-
Aliased. This approach is simple, works in the presence of concurrency, and
allows both reading and writing of the field, but does not preserve the not-
aliased status of sub-structures.

Leave not-aliased Allow access only via an atomic field-variable swap opera-
tion. This approach retains not-aliased status of such objects and also works
in the presence of concurrency.

Disallow access to such fields Require a focus scope on the containing ob-
ject to access such fields [4]. This approach requires extra locking in the
presence of concurrency.

The formalism in the next section uses the first option.

6 Formal language

To formalize our approach, we present a small imperative, object-oriented lan-
guage with a static typestate system. This language and type system form the
kernel of a tool, called Fugue [6], which is a typestate checker for programming
languages that compile to the .NET Intermediate Language, like C], Visual Ba-
sic, and Managed C++.

Besides the typestate aspects, the language is a standard object-oriented
language, with classes, fields and methods. Each class has a single base class,
unless it is the predefined class Object. The subclass relation (�) is the reflexive,
transitive closure of the baseclass relation.2 A class consists of virtual method
declarations (new), method implementations (impl), fields, and typestates. To
simplify the presentation, we assume all methods are virtual, sliding, and have
distinct names.

The syntax of the formal language makes the checker’s assumptions about
the heap and values fully explicit in the form of pre- and postconditions at

1 Leak corresponds to adoption in [4]. Here, we do not distinguish multiple adopters,
but simply assume a single implicit adopter, namely the garbage collector.

2 We assume the baseclass relation is non-cyclic, but the static semantics does not
enforce it.

14

(program) P ::= class1 .. classn in b

(class) class ::= classC : D {d}
(declaration) d ::= virtM : ψ | implM{b} | field f | state s : τ
(method sig) ψ ::= ∀[∆](ρ1..ρn); Θ;ϕ→ ∃ρ.(Θ′;ϕ′)
(code block) b ::= ψ ` = λ(x1 .. xn).stmt

(statement) stmt ::= letx = e in stmt

| setx.f = y in stmt

| pack[C@s] x in stmt

| unpack[C] x in stmt

| leak x in stmt

| goto tt
(expression) e ::= x | c | y.f | newC | y.[C::]M(y1..yn)
(targets) tt ::= • | `[ρ1..ρm](y1..yn) whenA, tt | return x whenA, tt
(condition) A ::= true | x = c | x = y | x 6= c | x 6= y | A ∧ A | A ∨A

| hastype(x,C)
(constant) c ::= 0, 1, ...
(binding) δ ::= x : ρ | ` : ψ | C@s : τ |M : (ψ,C) | C::M : ψ | f : C
(type env) Γ ::= • | δ,Γ
(name env) ∆ ::= • | ρ,∆
(heap) Θ ::= • | ρ 7→(a, σC),Θ
(aliasing) a ::= 1 | + | ⊥
(object typestate) σC ::= χC :: rest@s | χC :: •
(frames) χC ::= χbaseclass(C) :: FC

χObject ::= FObject

(frame) FC ::= C@s | C{f1:ρ1 .. fn:ρn}@s
(frame typestate) τ ::= ∃{f1:ρ1 .. fn:ρn}.(Θ;ϕ)
(value formula) ϕ ::= true | ρ = c | ρ = ρ′ | ρ 6= c | ρ 6= ρ′ | ϕ ∧ ϕ | ϕ ∨ ϕ

| hastype(ρ,C)
(value name) ρ
(typestate name) s
(block label) `
(variable name) x, y
(class name) C
(field name) f
(method name) M

Fig. 8. Syntax of the language

every basic block in the method body. This allows us to separate checking from
inference. In order to be practical, a system like Fugue infers the intermediate
states inside a method, but inference is beyond the scope of this paper.

Fig. 8 contains the syntax of the language. A program is a set of classes and
a single code block. Each class consists of virtual method declarations, method
implementations, fields, and typestate interpretations τ . A typestate interpre-
tation τ is an existentially closed predicate over the fields of a class frame. A
method is a named set of labeled code blocks, where execution begins at the first
block. Each code block is a closed function. Signatures ψ of methods and code

15

blocks have the form

∀[∆](ρ1 .. ρn); Θ;ϕ→ ∃ρ.(Θ′;ϕ′)

where Θ;ϕ are the constraints on the heap and values on entry to the method or
block, ρ names the result, and Θ′;ϕ′ are the constraints on the heap and values
(including the result) on exit of the method. The signature of a method is the
signature of the first block in its body. The receiver is always the first parameter
of a method. As usual, type equivalence is syntactic modulo renaming of bound
variables.

There are no local variables. Data is passed between blocks through explicit
parameters (think registers). Each code block ends in a set of control transfers
to other code blocks or in a return, where each transfer is guarded by a condition
A. When control reaches the end of the block, control follows an edge (chosen
nondeterministically) whose condition is true at that point. The hastype(x,C)
condition is an explicit type test that succeeds if x’s dynamic type is C or a
subclass of C. In conjunction with the rules in Figure 14, it allows for dynamic
downcasts as well as recovering the static type after an upcast.

There are two kinds of method calls: virtual calls y.M(...); and non-virtual
calls y.C::M(...) directly to the method M implemented in class C. We model
object construction as a new expression followed by a non-virtual call to a con-
structor method.

The expressions leak, pack and unpack are non-standard constructs. A leak
expression changes the mode of an object from not-aliased to maybe-aliased. The
pack and unpack operations are used on not-aliased objects to coerce between the
abstract typestate view and the concrete field view of a class frame of a particular
object. In order to access (read or write) a field of a not-aliased object, the
frame containing the field must be unpacked. Thus pack and unpack operations
are required such that all accesses to fields are performed on unpacked frames.
Packed frames are typically required at method boundaries. Aliased objects are
never packed or unpacked.

Our type system assigns each value a symbolic name ρ, a form of singleton
type. These names are used for pointers and scalars alike. Heaps Θ are mappings
from pointer names ρ to an aliasing assumption a and the object’s typestate σC .
Formulae ϕ provide pure value constraints on ρ’s. The typestate σC also specifies
the static class type C of ρ. Alias assumptions take the forms 1 for not-aliased,
+ for maybe-aliased, and ⊥ for alias-polymorphic parameters. A heap mapping
ρ 7→(a, σC) is interpreted as a conditional mapping, predicated on ρ 6= null.

There are implicit well-formedness conditions on heaps Θ regarding du-
plicates. If Θ contains duplicate mappings ρ 7→(a1, σ1) and ρ 7→(a2, σ2), then
a1 = a2 = + and σ1 = σ2, otherwise we consider the heap predicate unsatisfi-
able.

6.1 Static semantics

The static semantics enforces type and typestate safety. Figure 13 shows the
rules for programs, classes and class members. Type environment Γ contains

16

ϕ′ = ϕ ∧ ρ = c

∆; Γ; Θ;ϕ ` c : ρ; ∆, ρ; Θ;ϕ′
const

Θ(ρ) = (1, C{f1:ρ1 .. fn:ρn}@s :: σ)
ϕ⇒ ρ 6= null

∆; Γ, y:ρ;Θ;ϕ ` y.fj : ρj ; ∆; Θ;ϕ
read1

Γ(y) = ρ

∆; Γ; Θ;ϕ ` y : ρ; ∆; Θ;ϕ
var

Θ(ρ) = (a, C@s :: σ) a = + ∨ a = ⊥
Γ(C@s) = ∃{f1:ρ1 .. fn:ρn}.(Θ2;ϕ2)

Θ′ = Θ,Θ2|
a

ρj
ϕ ∧ ϕ2|ρj

ϕ⇒ ρ 6= null

∆; Γ, y:ρ; Θ;ϕ ` y.fj : ρj ; ∆, ρj ; Θ′;ϕ′
read

Θ′ = Θ, ρ 7→(1, σC@Zeroed)
ϕ′ = ϕ ∧ ρ 6= 0

∆; Γ; Θ;ϕ ` newC : ρ; ∆, ρ;Θ′;ϕ′
new

∆; Γ; Θ;ϕ ` tt : ∃ρ′.(Θ′;ϕ′)

∆; Γ; Θ;ϕ ` goto tt : ∃ρ′.(Θ′;ϕ′)
goto

Γ(yi) = ρi i = 0..n
Γ([C::]M) = ∀[∆](ρ1..ρn); Θ0;ϕ0 → ∃ρ

′.(Θ1;ϕ1)
Θ;ϕ ` Θ0,Θ2;ϕ0

∆; Γ; Θ;ϕ ` y0.[C::]M(y1..yn) : ρ′; ∆, ρ′; Θ1,Θ2;ϕ ∧ ϕ1
call

∆; Γ; Θ;ϕ ` e : ρ; ∆′; Θ′;ϕ′

∆′; Γ, x:ρ;Θ′;ϕ′ ` stmt : ∃ρ′.(Θ′;ϕ′)

∆; Γ; Θ;ϕ ` let x = e in stmt : ∃ρ′.(Θ′;ϕ′)
let

Θ = ρx 7→(1, C{f1:ρ1 .. fj:ρj .. fn:ρn}@s :: σ),Θ1 ϕ⇒ ρx 6= null

Θ2 = ρx 7→(1, C{f1:ρ1 .. fj:ρy .. fn:ρn}@s :: σ),Θ1

∆; Γ, x:ρx, y:ρy; Θ2;ϕ ` e : ∃ρ′.(Θ′;ϕ′)

∆; Γ, x:ρx, y:ρy; Θ;ϕ ` setx.fj = y in e : ∃ρ′.(Θ′;ϕ′)
set1

Θ(ρx) = (a, C@s :: σ) a = + ∨ a = ⊥ Θ(ρy) 6= (⊥,)
Γ(C@s) = ∃{f1:ρ1 .. fn:ρn}.(Θ2;ϕ2) ϕ⇒ ρx 6= null

Θ,Θ2
a
;ϕ ∧ ϕ2 ` Θ,Θ2

a
[ρy/ρj];ϕ2[ρy/ρj]

∆; Γ, x:ρx, y:ρy; Θ;ϕ ` e : ∃ρ′.(Θ′;ϕ′)

∆; Γ, x:ρx, y:ρy; Θ;ϕ ` setx.fj = y in e : ∃ρ′.(Θ′;ϕ′)
set

Θ = ρ 7→(1, σC),Θ1 σC packed
Θ2 = ρ 7→(+, σC),Θ1

∆; Γ, x:ρ;Θ2;ϕ ` e : ∃ρ′.(Θ′;ϕ′)

∆; Γ, x:ρ;Θ;ϕ ` leak x in e : ∃ρ′.(Θ′;ϕ′)
leak

Θ = ρ 7→(1, C{f1:ρ1 .. fn:ρn}@s
′ :: σ),Θ1

Γ(C@s) = ∃{f1:ρ1 .. fn:ρn}.(Θ0;ϕ0)
Θ1;ϕ ` Θ2,Θ0;ϕ0

∆; Γ, x:ρ;ρ 7→(1, C@s :: σ),Θ2;ϕ ` e : ∃ρ′.(Θ′;ϕ′)

∆; Γ, x:ρ;Θ;ϕ ` pack[C@s] x in e : ∃ρ′.(Θ′;ϕ′)
pack

Θ = ρ 7→(1, C@s :: σ),Θ1

Γ(C@s) = ∃{f1:ρ1 .. fn:ρn}.(Θ0;ϕ0)
Θ2 = ρ 7→(1, C{f1:ρ1 .. fn:ρn}@s :: σ),Θ1,Θ0

∆, ρ1..ρn; Γ, x:ρ;Θ2;ϕ ∧ ϕ0 ` e : ∃ρ′.(Θ′;ϕ′)

∆; Γ, x:ρ;Θ;ϕ ` unpack[C] x in e : ∃ρ′.(Θ′;ϕ′)
unpack

Fig. 9. Static semantics of statements and expressions

17

method signatures (both virtual and particular implementations), as well as
frame typestate interpretations, and fields. In methods, Γ also contains local
variables. Rules [virt] and [impl] enforce the relationship between virtual and
implementation signatures of sliding methods described in Section 4. To simplify
the class rules, we force classes to implement all virtual methods that could
be invoked on them. An implementation can of course just call the base class
method. The auxiliary function fn denotes the free names (ρ) of Γ, ψ, or τ .

Figure 9 contains the rules for statements and expressions. Judgment ∆; Γ; Θ;ϕ `
stmt : ∃ρ.(Θ′;ϕ′) states that stmt is well formed in environment ∆; Γ; Θ;ϕ and
produces result ρ, in heap Θ′ and value constraints ϕ′.

The judgments use a few notational shortcuts. The syntax σC@s denotes the
uniform object typestate Object@s :: ... :: C@s :: •. The syntax FC :: σ is a
convenient pattern match to extract frame FC from an object typestate.

Operation Θ|ρ restricts the memory predicate Θ to the domain ρ (or the
empty heap if not present). Similarly, ϕ|ρj

restricts the value constraint to a

conjunction of predicates on ρj only. Operation Θ
a

changes the aliasing of all not-
aliased locations in Θ to a. It is used when accessing aliased or alias-polymorphic
objects in order to adjust the aliasing of not-aliased fields. Accessing a not-aliased
field of an alias-polymorphic parameter yields itself an alias-polymorphic object,
thereby preventing it from changing, leaking, or escaping.

The judgment Θ;ϕ ` Θ′;ϕ′ is implication of heaps and value constraints.
Heaps must be equivalent up to duplication of aliased locations and implication
of formulae and typestates. Fig. 14 contains the implication rules.

The side condition σC packed in rule [leak] states that all frames of σC must
be packed before the object can transition to an aliased mode.

Our decision on how to deal with aliased objects is visible in rule [read], gov-
erning access to fields of aliased objects. We re-instantiate the typestate predicate
for the frame containing the field, since we assume that between any instruction,
the field could change (this is conservative even in the presence of thread shared
objects). Similarly, updating a field of an aliased object (rule [set]) requires that
we prove the typestate predicates after substituting the new value name for the
old, thereby guaranteeing that the update retains all invariants of the affected
object.

This treatment makes explicit that field correlations cannot be observed of
aliased objects, unless we extend the system with read-only fields or explicit
focus scopes in which the object fields are not changed by the environment [4].

6.2 Soundness

Although we have no formal proof, we believe the system to be sound. We leave
a study of its meta-theory for future work.

18

7 Discussion

Having given a formal definition for the language and its type system, we now
discuss how it catches common programming errors, limits of the approach, and
some extensions.

7.1 Example and errors that can be caught

Fig. 10 shows the methods CachingFetcher.Open and CachingFetcher.GetPage in
the formal language. For brevity, we abbreviate CachingFetcher as CF and Web-

PageFetcher as WPF and drop all occurrences of • at the end of lists. These
two methods represent common cases: Open changes the receiver’s typestate and
therefore its field invariants; GetPage assumes the field invariants of typestate
Open and leaves the receiver in the same typestate.

We illustrate two kinds of programming errors that are common in mutator
methods such as Open. First, the programmer of CachingFetcher::Open may for-
get to call the overridden method in the superclass, thereby not changing the
typestate of the superclasses. In this case, at the method return point, the heap
Θ would contain the entry

ρthis 7→(1,Object@Default :: WPF@Closed :: CF@Open :: rest@Closed)

which does not match that post clause, since frame WPF is Closed rather than
Open.

Second, the programmer may fail to establish the object properties associated
with the post-typestate Open of frame CachingFetcher, which is

CF@Open ≡ ∃{cache:ρ1}.(ρ1 7→(+,Object@Default :: Hashtable@Default) ;
ρ1 6= null)

Assuming the programmer sets field cache to null rather than a newly allo-
cated Hashtable, an error manifests when applying rule [pack] to expression
pack[CF@Open] of method CF::Open with the following bindings

∆ ≡ ρthis, •
Γ ≡ this : ρthis, •
Θ ≡ ρthis 7→(1, Object@Default :: WPF@Open :: CF{cache : ρ1}@Closed :: rest@Closed), •
ϕ ≡ ρthis 6= null ∧ ρ1 = null

The critical premise in the [pack] rule is the implication

Θ1;ϕ ` Θ2,Θ0;ϕ0

Given the current heap Θ1 (minus the object being packed) and current value
facts ϕ, we need to satisfy the heap Θ0 and value invariants ϕ0 associated with
the typestate to which we are packing. (Θ2 represents the unused portion of the
heap.) In our hypothetical example, we have

Θ1 ≡ • ; ϕ ≡ (ρthis 6= null ∧ ρ1 = null) Θ2 ≡ •
Θ0 ≡ ρ1 7→(+,Object@Default :: Hashtable@Default) ; ϕ0 ≡ (ρ1 6= null)

19

CF::Open {
start : λ[ρthis](this : ρthis)

pre ρthis 7→(1,Object@Default :: WPF@Closed :: CF@Closed :: rest@Closed);
ρthis 6= null

post ∃ρ′.(ρthis 7→(1,Object@Default :: WPF@Open :: CF@Open :: rest@Closed);
true)

let = WPF::Open(this) in

let h = new Hashtable in

let = Hashtable::ctor(h) in

unpack[CF] this in

set this.cache = h in

pack[CF@Open] this in

goto return null when true

}

CF.GetPage {
start: λ[ρthis, ρpath](this : ρthis, path : ρpath)

pre ρthis 7→(⊥, Object@Default :: WPF@Open :: CF@Open :: rest@Open),
ρpath 7→(+, Object@Default :: String@Default);
ρthis 6= null ∧ ρpath 6= null

post ∃ρ′.(ρthis 7→(⊥, Object@Default :: WPF@Open :: CF@Open :: rest@Open),
ρ′ 7→(+, Object@Default :: String@Default); ρ′ 6= null)

let c = this.cache in

let page = Hashtable::GetItem(c, path) in
goto missing[ρthis, ρpath, ρcache](this,path,c) when page = null,

return page when page 6= null

missing: λ[ρthis, ρpath, ρcache](this : ρthis, path : ρpath, c : ρcache)
pre ρthis 7→(⊥, Object@Default :: WPF@Open :: CF@Open :: rest@Open),

ρpath 7→(+, Object@Default :: String@Default),
ρcache 7→(+, Object@Default :: Hashtable@Default);
ρthis 6= null ∧ ρpath 6= null ∧ ρcache 6= null

post ∃ρ′.(ρthis 7→(⊥, Object@Default :: WPF@Open :: CF@Open :: rest@Open),
ρ′ 7→(+, Object@Default :: String@Default); ρ′ 6= null)

let page = WPF.GetPage(this, path) in
let = Hashtable::Add(c, path, page) in

goto return page when true

}

Fig. 10. Two CachingFetcher methods. We abbreviate CachingFetcher as CF and Web-
PageFetcher as WPF and reformat block heads for improved readability.

which is not satisfiable, since ρ1 is null.

The code for method GetPage is more complicated because it has two basic
blocks. There are two parts of the mechanics of checking this method that are
worth pointing out. First, the code’s correctness relies on the field invariants of
typestate Open. GetPage treats the this parameter as alias-polymorphic rather

20

than NotAliased (to make the method more widely callable). Hence, the method
can assume the typestate’s field invariants, but cannot unpack the object and
thereby change the field state. (The second premise of [unpack] requires that
the object to unpack have alias mode 1.) The first block reads the field cache
and binds it to the name c. This expression is checked with [read], rather than
[read1], since this is possibly aliased. The conclusion of [read] yields a heap and
value facts that are supplemented with the heap and value invariants of the field
we are reading (namely, Θ,Θ2|

a

ρj
;ϕ ∧ ϕ2|ρj

). Here, we have ρj ≡ ρcache, Θ2 ≡

ρcache 7→(+,Object@Default :: Hashtable@Default) and ϕ2 ≡ ρcache 6= null. The
fact that ρcache 6= null is needed to show the correctness of the next expression,
the call to Hashtable::GetItem, which requires that its first argument not be null.
The same proof-obligation exists in the second block at the call to Hashtable::Add.

Second, proving the correctness of this method relies on refining the value
facts on conditional branches. The object ρpage is the result of the call to
Hashtable::GetItem, whose postcondition does not ensure that ρpage 6= null.
Hence, the legality of the return in start relies on the branch condition given
in the when clause (in this case, page 6= null). The use of conditions is ex-
plicit in the third premise of rule [return], where ϕ ∧ ϕA is used to show the
postcondition, and ϕA is the formula corresponding to condition A.

Finally, after discussing how the typing rules can be used to prove the cor-
rectness of method implementations, we look at how they catch such client errors
as calling methods in the wrong order. Consider the following code sequence in
which the programmer has forgotten to call Open before calling GetPage:

let f = new CachingFetcher in
let = CachingFetcher::ctor(f) in
let p = GetPage(f, “http://...”) in ...

The critical premise of [call] is the implication Θ;ϕ ` Θ0,Θ2;ϕ0 , requiring that
the current heap Θ and value facts ϕ imply the heap Θ0 and value precondition
ϕ0 of the called method (Θ2 is the part of the heap unused by the method). The
relevant facts here are Θ(ρf) = Object@Default::WPF@Closed::CF@Closed ::
rest@Closed, but the method expects Θ0(ρf) = Object@Default::WPF@Open ::
CF@Open :: rest@Open. All typestates below the Object frame are thus in the
wrong state.

7.2 Expressive power

This section examines the limits on the constraints that can be placed on object
graphs using the object typestates formulated so far.

One can constrain any part of the object graph to form a tree using the not-
aliased pointer predicates. Any field can be constrained to any unary predicate
in the predicate language, including typestate predicates. Field values within the
same class frame can be constrained arbitrarily using relational predicates (e.g.,
x.f = x.g, where f and g are within the same class frame.

Besides the restricted form of sharing constraints, the limitation of the object
typestates described so far is that relations between fields of different frames or

21

different objects in the graph cannot be expressed, (e.g., x.f = x.g.h). The reason
for this is that the only way to constrain the contents of an object referenced
through a field is to specify its typestate. One cannot directly refer to x.g.h in
any formula. Typestates therefore fully abstract what can be observed about an
object. Our formalization makes this explicit by modeling frame typestates with
existential bindings for all fields:

C@s : ∃{f1:ρ1..fn:ρn}.(Θ, ϕ)

This states that the contents of frame C with typestate s is the set of field
values ρi (one per field fi), constrained by heap Θ and formula ϕ. The existential
binding restricts the context to know nothing about the field values beyond the
constraints ϕ.

Existentially abstracting only the field values implies that all frames referred
to in Θ are packed (because the entire formula must not contain free value
names). This choice is not fundamental and our framework can easily be ex-
tended to accommodate unpacked frames by allowing arbitrary existential ab-
straction of the form

C@s : ∃[∆].({f1:ρ1..fn:ρn}; Θ, ϕ)

In such a formulation, constraints between different objects such as x.f = x.g.h

can be expressed, as long as the frame containing field h in object x.g is unpacked
in the typestate containing this constraint. Constraints between frames of the
same object however remain outside this framework.

The typestates described so far are suited only to finite-state abstractions.
For instance, typestates can enforce that Pop be called on a Stack object only
after a call to Push or a non-emptiness test, but cannot enforce that Push be
called at least as many times as Pop. Parameterized typestates (or dependent
typestates) could support such counting abstractions similarly to the way they
are enforced in ESC/Java using an integer ghost field.

7.3 Client and implementation views of typestates

There is a freedom in our formalization that we probably do not want. In this for-
mulation, any code that has a not-aliased reference to an object may unpack and
repack the object and thereby potentially change its typestate. In particular, this
allows client code to change an object’s typestate by directly accessing its fields
rather than by calling its methods. If the programmer has made the object’s rep-
resentation private, this problem cannot arise, since the field assignments would
be illegal. However, to promote programming hygiene, it is preferable to restrict
client code to packing to the same typestate they unpacked. Only methods de-
clared in the class whose frame is being packed (or one of its subclasses) are
allowed to pack to different typestates.

22

[TypeStates(‘‘InBounds ’’, ‘‘ OutOfBounds’’)]
interface IEnumerator
{

[Pre(‘‘ InBounds ’’)]
object Current { get ; }

[Post (‘‘ InBounds ’’, WhenReturnValue=true),
Post (‘‘OutOfBounds’’, WhenReturnValue=false)]

bool MoveNext ();

[Post (‘‘OutOfBounds’’)]
void Reset ();

}

Fig. 11. Using correlated return values to specify the IEnumerator class.

7.4 Correlating typestate and return values

In the typestate system presented so far, a method can specify only a single
post-typestate for every parameter. This limitation prevents us from describing
protocols in which a method can change a parameter to one of several post-
typestates, correlated to the value of a returned status code. Fig. 11 shows a
typestate specification for the popular .NET interface IEnumerator. To use an
IEnumerator object, a program repeatedly calls MoveNext until it returns false
and can call Current only when the latest call to MoveNext returned true. To
capture this protocol, we need to correlate the object’s typestate to the return
value from MoveNext, using an extended feature WhenReturnValue=constant.

To support this feature in our formalism, we need to introduce typestate
variables and allow quantification and constraints to range over such variables.

8 Related Work

Our work draws from several lines of research. Our aliasing approach has been
heavily influenced by the work on alias types [7, 8], and region type systems [9,
10], in particular, the use of linear permissions and dependent types in some of
these systems to control access to memory and to allow strong updates. This for-
mulation allows for a natural imperative programming style, without the draw-
back of singly threading values as in traditional linear type systems.

Alias-polymorphic functions are closely related to the idea of let! by Wadler [11]
and Boyland’s alias burying [12]. See [4] for a detailed discussion of let! in the
presence of imperative updates.

Our formulation of typestates for objects is novel. Previous work on types-
tates [2, 3] does not provide an interpretation to typestates as predicates over
objects, nor did it consider the complications of subclasses.

The Fugue project shares the general goal of the work on the extended static
checker ESC [1] to provide automatic checking of specifications for OO pro-
grams [13]. However, the two approaches differ in the following ways. Fugue
focuses on a simple, sound programming model and a natural way to express

23

object properties via typestates. ESC is based on FOL and general theorem
proving and is generally more expressive than Fugue. However, the expressive-
ness comes at a price. ESC does not aim for sound checking, nor the efficiency
expected from a type checker. Although ESC has similar aliasing restrictions
as described in this paper (NotAliased fields are called pivot fields in ESC),
ESC lacks the ability to freeze typestates (object properties) as provided by leak
statements. Thus, properties of arbitrarily aliased objects are difficult to capture
across program abstractions.

The interaction of typestates and subclasses generally follows the notion of
behavioral subtypes of Liskov et.al. [14]. Our formalism however does not support
history constraints. On the other hand, unlike in Liskov’s approach, our pre- and
post-conditions are abstract predicates that allow subclasses to rely on strong
properties not anticipated by the author of a supertype.

The use of a rest state in our object typestates is at first glance similar to
the use of row-polymorphism to encode class types kov et.al. [14]. Our formal-
ism however does not support history constraints. On the other hand, unlike in
Liskov’s approach, our pre- and post-conditions are in Objective ML [15]. How-
ever, object typestates have a very different purpose in that the rest state re-
stricts the typestates of all possible extensions, whereas row-polymorphism does
not restrict the types of fields in any extensions. Furthermore, our type system
is based on name-based subclassing, not structural, where row-polymorphism is
most useful.

Role analysis [16] attempts to capture the referencing behavior of structures
and is similar to a typestate system. However, it does not address issues of
subtyping and inheritance. It is also not clear how practical such systems can
be made, in particular in light of [17].

9 Conclusion

We have attempted to strike a balance between expressiveness and practicality
for specifying and checking object properties. Our approach supports the ex-
tension mechanism of class based programs in that it both allows subclasses to
refine the interpretation of object typestates defined in superclasses, as well as
to introduce entirely new typestates.

Acknowledgments

We thank the anonymous reviewers for their helpful comments and suggestions.

References

1. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J., Stata, R.: Ex-
tended static checking for Java. In: [18]

2. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhanc-
ing software reliability. IEEE TSE 12 (1986) 157–171

24

3. DeLine, R., Fähndrich, M.: Enforcing high-level protocols in low-level software. In:
Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language
Design and Implementation. (2001) 59–69

4. Fähndrich, M., DeLine, R.: Adoption and focus: Practical linear types for imper-
ative programming. In: [18] 13–24

5. Guttag, J.V., Horning, J.J.: Larch: Languages and Tools for Formal Specification.
Springer-Verlag (1993)

6. DeLine, R., Fähndrich, M.: The fugue protocol checker: Is your software
Baroque? Technical Report MSR-TR-2004-07, Microsoft Research (2004) URL:
http://research.microsoft.com/˜maf/fugue.

7. Smith, F., Walker, D., Morrisett, J.G.: Alias types. In: European Symposium on
Programming. (2000) 366–381

8. Walker, D., Morrisett, G.: Alias types for recursive data structures. In: Proceedings
of the 4th Workshop on Types in Compilation. (2000)

9. Tofte, M., Talpin, J.P.: Implementation of the typed call-by-value λ-calculus using
a stack of regions. In: Conference Record of the 21st Annual ACM SSymposium
on Principles of Programming Languages. (1994) 188–201

10. Crary, K., Walker, D., Morrisett, G.: Typed memory management in a calculus of
capabilities. In: Conference Record of the 26th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ACM Press (1999)

11. Wadler, P.: Linear types can change the world! In Broy, M., Jones, C., eds.:
Programming Concepts and Methods. (1990) IFIP TC 2 Working Conference.

12. Boyland, J.: Alias burying: Unique variables without destructive reads. Software—
Practice and Experience 31 (2001) 533–553

13. Leino, K.R.M., Stata, R.: Checking object invariants. Technical Report #1997-007,
DEC SRC, Palo Alto, USA (1997)

14. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems 16 (1994) 1811–1841

15. Rémy, D., Vouillon, J.: Objective ML: an effective object-oriented extension to
ML. Theory and Practice of Object Systems 4 (1998) 27–50

16. Kuncak, V., Lam, P., Rinard, M.: Role analysis. In: Conference Record of the 29th
Annual ACM Symposium on Principles of Programming Languages. (2002)

17. Kuncak, V., Rinard, M.: Existential heap abstraction entailment is undecidable.
In: Proceedings of the 10th International Static Analysis Symposium. (2003)

18. Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language
Design and Implementation. (2002)

Appendix

Γ; Θ ` A : ϕ

Γ(x) = ρ Θ(ρ) = (a, σ)

Γ; Θ ` hastype(x,C) : hastype(ρ, C)

A ∈ true,=, 6=

Γ; Θ ` A : Γ(A)

Γ; Θ ` A1 : ϕ1 Γ; Θ ` A2 : ϕ2

Γ; Θ ` A1 ∨A2 : ϕ1 ∨ ϕ2

Γ; Θ ` A1 : ϕ1 Γ; Θ ` A2 : ϕ2

Γ; Θ ` A1 ∧A2 : ϕ1 ∧ ϕ2

Fig. 12. Static rules for conditions

25

P = class1..classn in b
Γ ` class i i = 1..n

Γ ` b
fn(Γ) = ∅

Γ ` P
program

Γ(M) = (ψ,C)
Γ(C::M) = ψ′

virtSigC(ψ′) = ψ

Γ, C ` virtM : ψ
virt

∀M.Γ(M) = (ψ,B) ∧ C � B =⇒ implM{b} ∈ d

Γ, C ` d

Γ ` classC : D{d}
class

bi = ψi `i . . . i = 1..n
Γ(C::M) = ψ1 Γ(M) = (, B) Γ(B.M) = ψ′ ψ1 = implSigC(ψ′)

fn(ψi) = ∅ i = 1..n
Γ′ = Γ, `1 : ψ1, .., `n : ψn

Γ′ ` bi i = 1..n

Γ, C ` implM{b1..bn}
impl

Γ(f) = C

Γ, C ` field f
field

Γ(C@s) = τ fn(τ) = ∅ Θ 63 ⊥
τ = ∃{f1:ρ1 .. fn:ρn}.(Θ;ϕ)

Γ(fi) = C i = 1..n

Γ, C ` state s : τ
state

ψ = ∀[∆](ρ1..ρn); Θ;ϕ→ ∃ρ.(Θ′;ϕ′)
∆; Γ, x1:ρ1..xn:ρn; Θ;ϕ ` e : ∃ρ.(Θ′;ϕ′)

Γ ` ψ ` = λ(x1..xn).e
block

∆; Γ; Θ;ϕ ` tt : ∃ρ′.(Θ′;ϕ′)

Γ(`) = ∀[ρ′](ρ1..ρm); Θ0;ϕ0 → ∃ρr.(Θ1;ϕ1) Γ; Θ ` A : ϕA

Γ(yi) = ρi[ρ/ρ
′] i = 1..m

Θ;ϕ ∧ ϕA ` Θ0[ρ/ρ
′];ϕ0[ρ/ρ

′]
Θ1[ρ/ρ

′];ϕ1[ρ/ρ
′] ` Θ′;ϕ′

∆; Γ; Θ;ϕ ` tt : ∃ρr.(Θ
′;ϕ′)

∆; Γ; Θ;ϕ ` `[ρ](y1..ym) whenA, tt : ∃ρr.(Θ′;ϕ′)
label

Γ(x) = ρ′ Γ; Θ ` A : ϕA Θ;ϕ ∧ ϕA ` Θ′;ϕ′

∆; Γ; Θ;ϕ ` tt : ∃ρ′.(Θ′;ϕ′)

∆; Γ; Θ;ϕ ` return x whenA, tt : ∃ρ′.(Θ′;ϕ′)
return

∆; Γ; Θ;ϕ ` • : ∃ρ′.(Θ′;ϕ′)

Fig. 13. Well-formedness of programs, classes, methods, blocks, and goto targets

26

Θ;ϕ ` Θ′;ϕ′

ϕ; σ ` ϕ′; σ′

ρ 7→(a, σ),Θ;ϕ ` ρ 7→(a, σ′),Θ;ϕ′ •;ϕ ` •;ϕ

ϕ⇒ ρ1 = ρ2

ρ1 7→(+, σ), ρ2 7→(+, σ),Θ;ϕ ` ρ1 7→(+, σ),Θ;ϕ

ϕ⇒ ρ = null

ρ 7→(a, σ),Θ;ϕ ` Θ;ϕ

ρ 7→(+, σ),Θ;ϕ ` ρ 7→(+, σ), ρ 7→(+, σ),Θ;ϕ

ϕ⇒ ρ = null

Θ;ϕ ` ρ 7→(a, σ),Θ;ϕ

ρ 7→(+, σ),Θ;ϕ ` Θ;ϕ

Θ;ϕ ` Θ′;ϕ′ ϕ′ ⇒ ϕ′′

Θ;ϕ ` Θ′;ϕ′′

ϕ; ρ;σ ` ϕ′;σ′

ϕ′ = ϕ ∧ hastype(ρ,C)
ϕ′; ρ;χB :: rest@s ` ϕ′′;σD

ϕ; ρ;χB :: C@s :: rest@s ` ϕ′′;σD

upcast
ϕ;χC ` χ

′

C

ϕ; ρ;χC :: • ` ϕ; χ′

C :: rest@s

ϕ; ρ;σD ` ϕ
′;χB :: rest@s

ϕ′ ⇒ hastype(ρ, C)
baseclass(C) = B

ϕ; ρ;σD ` ϕ′; χB :: C@s :: rest@s
downcast

ϕ;χC ` χ
′

C

ϕ; ρ;χC :: r ` ϕ; χ′

C :: r

ϕ;χC ` χ
′

C
ϕ;χB ` χ

′

B

ϕ;χB :: C@s ` χ′

B :: C@s ϕ; • ` •

ϕ;χB ` χ
′

B ϕ⇒ ρi = ρ′i
ϕ;χB :: C{f1:ρ1..fn:ρn}@s ` χ′

B :: C{f1:ρ′1..fn:ρ′n}@s

Fig. 14. Implication rules

implSigC(∀[∆](ρ1..ρn); Θ;ϕ→ ∃ρ.(Θ′;ϕ′)) =

∀[∆](ρ1..ρn); implSigC(ρ1,Θ);ϕ→ ∃ρ.(implSigC(ρ1,Θ
′);ϕ′)

virtSigC(∀[∆](ρ1..ρn); Θ;ϕ→ ∃ρ.(Θ′;ϕ′)) =

∀[∆](ρ1..ρn); virtSigC(ρ1,Θ);ϕ→ ∃ρ.(virtSigC(ρ1,Θ
′);ϕ′)

implSigC(ρ, (ρ 7→(a, σ),Θ)) = ρ 7→(a, implSigC(σ)),Θ

virtSigC(ρ, (ρ 7→(a, σ),Θ)) = ρ 7→(a, virtSigC(σ)),Θ

implSigC(χB :: C@s :: rest@r) = χB :: C@s :: rest@r
implSigD(χB :: C@s :: rest@r) = χB :: C@s :: · · · :: D@s :: rest@r D � C
virtSigC(χB :: C@s :: rest@r) = χB :: C@s :: rest@s

Fig. 15. Definitions of implSig and virtSig for sliding methods

