From Stack Inspection to Access Control:
A Security Analysis for Libraries

Frédéric Besson Tomasz Blanc Cédric Fournet Andrew D. Gordon
Microsoft Research  INRIA Rocquencourt  Microsoft Research  Microsoft Research

Abstract should be able to interact with a variety of programs; how-
ever, the behaviour of the library (and its security) now de-
We present a new static analysis for reviewing the se- pends on the local security configuration and the runtime
curity of libraries for systems, such as JVMs or the CLR, Stack. As may be expected, it becomes quite hard to vali-
that rely on stack inspection for access control. We describ date the security of a library by testing and code review. Re-
its implementation for the CLR. Our tool inputs a set of li- lated difficulties include optimising performance, and-con
braries plus a description of the permissions granted to un- Structing and maintaining accurate documentation.
known, potentially hostile code. It constructs a permissio This paper describes the design, formalisation, and im-
sensitive call graph, which can be queried to identify peten plementation of a new static analysis tool that addresses
tial security defects. It has been applied to large pretaxis ~ these difficulties. Our tool analyses the use of runtime per-
libraries. missions in the CLR, with its existing mechanisms and li-
We also develop a new formal model of the essentials ofbraries, but the principles seem applicable in other gggfin
access control in the CLR (types, classes and inheritance such as the JVM.
access modifiers, permissions, and stack inspection)idnth ~ The tool constructs a call graph from two inputs: (1) a
model, we state and prove the correctness of the analysis. collection of compiled input libraries, and (2) a descopti
of the permissions assigned to the as yet unknown code to
be loaded at runtime. We say the known, library code (typ-
ically granted many permissions) feusted whereas the
1. Motivation and OQutline unknown, dynamically-loaded code (typically granted few
permissions) issemi-trusted Our main purpose is to help
In modern, networked systems, the addition of software find honest mistakes in trusted code that might be exploited
components is frequent and largely automated. These comby maliciously crafted semi-trusted code.
ponents may have diverse origins; they can be applets, plug- The call graph includes nodes for both known and un-
ins, macros in documents, or programs downloaded fromknown code, with multiple nodes for each piece of code
the Web. Their intermingled code ends up sharing the samethat can be executed with different run-time permissions.
local resources (CPU, memory, files), but not necessarily The construction is otherwise simple in principle—if not
the same level of trust. in detail, as our implementation handles all CLR instruc-
To enforce access control in the presence of poten-tions. Significant novelties, compared to previous calpgra
tially hostile code, extensible systems such as the Java Vir constructions, include the sensitivity to permissions mhe
tual Machine (JVM) and the Common Language Runtime generating the graph, and the analysis of an open system,
(CLR) provide fine-grained security mechanisms, including Where arbitrary unknown code may call into (or inherit
a stack inspection mechanism that can determine the perfrom) known libraries. Given this permission-sensitivél ca
missions of each running piece of code as a function of thegraph, we run a variety of queries to detect potential secu-
stack [10, 6, 16]. Permissions are first associated withggiec  rity defects, such as the unintended reachability of danger
of code according to their level of trust, which typically-de ous methods. These queries are inspired by typical defects
pends on the origin of the code and the local security policy. in CLR code. Our aim is not to fully verify access control,
Then, before accessing a sensitive resource, the callistack but instead to focus human effort during security code re-
inspected to verify that every caller has been granted the re views. We summarise experimental results from analysing
guested permissions. substantial existing libraries.
Stack inspection is a flexible preventative measure butis  To provide a formal foundation for our call graph con-
also a source of complications. For instance, library code struction, we define a new model of stack inspection within
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the CLR. Our model, BIL-SEC, is a variation of Baby ing system process. To control access to these resourees, th
IL [11], a subset of the CLR’s intermediate language (IL) CLR depends on a range of security mechanisms [16], in-
previously introduced for the study of type safety. BIL- cluding type safety and access modifiers, as well as stack
SEC reflects the essential features as regards accesslcontrimspection. The CLR has a fairly standard class-based type
(types, classes and inheritance, access modifiers, permissystem, with modifiersprivate, protected etc) controlling
sions, and stack inspection). Hence, whilst avoiding many the visibility of fields, methods, and other class members.
details of the full CLR, it better captures the specific char- An assembly’s metadata and code are checked for type
acteristics of our implementation than previous work on ab- safety and conformance to access modifiers during loading
stract\-calculus models of stack inspection [21, 9]. and JIT compilation.

Suppose we have a call graph for a particular trusted li-
brary, and consider an arbitrary choice of semi-trusteecod

. . . Permissions and Stack Inspectiofode access rights are
to be loaded at runtime. Our main formal result states that, i P 9

there can be a sequence of calls starting from semi trustedepresentecj at runtime using objects of particular classes
q 9 hamedpermissions Access to each sensitive resource is

code and ending with a particular (dangerous) method in . : : o .
. . . associated with a particular permission. Permissions can
trusted code, then there is a corresponding path in the graphh . . .
i ) S ave a complex structure; for instance, an object of class
Hence, a query showing there is no such path implies no dy-_. - . ) . .
namically loaded code can reach the method in question FilelOPermissiondescribes access to files, using a combi-
Th y . sed as foll Section 2 que t.h nation of flags (read, write,...) and file path expressions.
CLR N F:japer IS organise fz_its OlIows. Sec If?n . rewe_wsl de When an assembly is loaded into the CLR, its access
and surveys some of its security mechanisms, inclu “rights are determined by its metadata and the current se-

ing run-time permissions. Section 3 introduces the main curity policy. The resultingtatic permissionsor S, are as-

lsi?ss Otf oiu ' T\r;alfyyts ui'g?ta ruHm?g (quxasmpga ':f’ldl‘ﬁfc sociated with all code from that assembly. These static per-
a typical detect, a S call graph. Sectio elnNes issions give an upper bound on the permissions that the

BIL-SEC. Section 5 formalises our_call graph anaIyS|s_ and code can actually use. Factors affecting the static permis-
states our correctness result. Section 6 surveys our imple-

X X ) . i include th bly’ t origi h as th
mentation for the full CLR. Section 7 describes queries andSIOnS Include the assembly's apparent origin (such as the

wperimental results on libraries. Section 9 ol with Internet, the intranet, or the local disc), any digital sign
experimental resulls o aries. >ectio closes atures, and metadata requests to be granted or denied par-
discussion of related works and some conclusions. An ap

ndix contain siliary definitions. An online versiorsh “ticular permissions. The security policy is configurable fo
pe contains auxiiary efinitions. An onfin€ versiorsha o, -, o R installation, the default being to grant most per-
sample code in €and detailed proofs [4].

missions to code written by the user, and only very few per-
missions to downloaded code.
2. Stack-Based Access Control (Review) During execution, thelynamic permissionsr D, de-
fault to being the least privileges of all callers on the ktac
The CLR and its Intermediate Languagehe CLR is a that is, the intersection of their static permissions. Tardu
memory-managed, typed, object-oriented platform [6]. An access to some sensitive resource associated with a particu
assemblys its unit of code deployment, typically a single lar permissionP, trusted code evaluatdemand P, to tell
file, containing metadata plus actual implementation code.whetherP is present in the dynamic permissions. This suc-
Metadata includes details of the class hierarchy, as well asceeds if the permission is in the static permissions of the
security-related information such as digital signatuses\a immediate caller and moreover in the static permissions of
idence of origin, and constraints on the security policy for each caller on the stack. In some harmless situations, such
that assembly. Implementation code is predominantly ex-as writing a temporary file, this default stack inspection is
pressed in an intermediate language (IL) obtained by com-too restrictive. To override the default, trusted code wval
piling from a range of programming languages; as usual, anatesassert P to add P to the dynamic permissions, pro-
advantage of targeting a tool at an intermediate language isvided thatP appears in the static permissions for this code.
that its analysis applies to software written in any one or a By assertingP, the trusted code takes responsibility for any
mixture of the source languages. More importantly, we can- demands foiP, until the completion of the current method.
not assume that untrusted assemblies comply with any ruleSuch privilege elevations are dangerous, and deserve care-
that is not checked at the IL level: some security concernsful review.
may be invisible in high-level languages, and only appearat  This brief tour of stack inspection omits many details,
the level of IL. including declarative security attributes and useful efin
The CLR allows the controlled interaction of a set of dy- ments of the security model—such as variants of demands,
namically loaded, partially trusted assemblies, thatesher known aslinkdemands and inheritancedemands,
sources such as the stack and heap, as well as access to fulthat check for a permission in the static permissions of a
trusted system libraries, all running within the same opera caller or a subclass, respectively, when code is loaded into



the system, instead of every time it is executed. Still, we protected string tempfile
are now in a position to discuss defects that occur in prac- protected void Cleanup(){

tice, and our tool for exploring them. ldarg 0
(1darg 0) 1dfid string File::tempfile

. " callvirt void File:: Delete(string)
3. Permission-Sensitive Call Graphs, }

By Example }

Access control in the CLR relies on an implicit, global //in another naive, trusted library
safety invariant; its correctness may be compromised by er-public class CFile : File {
rors scattered through a large body of code. In fact, during ~ Protected void Commit(){
the development of libraries for the CLR, numerous security
defects involve permissions, but these defects oftenrfal i
a few simple patterns. (This may be partly due to program-
mers confronting stack inspection for the first time.) More-
over, permission usage is largely data independent. Typi-

assert File Permission

Idarg 0

Idc.string “backupfile”

callvirt void Flile:: Backup(string)

cally, the permission objects are either constructed jast b i&arg 0
fore a demand or assert, or read from a constant static field callvirt void File::Cleanup()
for the class. 1

Altogether, this suggests that a permission-specific, }

|arge-scale analySiS of code can be useful in review- The three methods exposed E}]e guard access to the

ing and improving the usage of permissions across li- private Win32::Deletemethod by demandingilePermis-

braries. Our analysis consists of constructing and query-sion—directly in case oDeleteand Backup indirectly in

ing a call graph given trusted library code as input. Origina case ofCleanupvia the call toDelete

features of our call graphs include: (1) sensitivity to tlye d Judging correctly that callingile::Backupon “backup-

namic permissions available at each call, and (2) nodes corfjle” js harmless, whatever the calling context, the author

responding to unknown semi-trusted code, as well asof methodCFile::Commitasserts-ilePermissiorto prevent

nodes for the known input libraries. NeXt, we list some li- any Security exception_ By mistake, this amp”fication o th

brary code that includes a security defect of the sort our dynamic permissions carries over to the subsequent call of

analysis is aimed at, and show the corresponding call graphfile::Cleanup which is not harmless, since it deletes the
All code listings in this paper are in BIL-SEC, which fjle in the fieldtempfile

we define formally in Section 4. Its syntax is very simi-  The methodBadFile::DeleteAnyof the semi-trusted

lar to the standard IL stack-based assembly language; a miclass BadFile exploits this defect. Its static permissions
nor difference is that BIL-SEC has prlmltlve instructions f do not includeFilePermission but nonetheless it can in-

demand andassert whilst in IL these are method calls. herit from the public clas€File.

/l'in some hostile, semi-trusted code
An Example in BIL-SECWe have devised some simple public class BadFile : CFile {
classes to illustrate access control in the CLR and a typ-  Public void Delete Any(string s){
ical code defect. The clasBile and its subclas<CFile Il Assign s to tempfile field .
are trusted library code; their static permissions include (Idarg 0) (Idarg 1) stfld string File:tempfile

. o g . . - . Il Delete the file s
F_|IePer_m|SS|or,1wh|ch guards the private file-deletion prim- (darg 0) callvirt void C File::Commit()
itive Win32::Delete

}
/l'in a trusted library }
public class File { By inheriting from CFile it gains access to the pro-
public void Delete(string s){ tected membergempfile and Cleanup and by calling

demand File Permission

newobj Win32::.ctor()

ldarg 1

callvirt void Win32::Delete(string)

CFile::Commitit gains access t&ilePermissionand can

delete any file. (Th@rotectedmodifier is the same gwi-

vate except that derived classes still have access.) This

example shows an attack on protected members via inher-

public void Backup(string s){ itance, showing that security analyses need to be sensi-
demand File Permission tive to the class hierarchy. The same exploit would work
without inheritance iftempfile and Cleanup were pub-

} lic.



Figure 1: Call graph for example librarieB (= S, ¥ {FilePermission)

Call Graph for the ExampleOur goal is to identify anoma-  approximation, we can safely limit code review to the meth-

lous or defective control flows in libraries, and in partenul ~ ods on these paths.

to identify potential paths stretching from semi-trustede ) ] o .

to dangerous operations, such\&n32::Deletein our ex-  Outline of the AnalysisOur analysis is sensitive to dy-

ample. Given a collection of trusted library code, and know- Namic permissions and many details of the security model,

ing the permissions granted to semi-trusted code, our toolPUt is otherwise quite coarse. In the_ termmolqu of control

constructs a permission-sensitive call graph, which sum-flow z_ir_mlyses,thls amoun_ts to a particular choice of context

marises all control flows from arbitrary semi-trusted code S€nsitivity. Whereas, for instance, a standar@FA [12]

into the library code. would keep track of. frames on the stack, we eﬁectlvgly
For instance, Figure 1 shows the call graph correspond-keep track of a summary of the whole stack that syfflces

ing to the two example classéle and CFile. Let S, be to evaluate demands. (Of course, we would benefit from

the set of static permissions granted to semi-trusted code@"Y additional context-sensitivity in the call graph, asgo

We assumeFilePermission ¢ S,. Each node is a pair as the analysis terminates.) AI'_[ernative_Iy, our a_nalya'rs c
(M, D) whereM refers to a method implementation, such 2€ S€€n as abstracting a security-passing style implementa
asFile::Delete, and D is the set of dynamic permissions tion of stack inspection [24], where dynamic permissions
with which M is called. The distinguished metheet —, are systematically computed and p_assed as an extra param-
which appears paired with, as the root node, represents eter to every method, instead of being extracted lazily from
the unknown semi-trusted code. Each edge represents a podl€ Stack.
sible call from one method to another. For the purpose of our analysis, thbstract valueof a

The first three edges from the root node summariseuntime variable is a set of types, an upper bound on the
calls from semi-trusted code into tiéle library. These  types of all runtime values that may flow to that variable. It
calls are with dynamic permissiorfs.. There is no edge i§ insufficienjc simply to track the static types of variables
from (File::Delete S,) to Win32::Deletebecause the de- Since there is a profound dependency of control-flow on
mand forFilePermissioralways fails with dynamic permis- ~ data-flow induced by V|rt_ual and interface calls. We use gb—
sionsS,. The remaining edge from the root node representsStract values to track which types may flow to each call site.

calls from semi-trusted code to the mett©File::Commit Still, our analysis_ is a refinement of the type system for the
which immediately asserflePermission So all the edges ~ CLR, and sometimes falls back on type safety, for instance
from this node are to nodes with dynamic permissibns when loading from an array of boxed values.

S, U {FilePermission}. In particular, there is a path from We include the special symbolic class,in the domain
(CFile::Commit S,) to (File::Delete D), from which an of abstract values, to stand for all classes that may be de-
edge leads t®in32::Delete since the demand fdtilePer- fined in unknown semi-trusted code. We add edges to the
missionsucceeds againél. class hierarchy so that is a subtype of known trusted

The graph shows semi-trusted code cannot trigger Ca||sclasses, according to the rules of inheritance. In our exam-
to Win32::Deletewhen given access only fle, but can,  Ple,* is a subtype of both the (unsealed) public clagsies
if given access also t€File. Given the graph, we can andCFile, and hence represents an unknown class such as
easily write queries to detect such suspicious paths fromBadFile
semi-trusted code to critical methods. These paths may To construct the call graph, for every method reachable
or may not be harmful, but since the graph is an over- from semi-trusted code with some dynamic permissions, we



construct a distinct node. To each formal argument, methodM ::= c::sig

result, local variable, static variable, field, and entrytioa

stack that has a boxed type, we associate a variable whosg:

abstract value collects the dynamic types that may flow to it.
From the code of the program, we obtain constraints (for in-

stance inclusions) between these variables, which we solve

by an iterative method. During this iteration, the abstract
values of variables may increase, triggering generation of
further nodes with different dynamic permissions. Sinee th
abstract domains are finite, the iteration always term@ate

The remainder of the paper divides into formal and infor-
mal parts. Sections 4 and 5 formalise the ideas of this sec-
tion in terms of BIL-SEC. Sections 6 and 7 describe our im-
plementation for the CLR.

4. Modelling Stack-Based Access Control

Our formal model, BIL-SEC, derives from BIL [11], a
fragment of IL focusing on its main object-oriented fea-
tures. To obtain BIL-SEC, we add static and dynamic per-
missions, pluslemand andassert instructions, and omit

features—such as structures and pointers into the stack—

unrelated to stack inspection. BIL and BIL-SEC are still
Turing complete.

All code runs in the context of an execution environment
that defines the available classes and methods, their imple:

mentations, and additional data such as types and permis:

sions. We begin our formal model with finite sets of all de-
fined class, field, method and permission names. In BIL-
SEC, unlike IL, permissions are atomic constants.

Classes, Fields, Methods, Permissions:
I
c,d € Class

class name
System.Object € Class root of hierarchy
f € Field field name
¢ € Meth method name
P € Permission permission name
P(Permission) = PermissionSet permission set

S, D € PermissionSet
L

There are three kinds of data type: void, integer, and ref-

method reference

K = c::ksig constructor reference
:sig = Bel(Ay, ..., Ay)
wheresig = B l(Ay, ..., Ap)

c::ksig = void ¢z:.ctor(Ay, ..., A,)
whereksig = void .ctor(44,...,A,)

We can now specify aexecution environmeras given
by an inheritance relatiotnherits, plus three total func-
tions specifying the fields, methods, and static permission
of each class. We assume all method bodies are well-typed.
Appendix A details the evaluation rules of BIL-SEC and
our (standard) assumptions amerits. The extended ver-
sion of this paper also contains the typing rules.

Execution Environment:
(inherits,ﬁelds, methods, statics)

inherits C Class x Class class hierarchy
fields € Class — (Field —) Type) fields of a class

methods € Class — (Sig B Class x Body)
methods of a class
statics € Class — PermissionSet static permissions

The functionfields(c) returns a partial map from field
names to their types. The domain of the map consists of
the fields actually defined for the clags The function
methods(c) returns a partial map from signatures to
method implementations. The domain of the map consists
of the signatures actually defined for the clas#ts range
provides, for each defined methedsig, the superclasg
that implements the method and the method bbdye
make the implementation class explicit because it deter-
mines the static permissions attached to the method body
The functionstatics(c) gives the static permissions associ-
ated with class.

In BIL-SEC, like BIL, we specify method bodies using
a postfix applicative syntax, that closely corresponds¢o th
syntax of IL assembler. The following syntax is a subset of
BIL, apart from the new instructionsssert anddemand.
These operations are not present in IL as instructions, but

erence (for pointers to heap-allocated objects). Types aregxist in system libraries as native methods that access in-

the basis for the syntax of method and constructor signa-
tures, and references. For simplicity, each class haslgxact
one constructor, whose parameters are simply the initial va
ues of all of the fields of the class.

Types, Signatures and References:
1
A, B € Type ::=

void | int32 | class ¢

sig € Sig := B L(Aq,..., An)
ksig € Ksig ::= void .ctor(A, ..

1
type: void, integer,
or reference

method signature
o5 An)
constructor signature

ternal runtime data structures. Gdemand instruction is

a conditional with two branches, but in IL is a method call
whose failure triggers a security exception. An omitséck
branch, as in the example in Section 3, simply retwigl.

Applicative Expressions for Method Bodies:
I

i4 32 bit signed integer
a,b € Body ::= method body
Idc.i4 i} load integer
ab runa then runb
assert P a assertP then runa



demand P a else b demandP then runa, (methods callable from untrusted classég);tual (meth-

else runp ods overridable in untrusted classes), &hdthe static per-
ldarg j load method argumerit missions assigned to untrusted classes.

if j >0orselfifj =0
a starg j store result of; into Partially-Trusted Environments:

argumeng > 0 IS = (E, Trusted, Sy, Public, Virtual) |
ai --- a, newobj K create new object with Trusted C Class trusted classes

fieldsai, ..., an Untrusted = Class \ Trusted

ap a; -+ ap callvirt M call M on objectay with untrusted classes

argumentsiy, ..., an S, C PermissionSet ~ permissions for untrusted code

aldfid A c:f load field f of type A Methods = {c::sig | methods(c)(sig) = d, b}
froma of classe : all defined method references
abstfd B c:f §t0reb of typeB Into Public C Methods callable by untrusted code
L field f of a in classc | Virtual C Methods overridable by untrusted code

The typing rules and big-step imperative operational se- FOr €actr, d € Class such thad inherits ¢ and
mantics for BIL are easily adapted to accommodate stack¢::sig € Methods, we have:
inspection. Appendix A gives the detailed definitions. The (1) Trust decreases with inheritance:

new operational semantics takes paramefemnd D to d € Trusted = c € Trusted

track the static and dynamic permissions of the code be-(2) Public is invariant by inheritance:

ing evaluated. The new rules fdemand andassert cor- d::sig € Public < c::sig € Public

respond closely to the informal semantics in Section 2. (3) Virtual decreases with inheritance:
SupposelM is a method reference ard is a set of d::sig € Virtual = c::sig € Virtual

classes. LetM is reachable fron®” mean intuitively that For eache € Class andd € Untrusted
by creating a new object of classc C'in an empty store, ¢, thatmethods (c)(sig) = (d, b), we have:
and calling its method, there is an evaluation during which (4) statics(d) = S,
a virtual call resolves to the particular method implementa (5) M € Public for everycallvirt M occurring inb
tion M. Method reachability is formalised in Appendix A, (6) d::sig € Virtual
and is the subject of a theorem concerning the flow analy-
sis for BIL-SEC, presented next. Let E| 1yysted ANAE| 1514 DE Obtained fronk and€ by re-
stricting the domains oPublic, Virtual, inherits, fields,
methods, statics from Class to Trusted:
E| Trusted = (E\ Trusted Trusted, S*a
PUblw\ Trusted s Virtual\ Trusted)

A . .
E\ Trusted = (mherzts‘ Trusted s ﬁdds| Trusted»
mEthOds\ Trusted s statzcs| Trusted)

5. Modelling a Permission-Sensitive Analysis

This section describes a permission-sensitive analysis in
the formal setting of BIL-SEC; this formal analysis is con-
siderably simpler than the one descrlb_ed_ in Section 6 forWe require that both and £ 7,4 are valid execution
the full IL, yet captures many of the main ideas. We statea _ .

. . environments.

soundness result (Theorem 1): if a trusted node is unreacht I
able from any untrusted node in the flow graph, then in fact Abstraction of TvbesOur analvsis associates each bod
the corresponding trusted method is unreachable from any . yp Y : : y

with an abstract value, the set of possible dynamic types
untrusted code. . .

of its result. The analysis depends only §y.s¢cq, and
Environments with Two Levels of Trusfo represent code is independent of the untrusted classeg junderstood to
with different levels of trust, we partitioass in the exe- be known only after the analysis. To track unknown, un-
cution environmentinto trusted classes (libraries, lcogle  trusted classes during the analysis, we introduce a new ref-
that are available at analysis time) and untrusted claspes ( erence typeclass %, and include it in the set of abstract
plets, plug-ins that are unknown at analysis time). Givén th - types. In some circumstances, for instance when consider-
partition, we refine our definition of environments to sepa- ing arguments of #ublic method, the only safe assumption
rate trusted code and untrusted code. Our analysis will de-to be made about a symbolic value is that it is well-typed.

pend only on the trusted code. Hence, we introduce a type-safe abstracsiobt (4?) to de-

We model the outcome of evaluating the static secu- fine all the potential abstract types of a result, according t
rity policy and access modifiers (such@sblic, private, its type. As every class is inheritable in BIL-SE€ass
virtual, etc) on trusted libraries by three setBublic is presentinsub“(class c) for any trusted.



Abstract Types Type®: Constraint Generation for Method Bodies: b =%, t | C:

1 1 1 1
A? B € Type® ::= (Genldc) (Genldarg)

void | int32 | class x | classc¢ (¢ € Trusted)
L ]

ldc.i4 if =% {int32} | T ldargj =% a.j | T
Type-Safe Abstractionsub®(A4) C Type®:
I

sub®(void) = {void}

sub®(int32) = {int32}

sub®(class ¢) =

1 (Genstarg)
a=%1t,|Ca
astarg j =% {void} | C, A t, C a.j

{class d | d € Trusted A d inherits ¢} U {class x} (Gen Seq)
| ' oaspt|C b3
Constraints and their GeneratioNext, we define the syn- (ab) =%ty | Co ACy

tax of nodes, symbolic values, and constraints used in our

analysis. A trusted node of the graph is a paifM, D) (Genassert)

whereM is a method implementation addis aset of dy- b =3 praasics(ey £ | € @ = (cusig, D')
namic permissions with which it is reachable. There may be assert Pb=%t|C

multiple nodes for the same method but with different dy-
namic permissions. A symbolic valtieepresents the values  (Gendemand)

that flow as arguments and results to and from nodes. The apep =%t | C
syntax includes symbolic variablasreferences to an argu-
menta.i (.0 corresponds to the caller-object) or the result
a.result of a node, and sets of abstract tyﬁeﬂ, co ARY (Genldfld)

A constraint” on the graph is a conjunction built from a set a=%t, | Ca
constraint primitivet C ¢' and a special primitivé’CALL a1dfld A c:f =2 subb(A) | C
to represent virtual call resolution. We define the semantic h b “

demand P a;py, else afqise =%t | C

of constraints later in this section. (Genstfld)
Trusted Nodes, Symbolic Values, Constraints: a=pta|Ca b=%1t | Ch
Ia,ﬁ .= (M, D) trusted node abstfld Ac:f =% {void} | C, A Cy
t =X a.result | ai | {A},..., A%} symbolic value (Gennewobj)
c ::; con?:lrf;int (a;i =% t; | Ci)iel..n
CACY conjunction ai --- a, newobj c::ksig =% {classc} |C1 A---ANC,,
tV%fllLL(a toyt1y sty A) i/ri]fttjjli?:gll (Geneallvir =
. o , (a; =%t | Ci)'™"  Afresh 3= (M,D)
ap a1 - ap callvirt M =%

We generate constraints in an operational style: a deriva-
tion b =%, ¢t | C means that the expressiérat nodec, L
with current dynamic permission®’ returns a symbolic
valuet subject to the constrainés. Informally, ¢ represents
the set of types of all possible values returned byhen it
is executed iy with dynamic permission®’. The analysis
of demand instructions is sensitive to the current dynamic
permissionsD’, which because of pricsisserts may not

equal the dynamic permissioi¥ associated with the cur- , AR L .
rent noden particularcallvirt instruction is a function of the node

The constraints generated by the following rules are and the position of theallvirt within the method body.

predicates on the abstract values that may flow as methodience, if there are two derivations=5"*"”) ¢ | C and
arguments and results, and on which nodes are reachable :>(5i:s’g’D) t' | C', the two variables for a particular
We have stipulated when defining a well-formed execution callvirt are equal just ifD = D’.

environment that all method bodies are well-typed. Hence,

the rules below assume—and do not attempt to enforce—Constraint Satisfaction and Flows he table below rep-
that bodies are well-typed. resents the outcome of our analysis bflaw, a structure

M CoA---ANCp A VCALL(B,to,. .. tn,N)

The rule (Gencallvirt) introduces a fresh variablg,
to represent the result of each virtual call in a method
body. Consider a method bodymplemented irz, that is,
methods(c)(sig) = (c,b) for some implementation node
a = (c:sig, D). We assume that the identity of the fresh
variable introduced in the derivation =¢, ¢t | C for a



(N, U, M). The finite sets\ andi/ represent all reachable
nodes. The valuation functioM fixes an abstract value
M(t) C Type* for each symbolic value. The predicate
(N, U, M) = C means that the structu(d/, i/, M) satis-
fies the constraint’.

Control Flow Associated With & 7,.,,5t4: (N, U, M)
I
A control flowis a triple (A, U, M) where

o N ={ay,...,a,}is aset of trusted nodes.

o U {(*::=,D1),...,(*:—,Dy)} is a set of un-
trusted nodes, witlh; C S, fori = 1..m.

e M maps valueg to sets of abstract typest(t) C
Type®, with M({A%,... AL}) 2 {48, ... AL}

We let callee(c::sig, D) = (d::sig, statics(d) N D) where
(d,b) = methods(c)(sig).

We define a predicateV, i/, M) = C by induction onC":
N U, M) =T.

o (N, U,M) =t C t whenM(t) C M(t).
o (N U,M) E C AC" when(N,U,M) = C and
N U M) = C.

(N, U, M) |= VCALL((c::s1g, D), to, - - -y tpny A)
with sig B ((Ay,...,A,) when, for alld €
Trusted, we have:
1. If class d € M(to) with & = callee(d::sig, D
thena € NV and (N, U, M) = A;co.nti
.1 A a.result C \.
2. If class x € M(tp), then
(@) if d inherits ¢ with a = callee(d::sig, D),
thena € N and(NV,U, M) = N\;co. i €
a.i A a.result C .
(b) if c::sig € Virtual, then(x:—, DNS,) e U
and(\,U, M) [= sub*(B) C \.
A correct flowis a flow (N, U, M) such that:
1. (x:—,8,) € U.
2. If xx==,D) € Y andD C D'
(x::—,D") € U.

. For all (x::—,D) € U andec::sig € Public with
sig = B U(A1,...,Ap)), leta = callee(c::sig, D)
and A, = class ¢. We haven € A and, fori € 0..n,
(N, U, M) |= sub®(A;) C ai

. Foralla = (c::s19, D) € N with methods(c)(sig) =
(¢,b) andb =% t | C, we have(N,U, M) E
t C a.result A C.

)
C

C S, then

In the satisfaction rule foV CALL, the setM (t,) ranges
over the (abstract) dynamic types for the target object-Con
dition 1 deals with trusted typesl ranges over trusted

classes andallee yields the nodea corresponding to their
implementation of the method. These nodes must be anal-
ysed and meet constraints generated for the arguments and
results of the call. Condition 2 deals with untrusted types,
if any. Untrusted classes can inherit implementations from
trusted classed, and the corresponding nodasmust be
analysed, with the same constraints as above (Condition 2a)
Besides, if the method is virtual, untrusted classes can als
provide their own implementations; the nagge —, DNS,)

must be analysed, and a constraint reflects that these imple-
mentations can return any type-safe value (Condition 2b).

Finally, we define a flow to beorrectto mean that all ab-
stract untrusted code (Points 1 and 2) and all public meth-
ods which may be called with any type-safe value (Point 3)
are part of the analysis, and that all constraints genefated
the code of each node K are satisfied (Point 4).

Intuitively, a correct flow provides an upper bound on all
possible control paths through a trusted library composed
with any untrusted code. The following theorem formalises
this intuition. An extended version of the paper contaires th
proof [4].

Theorem 1 (Runtime Reachability) Let £ be a partially-
trusted environment. Let\,i, M) be a correct flow
for & rrusted- If M € Methods| rysieq 1S reachable from
Untrusted, then(M, D) € N for someD.

In order to benefit from the theorem, we can effectively
compute the least correct control flow by fixpoint iteration.
The existence and computability of a fixpoint follows from
standard results of constraint solving stating that a é)nit
set of monotonic constraints defined over a finite lattice ad-
mits a least solution which can be computed by fixpoint it-
eration (see for instance [18]). For a giv&Ry.ys¢cq, WE USE
a lattice of control flows obtained as the product of the lat-
tice of sets of trusted nodes, the lattice of sets of untduste
nodes and the lattice of valuation functions ordered point-
wise.

Example Flows.To illustrate our definitions and the theo-
rem, we provide correct flows for the example librafiés
and CFile given in Section 3. We assume the following:
statics(File) = statics(CFile) = statics(WIin32 = Sy;
Win32::DeleteWin32::.ctor¢ Public; {FilePermission N

S, = @; and that no method df'ile, C File, Win32 is in
Virtual. We letD = S, U ({FilePermissior} N S;).

Analysis for Trusted = {File}
I
The minimal correct flow( N7, U, M) has four nodes
(File::Delete, Sy), (File::Backup, Sy),
(File::Cleanup, Sy)
{(*::_a S*)}

M




Taking for instancex = (Flile::Delete, S,), we have:

Mi(a.0) = {File,classx}
Mi(a.l) = {string}
Mi(a.result) = {void}

Analysis for Trusted = {File, CFile}
I'I'he minimal correct flow N>, Uz, M>) has ten nodes

(CFile::Commit, S,), (File::Delete, D),
No = N1UL (File::Backup, D), (File::Cleanup, D),

(Win32::.ctor, D), (Win32::Delete, D)
s =1 = {(x:-,5.)

a single symbolic classy, to simulate all untrusted sub-
classes. In the implementation, we consider access modi-
fiers andinheritancedemands, and use a distinct sym-
bolic class to simulate the subclasses of every trusted.clas
We do not further instantiate these unknown classes; since
unknown implementations may either inherit or override a
given method, we consider both cases during method reso-
lution as we propagate virtual calls.

To begin with, we create an initial nodéy::—,.S,) in
BIL-SEC, and we simulate all the possible calls to meth-
ods directly callable by unknown code. We take into ac-
count the semantics of the CLR, including scoping rules,
access modifiers, inheritance rules, and declarative isgcur
actions such ainkdemand andinheritancedemand.

This flow correspondsto Figure 1. As a corollary of The- Unknown code may only operate on objects accessible at
orem 1, we obtain that there is no path from untrusted coderuntime, for instance using a public constructor, obtamed

to Win32::Deleteusing onlyFile, but that there is poten-
tially such a path if additionallZFile is present.

6. Implementation

a parameter in a callback, or reading a protected field in a
superclass. Accordingly, a variable represents all vatues
rently available to unknown code, and is used to simulate its
operations (including its virtual calls).

Representing Permissions and their OperatioRsintime

We survey the design and implementation of our tool. permissions have a complex structure, so we rely on two

This section describes the refinement of the analysis fromdifferent approximations, with different trade-offs bewn
BIL-SEC to the CLR. Section 7 shows how to apply the precision and complexity:

analysis to identify typical security defects and discasse
experimental results.

Our implementation is written in Objective Caml. It re-
lies on the AbstractlL toolkit to read and manipulate typed
IL assemblies [23]. It has a simple command-line interface
for interactive queries, which can be evaluated against pre
computed call graphs for large libraries. Including vasiou
parsers for configuration files and permissions, the source
code has 16Klocs. To the best of our knowledge, this is the
first global control flow analysis for the CLR that deals with
virtual calls and inheritance.

The CLR is considerably more complex than BIL-SEC.
The main practical difficulties for generating the grapimste
from the size of the standard libraries (providing thousand
of classes to unknown code) and the need to give a precise
account of the numerous features of the CLR related to se-
curity. As a side benefit, we found several ambiguities and
defects in the process of reflecting the semantics of these
features.

Known and Unknown CodéStarting from the target input
libraries, we recursively load any assembly mentioned in a
type reference. Hence, as in BIL-SEC, the known classes
and interfaces do not statically depend on unknown code.
For each known class, we then simulate the rules of in-
heritance to complete the class hierarchy. This completion
is necessary to accurately simulate the resolution of afirtu
calls whenever dynamic types declared in unknown code
may flow to call sites in known code. In BIL-SEC, we use

A fine-grain representation reflects most of the details
available in security metadata, including constant pa-
rameters, and is also locally inferred in code using an
auxiliary dataflow analysis. (This dataflow is simple
in practice: permission values used in asserts and de-
mands are typically newly-constructed objects or ob-
jects read from constant fields; the remaining cases are
handled in an ad hoc manner.)

The domain for these permissions is a nested prod-
uct of lattices for independent boolean flags, for multi-
level permissions, and for permissions with string pa-
rameters. This domain is built from a structural de-
scription of the twenty or so permission classes appear-
ing in standard libraries. We lose precision for string
parameters, using for instance a single abstract value
for representing “read access for some specific (un-
known) file”.

A potentially coarser representation is used for the per-
mission contextsdD in the global analysis. To obtain
maximal precision, the analysis can be carried out us-
ing the fine-grained representation. However, to trade
precision for efficiency, we have devised flexible ab-
stractions. The coarsest one computes over a domain
of two valuesUntrustedCodePermissiorasd AllPer-
missions Since most security queries involve one or
two permission classes, we can also adapt this repre-
sentation to precisely keep track of these target per-
missions, and abstract away all other permissions.



Even the computation of static permissions requires nally, the analysis is useful for security only when unknown
some care to reflect the semantics of the CLR; it in- code has few permissions, so we assume that unknown code
volves several parsers to extract the security policy never gains privileges to emit new IL code or bypass type
from metadata and configuration files. During the anal- checking.
ysis, we intercept calls to permission libraries, such as
System.Security.CodeAccessPermission::Demarietect
declarative security attributes, and transform them itto a
stract security actions. (In BIL-SEC, these correspond to
the synthetic instructionassert anddemand.) In addi-
tion, we support additional security actions suctRasert-
Assert RevertAl] Deny, andPermitOnly

7. From the Call Graph to Security Defects

Permission-sensitive call graphs provide non-triviag-us
ful information to aid review of the security of librariesrf
each potential call stack, we have a corresponding path in
the graph. Still, interpreting the raw results of the anialis
Constraint Generation and Resolutio®ur analysis inter-  delicate, and often requires human judgement. (Indeed, per
leaves the generation and resolution of constraints, antil Mission classes define a data structure, rather than a high-
fixpoint is reached. level access control policy, which is usually implicit [,)1

Intra-method IL constraint generation is essentially are- ~ We run queries on the call graph to extract a global view
finement of the type checking algorithm, with type infer- 0f the usage of permissions for access control. The queries
ence for the (symbolic) stack. Each block of code is exe- are motivated by typical error patterns observed in the de-
cuted at most once for each reachable valu®oits ef-  velopment of libraries for the CLR. (See also [4] for a col-
fective dynamic permissions, and yields a set of conssaint lection of small, synthetic examples irf Ghat illustrate
The analysis also builds the local control flow between thesethese patterns.) In contrast with other works [14], we do
blocks, and connects them using additional constraints onnot rely on a formal logic for expressing classes of queries.
their entry- and exit-stacks. The effect of security actien . , )
immediately simulated during code analysis: the outcome R€achability QueriesThe call graph relates all method im-
of a demand is determined by comparing the demanded Ioerplementaﬂons that may be called at runtime. In particular,
missions to the dynamic permissioBsof the method: the for _each path in the graph, we can.collect the sequence of se-
rest of the block is analysed only if this comparison poten- CUrity actions demand, assert, linkdemand,...) per-
tially succeeds. In contrast with BIL-SEC, however, an as- 1ormed along this path. For any identified, privileged oper-
sert does not immediately affefl—the asserted permis- ation Iocateq in the code_ (such as a native call to a system
sion is taken into account to computefor any call within I|br<'_ary) that is reachable in the graph, the tool reportsla co
the scope of the assert. Iectlor_1 (_)f short, “exemplary” paths from unknown code to

Our constraints consist of inclusions, equalities, prim- the privileged operation. Each such path represents a (pos-

itive operations such as boxing and run-time type checks,?Ibly '”“F"te) ;equw.alelnce C|<’;l1$S .Of. .c?lde [:iaths at rrl]mrblvme,
and dynamic constraints for virtual calls. Constraint res- (;r a notion o lequ_lva efncet atinitially re a(tjesh pat S_blt
olution may update (or merge) variables. In addition, the same interleaving of security actions, and that can-be re

dynamic constraints may trigger the analysis of addi- fined to investigate unexpected Ca,se_s' ,

tional blocks of code, leading to the generation of addi- FOr €xample, we may report minimal paths with no se-
tional constraints. Our constraint solver is rather simple Curty actions from unknown code to system calls analo-
and keeps selecting and propagating unsatisfied con9OUs toWin32::Deletein th(_e (_example of Section 3. M_ore
straints, until a fixpoint is reached. The runtime and Proadly,we may reportaminimal path for each potential se-
memory requirements for analysing standard libraries re-dueénce of security actions leading to this system call. fror i
quired careful performance optimisations on internal data Stance, forfile deletion, we have paths with a single demand
structures. The resulting graph provides a sound approxi-ON SOmeFilelOPermissionwith a single demand oisolat-
mation of reachability and dynamic permissions for known €dStoragePermissiofollowed by an assert ofilelOPer-
code—since nodes are created on demand, only method imMission and so on. In practice, even for large libraries, we

plementations that may be reachable from unknown codePbserve a small number of different cases, due to the rela-
are represented, at their dynamic permission contexts. tively small number of dynamic security actions, so in many
cases all identified classes can be reviewed by hand.

Limitations. Pragmatically, to scale up to large libraries, we This information is useful when adding new trusted
make coarse approximations for features that seldom oc-code. By comparing the old graph with the new one,
cur. Although we cover all instructions, we do not deal with we can observe methods that have become reachable.
certain primitive features, such as reflection and some op-In our example, the addition of the naive, trusted Ii-
erations on delegates. We assume that calls to native codérary causes the appearance of native methidid82::.ctor

and unverifiable IL code preserve runtime type-safety. Fi- and Win32::Delete It indicates that a security invari-
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ant may have been broken. Indeed, these two methods ar€hecking Uniformity: Towards Policy Extractiofor a
reachable because of thesert in CFile::Commit given protected operation, security checks present on con-
trol paths should implement the same (implicit) access con-
trol discipline. Conversely, if all paths except those tigh
pa new library demand a particular permission, this one path
should be flagged as a risk. We implemented a simple model
extraction and refinement tool, which enables us to detect
sensitive operations, and to systematically assess egery s
curity action. Although our current model is not expressive

Finding a Purpose to Security ActionSince they affect
functionality and performance, as well as security, each dy
namic action on permissions should have a clear goal, whic
we attempt to infer from the call graph. For every reachable
assert P, we check that there is a node where #isgert
affects the dynamic permissions (that is, with dynamic per-

missionsD and possiblyP ¢ D), and explore paths start- o . :
P v ¢ D) P P enough to capture the usage of all permissions, it suffices

ing from the assert with P € D to identify at least ‘ rict th f revi ¢ | | pat
one sensitive operation protected by the assert, and othert0 festrict the Scope of TEVIeWs 1o compiex or unusual pat-

wise flag theassert for review. (In our example, we check terns

that theassert in CFile::Commitenables thelemand in Experimental Results for the CLR librarie¥Ve tried our
File::Delete) We also check that eveiyemand is falli- tool against the standard libraries of the CLR. As an ex-
ble, and try to find at least one protected operation. ample in the .NET Framework v1.1, the construction of

Link-demands, and Other Optimisation&.common per- the P?” graph fOSystem:Windqws.Forms.tﬂi/.olvetc; seven
formance optimisation is to substitutinkdemands for ~ additional assemblies, including the core libraniescor-
demands, in order to avoid the run-time cost of stack I|b.d!l an_dSystem.dlIfor a total of 4,283 trust_ed types (in-
inspection. Since only the immediate caller’s permissions €luding interfaces) and 10,080 methods directly callable
are now checked, this transformation is potentially unsafe Tom unknown code loaded with theternet set of per-
Accordingly, for eacHinkdemand in the code, our tool ~ Missions. (This set contains the few permissions assigned
verifies whether the corresponding dynamic permissionsPY default to downloaded applets.) The completion gener-
would suffice to pass a@lemand for the same permis- ates 987 additional types for unknown code. On a machine
sion, and otherwise reports additional paths from unknown With @ Pentium M 1.6 GHz processor, the construction takes
code to the protected method. (In our running example,40 minutes and 850MB, and involves 2,161,660 constraints
one may substitute inkdemand for the demand in between 338,341 variables. The code uses 25 permission
File::Delete This creates a dangerous path from unknown classes. It reaches 742 demands and 403 asserts. The result-
code toWin32::Deletevia File::Cleanup which is reported N9 graph has 43,817 trusted nodes and 410,759 edges.
by this query.) We list a few kinds of defects encountered as we
Similarly, we can use the call graph to determine whether tested our tool on libraries: Two calls to the same sensi-

ordinary, interprocedural code transformations such de co  tivé method in different libraries are guarded by demands
inlining or tail-call eliminations are correct. with different permission parameters. The scope of an as-

N ) . ) sert or a demand is too large; for example, we found
Additional Flows. Stack inspection automatically keeps cgnditionals interleaved between a Demand and its sen-
track of nested calls, but ignores more complex con- gjjive operation, leading to unnecessary (and undocu-
trol flows (callbacks, exceptions), and any data flows. nented) security exceptions. In a few cases, such as
(See [1] for a discussion of th'? issue, including problem- gystem 10.Directory::GetCurrentDirectarshe demanded
atic programming examples in*Q Once we have identi-  permission depends on the result of a sensitive call;
fied parts of the graph protected by permissions, we canyhese cases need some careful review, to check (for in-
use queries that check for local, common risks with these siance) that all control flows that leak the result of the call
flows, such as the escape of private mutable data. are effectively guarded. More commonly, we found dis-

As an example, we implemented a query that reports (po-crepancies between the documentation and the potential de-
tential) callbacks from libraries to unknown code. Althbug  1,ands in nested calls. Operations on permissions in these

we observe alarge proportion of virtual calls in librarieat  jipraries have been carefully reviewed by hand, at a consid-
might call back to unknown code (from 5% to 10%), only graple cost, so we expect to find more defects as we apply
a few of them occur in code that executes with elevated dy-5,r tool to new libraries.

namic permission, and most of those call the same method

references, so their manual review turns out to be feasible8 Related Work

and interesting. These callbacks may still be safe, sinee dy

namic permissions are lowered during the call, but there is a There is by now a large literature on stack inspection,
risk if the caller neglects to validate the result, or anyreba so for the sake of brevity this section only discusses re-
mutable data. See [1] for examples and discussion of this er5¢aq work on static analyses of stack inspection, ratten th
ror pattern. research primarily focused on its design and implementa-
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tion [24], its limitations and formal semantics [9, 7], or on static representations of unknown, potentially hostildeco
alternative mechanisms [17, 8, 1]. is new, as is the catalogue of queries in Section 7 to help
Pottier, Skalka, and Smith [21] develop a type system code reviews for security. Our main theoretical result,G-he
for a \-calculus with stack inspection that statically ensures rem 1, shows our flow analysis can prove the unreachability
that, in any well-typed term, no demand fails. of a particular sensitive method in the presence of any arbi-
Banerjee and Naumann [2] give an analysis for a Java-trary hostile code; we are aware of no such prior results for
like language equipped with stack inspection to determine formal models of stack inspection, although there are some
whether two classes with the same interface are represenanalogous results for unrelated formalisms such as the am-
tation independent, that is, if a difference in their prévat  bient calculus [19] and, more recently, a model of firewalls
data representations is detectable by any other componenfor Javacard applets [13].
Nitta, Takata, and Seki [20] analyse the complexity of de-  We are working to improve the performance of our tool,
ciding whether a whole program satisfies a security prop- as well as to develop our catalogue of queries. It would be
erty. interesting (and hard) to develop an analysis that is more
Jensen, Le Métayer, and Thorn [14] introduce a graph sensitive to other parts of the context, such as allocation
model for programs with stack inspection. They can ver- points for objects, or that is more precise for some aspects
ify whether all reachable stacks satisfy a formula exprésse Of IL, such as exception handling and concurrency. In any
in linear temporal logic. Based on the same model, Bessoncase, we believe our tool can be very helpful for program-
et al.[5] infer a weakest precondition that ensures that a se-mers, and especially library writers concerned with the se-
curity violation cannot occur in a library abstracted by its curity implications of their code.
call graph. However, they do not explain how to obtain a
graph that safely approximates unknown code. AcknowledgementsAndrew Kennedy and Don Syme
Koved, Pistoia, and Kershenbaum [15] provide an al- helped us to model the semantics of the CLR. Toshiyuki
gorithm and an implementation to analyse permissions for Maeda implemented some of the security queries on call
Java. Their analysis is context-sensitive, flow-sensaivé ~ 9raphs. Jean-Jacques Lévy provided comments on a draft.
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Subtype Relation: A <: B

I
(Sub Refl) (Sub Class)
c inherits ¢’

A<:A classc <:classc
L

Axioms for inherits

I
¢ inherits ¢
¢ inherits ¢’ A
c' inherits ¢ = c inherits ¢
¢ inherits ¢’ A ¢ inherits ¢ = ¢ = ¢ (Hi Antisymm)
¢ inherits System.Object (Hi Root)
c inherits d A f € dom(fields(d)) = (Hi fields)
f € dom(fields(c)) A
fields(c) (f) = fields (d)()
c inherits d = (Hi methods)
dom(methods(d)) C dom(methods(c))

(Hi Refl)
(Hi Trans)

methods(c)(sig) = (d,b) = (Hi Meth Impl)
d inherits ¢ A methods(d)(sig) = (d,b)

Evaluating Method BodiesA resultis an outcome of eval-
uating an expression. A result can be void, an integer, or an
object reference, a pointer into the heap.

References, Results:
I 1

D, q heap reference
u,v € Result ::= result

0 void

i4 integer

object reference

A store consists of a stack plus a heaph. A heapis
a finite map from references to boxed objects, which takes
the forme[f; — u; €'-"], wherec is the class of the ob-
ject, f1, ..., fn are its field names, and,, ..., u, are the
contents of the fields. Astack consists of a sequence of
frames, each of which represents a method invocation. A
frame.args(uo, - . ., u,) CONSists oy, a reference to self,
plus the argumentsy, ..., u,. (There are no local vari-
ables, but note that arguments are mutable.)

Memory Model:
I

0 = c[fi = u; €]
h:=p; = 0; €l..n

boxed object
heap

fr = .args(uo,...,u,)  frame: vector of arguments
su=fry--fr, stack (grows left to right)
o= (h,s) store

Our operational semantics appeals to the following func-
tions for accessing and mutating the store, in particuber, t



heap component. (In future work, we intend to include in
BIL-SEC the stack pointers of BIL, in which case these

evaluates eithet, . Or ayqs, depending on whethe? is
one of the dynamic permissions. The expresaigstert Pa

functions would need to access and mutate the stack as welintersects{ P} with the static permissions, adds the out-

as the heap.)
Auxiliary Partial Functions for Accessing the Heap:

I 1
dynClass(o,p)  lookup dynamic class qf in stores

lookup (o, p.f) lookup fieldp. f in storec
update(o,p.f,v") update store field atp. f with resulty’

if h =ps c[fi = u; €7 b andj € 1.n
dynClass((h,s),p) = ¢
lookup((h,s),p-f;) = u;
update((h,s),p.f;,v") =
((pr clfj =0, fi s ug €=U B )

As in Fournet and Gordon'’s formulation of stack inspec-

tion [9], evaluation of an expression depends on two per-

mission sets, the static permissigfisand the dynamic per-
missionsD, with D C S. The static permissions are those

come to the dynamic permissions, and evaluates

Evaluation Rules for Arguments:

T
(Evalldarg)

o = (h, s.args(ug,...,u,)) j€0.n

ot ldargj~7 uj-o

(Evalstarg)

oka~3 u’; - (h, s.args(ug, ..., Uuj, -, un)) JjEO.M
o+ astarg j ~7, 0 (h, s.args(ug, .. UGy Up))

The expressiohdarg j returns argumentof the current
stack frame. The expressiantargi evaluates, stores the
result in argumentin the current stack frame, then returns
void.

associated with the current method, and the dynamic per-gyaluation Rules for Objects:

missions are those effectively available. We formalisd-eva
uation by a judgement of the following forfn:

Evaluation Judgement:

I

ok b~3 v-0' giveno and dynamic permissions,
bodyb with static permission§
returnsv, leavingo’

Evaluation Rules for Control Flow:
I 1
(Eval Seq)

s
okFa~p

Evalld
( c) w- o'

i S "
o Fb~pv-o

.. s ..
otldcidif ~7 if -0 al—abv%v-cf"

(Evaldemand)
U"G/PED’\/)%U‘UI

o+ demand P a;p. else apqaise ~3 v - 0

(Eval assert)

ok a"”%u({P}mS) v-o'

Ul—assertPa«»%v-a'

The expressioidc.i4 i/ evaluates to the integef. The
expressionu b evaluates: to a result, expected to be void.

The result of the whole expression is then the result of eval-

uatingb. The expressiomlemand P atpy.e €lse afqrse

1 Incontrast with BIL and our implementation, our model B3EC cur-
rently does not contain operations for parameters passeefégnce
to an entry on the stack (parameter keywardsandref in Ct), so we
don’'t need to mutate the staghn depth during evaluation. Hence, we
could simplify the evaluation judgement by passing onlytteap and
the top frameh, fr) instead of the heap plus the stack= (h, s).
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I 1
(Eval newobj)

S i€l..n
(O'i F Q; ~'p U 'Ui+1)

Oni1 = (h,s) fields(c) = f; — A; €L
p ¢ dom(h) B =h,prs c[fi > v; €]

an, newobj c::ksig ~3, p- (h',s)

0'1"&1

(Eval callvirt)

S i€0..n
(O'i F a; ~p Vg - O'i+1)

One1 = (h,s) ¢ = dynClass(opt1,v0)
methods(c')(sig) = d,b Sq = statics(d)
(h, s.args(vg,vy,...,v,)) F b"”f)dmsd v' - (B8 fr')

an callvirt c::sig ~3 v' - (h',s")

ao F g ay ---
(Evalldfid)
oFa~3p-o
o Faldfld A c::f ~%, lookup (o', p.f) - o'

(Evalstfld)

ocba~%p-o’ o Fb~Pu-o
ot abstfld Ac:f ~3 0-update(c”,p.f,v)
L

The expressiom; --- a, newobj K, whereK is the
constructor for a class, heap allocates an object whose
fields contain the results of evaluating, ..., a,, and re-
turns the new reference.

The expressionga; - - - a, callvirt M, whereM refers
to BY(A4,...,Ay)inclassce, evaluates to a reference to
a boxed object of class (expected to inherit froma), re-
trieves the implementation superclassind method body
for signatureB ¢(A,, ..., A,) in dynamic clasg’, and re-
turns the result of evaluating this method body in a new



stack frame whose argument vector consists of the refer-
ence to the boxed object (the self pointer) together with the
results ofay, ..., a,. The new invocation runs with static
permissions equal tetatics(d) whered is the implementa-
tion superclass, and with the current dynamic permissions
adjusted by intersecting witktatics(d). The result of this
evaluation is the stor@/, s’ fr'), wherefr' is the final state

of the new stack frame. Once evaluation of the method is
complete, the stack is popped, to ledwé, s') as the final
store. The expressianldfld A ¢:f evaluates: to an ob-
ject reference, then returns fiefdof this object. The ex-
pressioru bstfld A c:: f evaluates to a reference to an ob-
ject, updates its field with the result of evaluating, and
returns void.

Reachability. For a given execution environment, we define
a notion of dynamic method reachability. Our main result
concerns unreachability of sensitive methods.

Reachability
I

1
To every evaluation - b ~7 v - o', we associate the
(unique) derivation tree obtained from the evaluationsule
To each instance in the tree of the rule:

(Eval callvirt)

S i€0..n
(O'i F ; ~p Ui * O'i—i-l)

Ont1 = (h,s) ¢ = dynClass(c,41,v0)
methods(c')(sig) = d,b Sq = statics(d)

(h, s.args(vg,vi,...,vn)) F b"”%dmsd v (W, s fr')
oo Fagar - ay callvirt csig ~3 v - (B, 8)

we associate the labéll = d::sig. The evaluationr +
b ~% v - o' reachesM whenM is a label in its deriva-
tion tree.

M isreachablefrom C' C Class when an evaluation

newobj void c::.ctor()
callvirt void c::[()

!
0

¢
nn
<

(e,€) F

reaches M for some v, ¢', and ¢ € (C with
methods(c)(void [()) = ¢, b andstatics(c) = S.

By labelling withd:: sig, we mark the method implemen-
tations whose bodies are actually evaluated. A method im-
plementation is reachable frodl if there exists a body
in C that directly or indirectly evaluates this implementa-
tion. The intent is to characterise the code that an attacker
could trigger.

We refer to the long version of this paper for the adapta-
tion of the typing rules and type-safety theorem of [11].
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