
Phrase-Based Dependency Evaluation of a Japanese Parser

Hisami Suzuki

Microsoft Research
One Microsoft Way, Redmond WA 98052 USA

hisamis@microsoft.com

Abstract
Extraction of predicate-argument structure is an important task that requires evaluation for many applications, yet annotated resources
of predicate-argument structure are currently scarce, especially for languages other than English. This paper presents an evaluation of a
Japanese parser based on dependency relations as proposed by Lin (1995, 1998), but using phrase dependency instead of word
dependency. Phrase-based dependency analysis has been the preferred form of Japanese syntactic analysis, yet the use of annotated
resources in this format has so far been limited to training and evaluation of dependency analyzers. We will show that (1) evaluation
based on phrase-dependency is particularly well-suited for Japanese, even for an evaluation of phrase-structure grammar, and that (2)
in spite of shortcomings, the proposed evaluation method has the advantage of utilizing currently available surface-based annotations
in a way that is relevant to predicate-argument structure.

Introduction
Predicate-argument structure is a linguistically significant
structure that could potentially benefit many linguistically
motivated applications. Therefore, evaluating the
predicate-argument structure as an output of a system is an
important task, both for measuring system-internal
improvements over time, and for conducting a cross-
system evaluation. However, gold standard annotation for
predicate-argument structure is difficult to come by,
especially for non-European languages. In this paper, we
present a method of evaluation that expands on the idea of
dependency-based evaluation proposed by Lin (1995,
1998); but instead of using word dependency as Lin did,
we use phrase dependency. We will show that phrase-
based dependency evaluation works particularly well in
Japanese even for an evaluation of a phrase-structure
grammar, and that it has the advantage of utilizing
currently available surface-based annotations in a way that
is directly relevant to predicate-argument structure.

Dependency-Based Evaluation
Word-based dependency
Lin (1995) proposes a dependency-based evaluation
metric for English parsers, which measures the
dependency between two words in a sentence. For
example, for the sentence "I saw a bird with a telescope",
the following word::headword pairs are extracted for the
correct analysis (1a) and for an analysis with an
attachment error (1b), that is, the prepositional phrase with
a telescope is attached wrongly to bird:1

(1a) (I :: saw) (saw :: *) (a :: bird) (bird :: saw) (with ::
saw) (a :: telescope) (telescope :: with)

(1b) (I :: saw) (saw :: *) (a :: bird) (bird :: saw) (with ::
bird) (a :: telescope) (telescope :: with)

Precision and recall can be computed based on the correct
dependency pairs and the pairs produced by a given
system. In the case above, both precision and recall are

1 * means that the word on the left-hand side is the sentential
head.

6/7 ≈ 85.7%. 2 Among the desirable properties of
dependency-based evaluation that Lin (1995) describes,
the most relevant for the identification of predicate-
argument structure is that the dependency-based
evaluation reflects the appropriateness of a parse at the
predicate-argument structure level more truthfully.
Consider the same example as in (1) in the evaluation
framework based on phrase boundary. (2a) is the correct
phrase bracketing, while (2b) is the bracketing for the
analysis with the same PP-attachment error:

(2a) [I [saw [a [bird]] [with [a [telescope]]]]]

(2b) [I [saw [a [bird [with [a [telescope]]]]]]]

The accuracy of this analysis (both recall and precision)
according to the bracketing-based metric is 5/7 ≈ 71.4%. It
is lower than the accuracy figure computed by the
dependency-based metric, because the attachment mistake,
which counts as a single mistake in a predicate-argument
structure, is counted twice. The problem of counting an
attachment mistake multiple times only becomes worse as
there are more modifiers to the word to which the
prepositional phrase is wrongly attached. 3 This is the
major reason why word-dependency-based metric reflects
semantically meaningful dependencies more faithfully
than the metric based on constituent bracketing.

Phrase-based dependency
However, dependency-based annotation based on words
cannot be easily adopted for evaluating parsers for
languages like Japanese, because there is an issue of word
segmentation: what counts as a word varies significantly
depending upon the specification of an annotation and the
lexicon of a system. Therefore, we have implemented an
evaluation method based on phrase dependency rather
than word dependency. Here, the notion of phrase
corresponds to the traditional notion of bunsetsu in
Japanese, which is defined as one content word (or n-

2 Precision and recall will be the same as long as there is no
ambiguity in tokenization.
3 The bracketing given in (2) deviates from the Penn Treebank
bracketing convention in that the bracketing is indicated within
an NP; however, the problem of counting an attachment error
multiple times still holds, albeit to a smaller degree, with the
Penn Treebank annotation as well.

content words in the case of compounds with n-
components) plus any number of function words
(including postpositions, auxiliaries and affixes). A
bunsetsu has the property of being a prosodic unit, in that
each bunsetsu can have only up to one accent. The
existence of this prosodic property greatly contributes to
having consistent identification of bunsetsu as a unit inter-
subjectively and across different computational systems,
as we will see below.

Given the definition of bunsetsu above,4 a sentence can
be segmented into a sequence of non-overlapping
bunsetsu. (3) below presents an equivalent English phrase
dependency for the same sentence used in (1): (3a) is for
the correct analysis, and (3b) for a system output with a
PP-attachment error, with parentheses indicating phrases:

(3a) (I :: saw) (saw :: *) (a bird :: saw) (with a
telescope :: saw)

(3b) (I :: saw) (saw :: *) (a bird :: saw) (with a
telescope :: bird)

Using phrase-based dependency for parser evaluation has
a number of advantages, especially for evaluating
Japanese. Most importantly, it is independent of phrase-
internal word- or morpheme-breaking specification, so an
annotation can be used for evaluating systems with
different underlying grammatical and parsing theories.
Another advantage is that phrase-based dependency
reflects semantic dependency more directly than word
dependency, as it exclusively looks at relationships
between content words. For example, a local dependency
such as a::bird is not evaluated in (3), so a mistake in a
semantically meaningful dependency counts more
severely in phrase-based dependency than in word-based
dependency. The accuracy of the same system output in
the above example in word-based metric is 85.7%, while it
is 75% (that is, 3/4) in the phrase-based metric in (3).

Needless to say, phrase-based dependency evaluation
does not evaluate all dependencies relevant to predicate-
argument structure: for example, the proposed method
does not take into account the cases where there is more
than one predicate or argument within a phrase as in the
case of complex predicates, which is quite common in
Japanese. The example below is a case in point: the phrase
加入させよ kanyuu-sase-yo 'join-CAUS-IMPR' contains
two predicates, 加入 kanyuu 'join' and させる saseru 'let',
each of which takes distinct sets of arguments. The
phrase-based dependency, as shown in (4b), cannot
capture the arguments of the complex predicate properly.

(4a) ＮＡＴＯはこの四カ国を加入させよ。
 NATO-wa kono 4kakoku-wo kanyuu-sase-yo
 NATO-TOP these 4-countries-ACC join-CAUS-IMPR

'NATO should let these 4 countries join (their
organization).'

(4b) ＮＡＴＯは::加入させよ (NATO::join-CAUS-IMPR)
この::四カ国を (these::4_countries)
四カ国を::加入させよ(4_countries::join-CAUS-IMPR)
加入させよ::* (join-CAUS-IMPR::*)

4 The definition of bunsetsu given here is very similar to the
notion of chunk proposed by Abney (1991), and is practically
identical to that of φ-phrase by Gee and Grosjean (1983), which
Abney's notion of chunk is based on.

However, we believe that the phrase-dependency
evaluation is a reasonable first step: although a correct
phrase dependency does not guarantee a correct predicate-
argument structure, mistakes in phrase dependency always
suggest problems in the predicate-argument analysis.

Phrase-Dependency-Based Evaluation of
NLPWin-Japanese

In this section, we describe the experiment in which we
applied the proposed phrase-based evaluation on a phrase-
structure grammar of Japanese. NLPWin-Japanese is a
parser under development at Microsoft Research; it has
multiple levels of analysis as its output, including surface
constituent structure, language-neutral syntax and logical
form or LF (Heidorn, 2000; Campbell and Suzuki, 2002).
LF is the level of representation that can be considered as
the predicate-argument representation within our system.
Many of the applications we are interested in, including
machine translation and automatic summarization, use LF
as their input, hence the need for evaluating LF. However,
there is no currently available external resource of
annotations equivalent to Japanese LF, therefore an
alternative evaluation scheme is called for.

The method we adopted is to map the constituent
structure to a dependency structure, and compare it with
the dependency structure extracted from Kyoto University
Text Corpus (version 3.0, henceforth KC; Kurohashi and
Nagao, 1997), which is a bunsetsu-dependency annotated
corpus of about 38,000 sentences of Mainichi Newspaper
articles in 1995. We implemented the mapping in two
steps: (1) Modify the NLPWin tree structure to absorb
specification differences by a series of rules; and (2)
Compute each phrase and its parent phrase based on the
tree given by (1). Figure 1 below shows an example: the
surface constituent structure (a) is converted into a tree
structure that reflects KC specification (b); then, phrases
and their parent phrases are read off from the converted
tree and printed in phrase::parent_phrase format (c). These
dependency pairs are then compared with the pairs
extracted from the KC annotation, after removing white
spaces between words, special symbols and punctuation
marks.

(a)

(b)

(c)

天皇誕生日は１２月２３日だ。
DECL1 NP1 NOUN1* "天皇 誕生日"

PP1 POSP1* "は"
NP2 NOUN2* "１２月 ２３ 日"
VERB1* "だ"
CHAR1 "。"

DECL2 NP1 NOUN1* "天皇 誕生日"

PP1 POSP1* "は"
MONTH1 "１２月"
DATE1* "２３ 日"
VERB1 "だ"
CHAR1 "。"

天皇 誕生日は::２３ 日だ。
１２月::２３ 日だ。
２３ 日だ。::*

Figure 1: Mapping NLPWin output to KC-style
dependency pairs

Using this method, we tested NLPWin-Japanese on 600
KC sentence, including 300 daily articles and 300
editorials.5 Table 1 below summarizes the results.

corpus # of sentence precision recall
daily article 300 76.86% 78.83%
editorial 300 79.51% 80.45%

Table 1: Phrase-dependency based evaluation of NLPWin

Interpreting Phrase-Dependency-Based
Evaluation

The numbers presented in Table 1 are about 10% lower
than the numbers reported for state-of-the-art bunsetsu
dependency analyzers in Japanese, such as KNP (1994)
and CaboCha (2002). In order to interpret these numbers
in a cross-system comparison setting, however, we must
proceed with due care. In this section, we discuss some
caveats that are necessary for reliably interpreting the
evaluation results.

First of all, KNP, CaboCha and NLPWin all present
different degrees of familiarity with KC: KC is created by
manually correcting the output of KNP, and CaboCha is a
statistical system trained on KC; they are both dependency
analyzers. NLPWin, on the other hand, produces a
constituent analysis, and was developed independently of
KC and its specification. In order to eliminate the factor of
the baseline system that seeded the annotation, we have
manually annotated 300 newspaper sentences6 which are
not part of KC, but are from the same newspaper database,
by hand-correcting the output of NLPWin. In the process
of annotation, we tried to follow the KC specification as
closely as possible, by referring to the KC annotation
guideline (Kurohashi et al., 2000) and using the KC itself
as the specification. For this experiment, we obtained
precision of 79.29% and recall of 81.04% for NLPWin.
These results are slightly but not significantly better than
the results on KC, from which we conclude that the
baseline system that seeded the annotation does not affect
the evaluation results in any significant way. This also
confirms the robustness of phrase (bunsetsu)-based
annotation in Japanese.

While the effect of the baseline system for annotation
may be negligible, there are other factors that introduce
spurious differences between the annotated corpus and a
system output. In the error analysis we conducted on 200
KC sentences,7 7.3% of all errors were due to mapping
errors from NLPWin output to KC-style format, caused by
the problem of sparseness – that is, even though we tried
to follow the KC specification as closely as possible, we
always find instances of KC and NLPWin specification
differences that were never seen before, therefore not
incorporated in the mapping rules. 3.7% of the errors
came from sentences that were not properly analyzed
because they contained multiple sentences in quotation
marks; 5.8% of the errors present ambiguous parses, in
which KC and our system defaulted to different correct

5 Average sentence length was 45.39 characters for daily articles
and 43.17 for editorial articles.
6 Consisting of 150 regular and editorial articles each; average
sentence length is 45.42 characters.
7 100 regular and 100 editorial articles, which are a separate set
from the one used in the evaluation for Table 1.

structures. We also found that 5.1% of the errors were due
to annotation errors in KC.

From these figures, it is possible that 20% to 25% of
the error cases (i.e., 4% to 5% of all cases) do not actually
indicate errors but reflect other differences. This
observation is important in interpreting the results for a
cross-system comparison in future evaluations.

Scaling Up Phrase-Based Dependency
Evaluation

Evaluation of non-newspaper corpora
Given that the proposed evaluation method can scale up to
handle different domains of text, it can also be used to
compare the performance of a system on different text
domains. In order to see this point, we have also annotated
200 sentences each from Microsoft Encarta 98
Encyclopedia and computer manual sentences 8 by
manually correcting the output of NLPWin. The
annotation was done similarly to the annotation of the 300
newspaper sentences, referring to the same annotation
guideline and using the KC annotation as the specification.
Except for parentheticals, which needed to be dealt with
separately and is discussed in some detail below, the
annotation guideline remained perfectly consistent across
these domains. The results of running NLPWin on these
corpora are shown in Table 2; they match the expectation
that the system performs better on these domains than on
the newspaper corpus.

corpus # of sentence precision recall
encyclopedia 200 82.81% 83.95%
manual 200 89.93% 91.13%

Table 2: Phrase-dependency based evaluation of NLPWin
on encyclopedia and computer manual sentences

Handling parenthetical materials
In creating the annotation for encyclopedia and manual
sentences, one difficulty we had in the phrase-based
approach was the treatment of parenthetical materials in
text. Parentheticals are problematic because they can
intervene between content words and function words,
disrupting the bunsetsu structure, as in (5):

(5) 欧州連合（ＥＵ）に加盟する。
 oushuu_rengou(EU)-ni kamei-suru
 Europe_union-DAT join-PRES
 'join the European Union (EU)'.

In (5), the parenthetical material is inserted between the
content word 欧州連合 'European Union' and the dative
marker に ni. One possible solution to the problem is to
ignore all parenthetical materials for the purposes of
dependency analysis, treating them as invisible to
bunsetsu structure. This is indeed the strategy taken by
KC: KC sentences are pre-processed to remove all
parenthetical materials; therefore, the annotated sentences
include no instances of them. Given that the phrase-based
dependency annotation is a lossy method of evaluating the
predicate-argument structure to begin with, this approach
is not unreasonable. However, information provided by
parenthetical materials often provide very useful
information for text analysis. For example, the appositive

8 Average sentence length is 49.77 characters for Encarta and
40.31 for the computer manuals.

relation between 欧州連合 'European Union' and EU
indicated by parentheses is extremely useful for such tasks
as coreference resolution, and are too precious to be
excluded from the input text. 9 Also, the majority of
parentheticals pose no difficulty for phrase-based
dependency annotation, so excluding these cases would be
too restrictive.
 Since encyclopedia and manual sentences were replete
with parenthetical materials, we have chosen to expand
the specification of phrase-based annotation to handle
parenthetical materials. The specification added to treat
parentheticals is summarized in Figure 2, with brackets
indicating phrases as necessary. If there are multiple
phrases within a set of parentheses, their phrase-breaking
and dependency are determined according to the regular
specification. The results reported in Table 2 are based on
the annotation that followed this expanded specification.

(1)

if parenthetical is yomi, which provides reading
information for the preceding character(s)
then do not break into a separate phrase
e.g.: [脆（もろ）さを][感じる]

(2) else if parenthetical is within a compound
then do not break into a separate phrase.
e.g.: [Visual Basic for Applications (VBA) プロジェク
トが][破損しています]

 else
(3) (a)

if the end of the parenthetical coincides with a
phrase-break (i.e., no function word follows
the parenthetical)
then the head phrase of the parenthetical
modifies the phrase that it semantically
modifies. e.g.:
それはありえない（つまり不可能だ）。
それは::ありえない
ありえない::*
つまり::不可能だ
不可能だ::ありえない

 (b) else (i.e., there are function words that follow
the parenthetical)
then wrap the function word(s) with the
preceding phrase and have the phrase that
immediately precedes the parenthetical
modify the head phrase. e.g.:
欧州連合（ＥＵ）に加盟する。
欧州連合::ＥＵに
ＥＵに::加盟する
加盟する::*

Figure 2: Handling of parenthetical materials

In Figure 2, all cases but (3b) are syntactically and
semantically transparent, and require no special treatment.
(3b) is the only case that presents a dilemma to bunsetsu-
based analysis. Though the specification given in Figure 2
may not be ideal and falls short of capturing predicate-
argument structure, we believe it is a fair approximation to
the same degree as the phrase-based dependency
evaluation itself is an approximation of evaluating
predicate-argument structure.

9 See Kacmarcik (2004) for the use of parenthetical materials in
Japanese text.

Conclusion
Despite the caveats and limitations of the proposed
approach, phrase-based dependency evaluation still
provides a practical means of evaluating a parser
performance, taking advantage of currently available
surface-based annotation resources. Though phrase-based
dependency evaluation does not measure everything that
is relevant to predicate-argument structure (therefore, the
method itself has low recall), everything it measures
pertains to predicate-argument structure. It is thus
excellently suited for tracking system-internal
improvements, even of analyzers based on a completely
different grammar and linguistic formalism.

Though this paper focused on the evaluation of a
Japanese parser, it would certainly be interesting to apply
it to different languages, and see how the metric compares
to other evaluation methods. It would also be instructive
to correlate the accuracy of the proposed approach to the
accuracy measurement of predicate argument structure.

Acknowledgements
I would like to thank Mari Brunson for producing the KC-
style annotation for various data sets for our experiments.

References
Abney, S.P. 1991. Parsing by Chunks. In R.C. Berwick,

S.P. Abney and C. Tenny (eds.), Principle-Based
Parsing: Computation and Psycholinguistics, pp.257-
278. Kluwer Academic Publishers, Boston.

Campbell, R. and H. Suzuki. 2002. Language-Neutral
Representation of Syntactic Structure. In Proceedings
of SCANALU-2002, Heidelberg.

Gee, J.P. and F. Grosjean. 1983. Performance Structures:
A Psycholinguistic and Linguistic Appraisal, Cognitive
Psychology 15, pp.411-458.

Heidorn, G. 2000. Intelligent Writing Assistance. In R.H.
Moisl and H. Somers (eds.), A Handbook of Natural
Language Processing: Techniques and Applications for
the Processing of Language as Text, Chapter 8, Marcel
Dekker, New York.

Kacmarcik, G. 2004. Making Use of Furigana. To Appear
in Proceeding of IJCNLP-04, Hainan.

Kudo, T. and Y. Matsumoto. 2002. Japanese Dependency
Analysis Using Cascaded Chunking. In Proceeding of
CoNLL 2002, pp.63-69.

Kurohashi, S. and M. Nagao. 1994. KNP parser: Japanese
Dependency/Case Structure Analyzer. In Proceedings
of the Workshop on Sharable Natural Language
Resources, pp.48-55.

Kurohashi, S. and M. Nagao. 1997. Kyoto University Text
Corpus Project. In Proceedings of ANLP, pp.115-118.

Kurohashi, S., Y. Igura and M. Sakaguchi. 2000.
Annotation Guideline for Kyoto University Text
Corpus (in Japanese).

Lin, D. 1995. A Dependency-Based Method for
Evaluating Broad-Coverage Parsers. In Proceedings of
IJCAI-95, pp.1420-1425.

Lin, D. 1998. Dependency-Based Evaluation of MINIPAR.
In Workshop on the Evaluation of Parsing Systems,
Granada.

