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Abstract

This paper presents a novel Bayesian approach to the
problem of co-channel speech. The problem is for-
mulated as the joint maximization of the a posteriori
probability of the word sequence and the target speaker
given the observed speech signal. It is shown that the
joint probability can be expressed as the product of six
terms: a likelihood score from a speaker-independent
speech recognizer, the (normalized) likelihood score of
a speaker recognizer, the likelihood of a sequence of
prosodic events, the likelihood of a speaker-dependent
statistical language model, a prior representing the chan-
nel usage patterns of a speaker, and the prior probabil-
ity of the speaker. An efficient single-pass Viterbi search
strategy is presented. Experimental results on over-the-
telephone recognition of co-channel speech show a 45%
reduction in word error rate of a 10-digit telephone num-
ber task.

1. Introduction

Co-channel speech occurs when two or more talkers are
speaking at the same time and their speech is summed
into one signal. Co-channel speech is common in hands-
free voice-enabled applications. Examples include infor-
mation kiosks using speech recognition, information and
services access from the car, and voice interaction with
any application using a speaker-phone.

Traditional approaches to co-channel speech process-
ing have focused on enhancing the target speech, atten-
vating the interfering speech, or a combination of both
[1, 2, 3]. While the motivation for some of this previ-
ous work on co-channel speech processing was to im-
prove automatic speech recognition (ASR), few of the
previous approaches explicitly considered ASR perfor-
mance in their design. It was assumed that enhancing the
speech to improve SNR or human intelligibility would
automatically translate into maximize speech recognition
performance. But, as has been demonstrated in the robust
speech recognition literature, this assumption often does
not hold.

In contrast, the approach presented in this paper is

designed to specifically and directly maximize speech
recognition performance. Section 2 presents a novel
Bayesian approach to the problem of co-channel speech,
formulated as the joint maximization of the a posteriori
probability of the word sequence and the target speaker
given the observed speech signal. Based on this formu-
lation, Section 3 describes the implementation of the re-
sulting co-channel speech recognition system. Finally,
Section 4 shows several experiments that demonstrate the
effectiveness of the approach.

2. Formulation

Our goal is to develop a speech recognition system that
will transcribe speech from the desired (target) speaker
while ignoring speech from the interfering speaker.
Stated mathematically, the goal is to find the word se-
quence from the target speaker that maximizes the joint
probability among all possible word sequences W and
speakers S, conditioned on the observations O. The ob-
servations can take many forms, such as a sequence of
mel-frequency cepstral coefficient (MFCC) feature vec-
tors X = {x1,Xa,...,Xr_1,Xr}. Other observations
that have recently shown promise in speech and speaker
recognition problems include prosodic events [4, 5] rep-
resented here as a sequence of prosodic feature vectors
F = {fi,f,... ,fo_1,fp}. Also, the channel C of the
speaker (e.g., handset-type on the telephone) has shown
to be an important observation with significant depen-
dencies on the acoustic models in speaker recognition
[10, 11]. Given this set of observations O = {X,F, C},
we can express the joint maximization problem as
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The six components represent separate knowledge
sources, including a speaker-independent recog-
nizer (SI-Speech), a (normalized) speaker recognizer
(Speaker), a prosody-based subsystem (Prosody), a
channel detector (Channel), a speaker-dependent lan-
guage model (SD-LM), and a prior for the given speaker,
P(S;). Each knowledge source processes the speech at
different temporal/frequency resolutions.

The features F' used in the prosody-based subsystem
can be at either the frame, segment, utterance, or session
resolution and include statistics of pitch, and session-
based speaking-rate, pause rate, and timing (see [8]). The
temporal resolution of the speaker- and text-dependent
channel is typically at the session level, and indicates the
channel usage patterns of a user. The speaker-dependent
language model uses phoneme/word/phrase resolution
features, representing how a particular person chooses
their words. This has been implemented with a standard
N-gram statistical language model [6, 7]. The prior prob-
ability of the speaker, P(S), is at the application level,
and can be estimated from the application if data is avail-
able (e.g., frequency of calling and/or ANI for telephony
applications), or can simply set to a constant if data is
unavailable.

Finally,the speaker-independent speech recognition
score and the speaker recognition score in (1) can be
combined in the search at various resolutions, from the
frame-level to the utterance-level. The combination at the
frame-level could be accomplished in the forward pass of
a Viterbi search. This one-pass approach would be ap-
propriate in applications where the number of speakers is
small, such as co-channel speaker separation. For other
applications with large numbers of speakers and possi-
ble word sequences, the search space implemented in the
forward pass of Viterbi will be very large, O(Words X
Speakers). In this case, efficient search strategies such as
multipass rescoring are required [9].

3. System Description

Referring to Equation (1), we can make the following
simplifications for the co-channel speech problem:

1. Given that the channel type is not likely to depend
on the particular word-sequence that is spoken, we

can assume that the channel type is only dependent
on the usage patterns of the speaker, P(C|W, S) =
P(C|S).

2. The prior probability of the speaker is often not
known, so the term P(.S) is constant and therefore
can be dropped from the search.

3. While prosody is likely a useful source of informa-
tion for co-channel speech recognition, we will not
explore its use in this paper.

4. Likewise, while the idiosyncratic choice of words
(speaker-dependent language model) is likely use-
ful for co-channel speech recognition, we will de-
fer this to future work.

With the simplifications,the resulting maximization prob-
lem for co-channel speech recognition can be expressed
as

P(X|W,S)
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{W,8,} = argmax P(X|W) - P(W)
w,S

3.1. Speech Recognition Subsystem

The speech recognition system used is described in [12].
The acoustic models use context dependent triphones
states that are clustered using bottom-up agglomerative
clustering. Each state cluster shares a set of Gaussians
(called genones).The system was trained with over a mil-
lion digit strings, stock quote requests, and phonetically
rich utterances collected over the telephone from various
sources. The output score of the recognizer is composed
as follows (with (3 scaling the language model score)

Aspeech = IOgP(X|W) + BIOgP(W) (3)

3.2. Speaker Recognition Subsystem

The score for frame ¢ of the speaker recognition subsys-
tem is computed as

k=i+D/2
Aspkr(xt) = T Z IOgP(XtP\tgt) - Ing(XtP‘bkg)
k=i—D/2
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where the window size D trades off resolution for an im-
proved (smoothed) estimate of the speaker recognition
score, and A;g; and Aypg are the speaker models for the
target and background talkers, respectively. The avail-
ability of prior knowledge regarding the target and back-
ground talkers depends on the application. Often, the tar-
get speaker is known while the background talker is not.
In this case, a speaker-independent background model A
can be substituted for Ay 4. In cases where neither talker
is known a priori, clustering techniques can be used to
initialize models directly from the test utterance. Finally,



note in Equation (4) that a text-independent speaker rec-
ognizer is used. This facilitates a combination of the
speech and speaker recognizers at the frame level during
the first pass Viterbi search as detailed below.

3.3. Combined System

To combine the speaker and speech recognition subsys-
tems for recognition of co-channel speech, the speaker
recognition score is treated as a measure of reliability: if
the speaker recognition score for a frame is low, then the
frame is viewed as unreliable and its contribution to the
Viterbi search is discounted. On the other hand, if the
speaker recognition score for a frame is high, then the
frame is viewed as reliable and it contributes fully to the
search.

Expressed mathematically, we use the speaker recog-
nition score to weight the frame likelihoods from the
speech recognition system. The weighting is imple-
mented by mapping the speaker recognition scores onto
a sigmoid function with a range of [0,1], i.e.,

AT(Xt) = W(Aspkr (Xt)) ' Aspeech (Xt) %)
where
1

T Tre ©

W(y)

4. Experiments

The testset consists of 1142 females speaking their 10-
digit home telephone number over long-distance lines. To
simulate co-channel speech, a 10-digit telephone number
spoken by a male background talker was added to each
of the test utterances. The 10-digit telephone numbers of
the foreground and background talkers are different. The
target-to-interferer ratio (TIR) of energy across the tar-
get and background utterances was set to 10dB for these
experiments.

For these experiments, we used the values of b = oo
(a unit step function) in Equation (6), and conducted sev-
eral experiments over the entire testset to optimize the
values of D and 6. First, Table 1 shows results when we
have a speaker model for both the target and background
talkers. The speaker model for the target and background
speakers were trained on separate enrollment phone calls
using 3 repetitions of the speaker’s phone number. The
best window size is D = 130ms and the threshold is
6 = 0.0, giving a 45.1% error rate reduction (ERR) over
the baseline.

In Table 2, we assumed we only had a speaker
model of the target speaker and therefore used a speaker-
independent model for the background talker in Equation
(4). The best window size is shorter at D = 70ms (or
5 frames in our system) and the best threshold is lower
at @ = —0.25. These parameters yielded a 28.6% im-
provement in word error rate (WER) as compared to the
baseline speech recognition system.

Table 1: The table shows results when speaker model ex-
ist for both the target and background talkers. For this
case, the best window size is D = 130ms and the thresh-
oldis 0 = 0.0, giving a 45.1% error rate reduction (ERR)
over baseline

D 0 ASR Errors WER ERR
(ms) Ins/Del/Sub (%) (rel. %)
Baseline | - - 971/971/2253 36.7 -
30 0.0 853/853/1469 27.8 24.4
70 0.0 780/820/1408 26.3 28.4
130 | 0.0 538/568/1200 20.2 45.1
170 | 0.0 557/617/1241 21.2 42.5
520 | 0.0 790/1140/1732 | 32.1 12.8
130 | -0.5 567/577/1257 21.0 42.8
130 | -0.25 | 534/554/1223 20.2 45.0
130 | 0.0 538/568/1200 20.2 45.1
130 | 0.25 552/612/1238 21.0 42.8
130 | 0.5 577/727/1282 21.6 38.4

Table 2: The table shows results when a speaker model
exists only for the target speaker. For this case, the best
window size is shorter at D = 70ms and the threshold is

lower at § = —0.25, giving a 28.6% error rate reduction
(ERR) over baseline.
D 0 ASR Errors WER ERR

(ms) Ins/Del/Sub (%) (rel. %)

Baseline | - - 971/971/2253 36.7 -
30 -0.25 | 876/876/1460 28.1 235
70 -0.25 | 809/819/1369 26.2 28.6
130 | -0.25 | 789/809/1424 26.5 28.0
170 | -0.25 | 819/889/1476 279 242

270 | -0.25 | 881/1131/1542 | 31.1 15.4

70 -0.5 846/856/1374 26.9 26.7
70 -0.25 | 809/819/1369 26.2 28.6
70 0.0 780/820/1408 26.3 28.4
70 0.25 785/875/1441 272 26.2
70 0.5 815/1045/1472 | 29.2 20.64

Tables 3 and 4 show results for an alternative ap-
proach which uses the speaker recognition scores to
splice out the occluded (low speaker recognizer score)
portions of the target talker’s speech. In both tables, the
verification score is computed exactly as was done in Ta-
ble 2 using the best window size of D = 70ms. As can
be seen, the error rate reductions were as high as 19.6%
and 17.9% for waveform cutting and frame removal, re-
spectively. These approaches were not as effective as in-
tegrating the verification scores directly into the Viterbi
search as was done in Tables 1 and 2. Also, the improve-
ment for speech removal methods degraded rapidly as the
threshold on the speaker recognition score (confidence)
increased.




Table 3: The table shows results for the simple wave-
form cutting approach, where portions of the waveform
are simply removed if the speaker verification score is be-
low the threshold 6. As can be seen, the waveform cutting
approach has an error rate reduction of up to 19.6%.

D 0 ASR Errors WER ERR
(ms) Ins/Del/Sub (%) (rel. %)
Baseline | - - 971/971/2253 36.7 -

70 -0.5 841/911/1622 29.5 19.6
70 -0.25 | 863/1083/1699 | 31.9 13.0
70 0.0 830/1500/1700 | 35.3 39
70 0.25 836/2076/1717 | 40.5 -10.4
70 0.5 799/2879/1676 | 46.9 -27.8

Table 4: The table shows results for a frame removal
approach, where frames of feature vectors are simply
removed if the speaker verification score is below the
threshold 0.As can be seen, the frame removal approach
has an error rate reduction of up to 17.9%.

D 0 ASR Errors WER ERR
(ms) Ins/Del/Sub (%) (rel. %)
Baseline | - - 971/971/2253 36.7 -

70 -0.5 892/1002/1546 | 30.1 17.9
70 -0.25 | 848/1168/1604 | 31.7 13.6
70 0.0 882/1552/1564 | 35.0 4.6
70 0.25 829/2299/1518 | 40.7 -10.9
70 0.5 809/3199/1427 | 47.6 -24.3

5. Conclusions

This paper addressed the problem of ASR of co-channel
speech by jointly maximizing the a posteriori probability
of the word sequence and target speaker given the ob-
served utterance. An efficient single-pass search strat-
egy was presented. Experimental results on an over-
the-telephone 10-digit recognition task with co-channel
speech show up to a 45.1% reduction in word error rate
when both the target and background talker had previ-
ously trained speaker recognition models. The improve-
ment was up to 28.6% when a speaker model existed only
the target speaker. An alternative approach was presented
by simply using the speaker recognition scores to splice
out the occluded (low speaker recognizer score) portions
of the target talker’s speech. The error rate reductions
were as high as 19.6% and 17.9% for waveform cutting
and frame removal, respectively. However, the improve-
ment for both methods degraded rapidly as the threshold
on the speaker recognition score (confidence) increased.
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