
Conditional Selectivity for Statistics on Query Expressions

Nicolas Bruno
Microsoft Research

nicolasb@microsoft.com

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

ABSTRACT
Cardinality estimation during query optimization relies on simpli-
fying assumptions that usually do not hold in practice. To dimin-
ish the impact of inaccurate estimates during optimization, statis-
tics on query expressions (SITs) have been previously proposed.
These statistics help directly model the distribution of tuples on
query sub-plans. Past work in statistics on query expressions has
exploited view matching technology to harness their benefits. In
this paper we argue against such an approach as it overlooks signif-
icant opportunities for improvement in cardinality estimations. We
then introduce a framework to reason with SITs based on the no-
tion of conditional selectivity. We present a dynamic programming
algorithm to efficiently find the most accurate selectivity estimation
for given queries, and discuss how such an approach can be incor-
porated into existing optimizers with a small number of changes.
Finally, we demonstrate experimentally that our technique results
in superior cardinality estimations than previous approaches with
very little overhead.

1. INTRODUCTION
Relational query optimizers explore a large number of execu-

tion plans to evaluate an input query, and choose the most effi-
cient alternative in a cost-based manner. The cost estimation for
a plan depends on several factors, including resource availability,
the specific operators composing the plan, and the size of inter-
mediate results that would be generated during the plan execution.
Among these factors, the intermediate-result size (or cardinality)
estimation is one of the key sources of inaccuracies during opti-
mization. To estimate cardinality values, the optimizer relies on
several simplifying assumptions (e.g., independence between pred-
icates), which often do not hold. Thus, resulting cardinality esti-
mates can be off by orders of magnitude and lead the optimizer to
choose low-quality execution plans.

To diminish error propagation through complex query plans, the
concept of statistics on query expressions (or on views) was intro-
duced in [4, 26]. Borrowing the terminology from [4], in this paper
we refer to these statistics as “SITs”. SITs have the same structure
and functionality as base-table statistics. However, unlike base-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . .$5.00.

table statistics, SITs are created on the result of executing some
query expression. (Note that although in this paper we focus on
SITs as histograms, the same ideas can be applied to other statisti-
cal estimators, such as wavelets or samples). SITs can then be used
to directly model the distribution of tuples onintermediatenodes of
query execution plans, avoiding inaccurate extrapolation of base-
table histograms. The benefits of using SITs during optimization
are analogous to those of using materialized views for query execu-
tion: materialized views speed up input queries by pre-computing
and caching sub-query results; SITs likewise increase theaccu-
racyof cardinality estimates of input queries by pre-computing and
modelling thedistributionof intermediate results.

Consider the TPC-H query in Figure 1(a). To obtain its cardi-
nality, a traditional optimizer proceeds as follows: (i) estimates the
selectivity ofnation=’USA’ andtotal price>100K using his-
tograms overcustomer.nation andorders.total price, re-
spectively, (ii) multiplies these selectivity values together assum-
ing independence, (iii) estimates the cardinality of the three-way
join lineitem ./ orders ./ customer, and (iv) scales down the
join cardinality by the combined selectivity of the filter predicates
(again assuming independence). Now suppose that our TPC-H
database is skewed. Specifically, the number of line-items for a
given order follows a Zipfian distribution. In such a case, although
the fraction (or selectivity) of expensive orders withtotal price

> 100K is very small, the fraction of line-items that match with
such orders can be very large (with respect to the whole join). The
reason is that expensive orders typically consist of many line-items.
For that reason, the original cardinality estimation can be a severe
underestimate. Intuitively, the problem arises from assuming inde-
pendence between predicatestotal price>100K andlineitem
./ orders. Similarly, if the majority of customers live in the US,
the same problem also arises from predicatenation =′ USA′.

Now suppose that we create a SIT fortotal price on the result
of evaluatingLO = lineitem ./ orders (we denote such SIT as
SIT(LO.total price|lineitem ./ orders)). Then, using tech-
niques in [4], we rewrite the original query of Figure 1(a) into the
equivalent query of Figure 1(b), which exploits the SIT. (Refer-
ence [4] identifies whether or not a SIT is applicable to a given plan
leveraging materialized view matching techniques.) We now esti-
mate the query cardinality using the SIT instead of the base-table
histogram overorders.total price, obtaining a more accurate
estimate (the SIT correctly models the interaction between expen-
sive orders and the number of line items that join with them). Sim-
ilarly, if we create SIT(OC.nation|orders ./ customer), we can
rewrite the original query of Figure 1(a) into the equivalent query
of Figure 1(c) to obtain, again, a better cardinality estimate.

If in our sample databaseboth filter predicates are skewed, the
cardinality obtained when using any one of the available SITs in

�������� � ��	��
 �

�

����� �

����������
�������� � ! "�#����#$%&'%

��

�

����� �

"�#����#$%&'%

(����������
��������

)*+,-./0123405467869 :;924<86=)*+,>-/2421?@A6
3:85?308328< 467869=

��

�������� � �"�#����#$%&'%

����������
��������

(a) Original Query. (b) Using SIT onlineitem ./ orders. (c) Using SIT onorders ./ customer.
Figure 1: Exploiting SITs using view matching.

isolation can still be an arbitrary underestimation (although more
accurate than if no SITs are used). In general, if two or more SITs
are available, it is a good idea to use them together (whenever pos-
sible) to estimate cardinality values: each SIT might correct errors
introduced in different parts of the input query. Unfortunately, in
Figure 1 there is no transformation, based purely on view matching
techniques, that exploits both SITssimultaneously. The reason is
that the SITs query expressions are mutually exclusive from a view
matching perspective.

BCDECFEG H IJKEJLM

NOLFIGEJP

BCDECFEG H IJKEJLM

NOLFIGEJP

QRSTSUVWXYZ[\]̂ __̀ aRbUSZTbcdefd

(a) Rewriting the original query.

��

������	
����
�������
��	�����

��

���	��	��� ��
�����������

��������	
���
�����������
�����

�������
�
	�������
�����
�����������

(b) Using both SITs simultaneously.

Figure 2: Exploiting SITs beyond view matching.

Alternatively, consider the following approach: if we were to
rewrite the original query of Figure 1(a) as in Figure 2(a), then we
could exploit SITs as explained earlier for each sub-query of the in-
tersection operator (see Figure 2(b)) and obtain the final cardinality
estimate by assuming independence only at the root node. By us-
ing both SITs simultaneously, we eliminate one independence as-
sumption compared to the alternatives in Figures 1(b) and 1(c). Of
course, this example relies on a special rewriting that is typically
not explored by optimizers. However, it shows that purely relying
on the existing view matching infrastructure provided by the opti-
mizer falls short of capturing the whole spectrum of alternatives to
exploit SITs for cardinality estimation. It also shows that the best
cardinality estimate that can be obtained using previous techniques
(e.g., [4]) might be significantly more inaccurate than what is pos-
sible to accomplish using the available information. What we need

instead is a general framework to decide how to best (and correctly)
use available SITs together to estimate cardinality values.

In this paper we focus on the class ofSPJ queries (see [3] for
extensions that handle optionalGroup-By clauses) and introduce a
systematic and comprehensive approach to decide how to exploit
multiple (possibly conflicting) SITs to estimate cardinality values.
As we show in Section 5, our technique results in estimation errors
that can be an order of magnitude smaller than those obtained by
previous approaches for the same set of available SITs.

As shown in Figures 1 and 2, there are in general different alter-
natives to exploit available SITs for cardinality estimation. Since
our goal is to obtain accurate cardinality estimations, we need a
procedure to “rank” different alternatives based on their expected
accuracy (we address this issue in Sections 3.2 and 3.5). Unfortu-
nately, as we show in Section 2, there is a combinatorial explosion
of alternatives to approximate cardinality values for given SITs.
To address this problem, we study some properties that can sig-
nificantly prune the search space without missing the most accu-
rate alternatives, and introduce an efficient, dynamic-programming
based algorithm to enumerate this smaller search space. Since car-
dinality estimation is an integral aspect of query optimization, the
proposed techniques should be aware and exploit certain properties
of the optimization process. For instance, during the optimization
of a single query, many selectivity requests would refer to “similar”
query plans (e.g., it is likely that before requesting an estimation for
the plan of Figure 1(a), the optimizer already requested selectivity
estimates for many of its sub-plans). It is then important that our
technique reuses previous computations during the optimization of
the same query to satisfy new selectivity requests.

In this paper we address the challenges discussed above by intro-
ducing the concept ofconditional selectivity. We develop a frame-
work that, given a set of SITs, allows us to easily identify and effi-
ciently search thefull space of alternatives to obtain accurate esti-
mates by exploiting SITs. We can draw an analogy between the use
of SITs and work in traditional query optimization. During opti-
mization, algebraic properties (e.g., associativity and commutativ-
ity of joins) provide different equivalent logical plans to represent
the same input query. In this paper, conditional selectivity proper-
ties result in many alternative ways (we call themdecompositions)
to estimate the same selectivity value. Optimizers efficiently navi-
gate through these equivalent logical plans guided by a cost model,
and choose a set of access paths (e.g., sequential or index scans)to
implement each logical plan. Analogously, we suggest a dynamic
programming algorithm,getSelectivity, that exploits the structure
of the input query to efficiently search the space of decompositions,
and identifies the “best” way to approximate a selectivity value us-
ing SITs. In particular, SITs are the implementation mechanism
to approximate decompositions, and the search ingetSelectivityis
guided by the expected benefit of each alternative.

The rest of the paper is structured as follows. In Section 2 we in-
troduce conditional selectivity. In Section 3 we present a dynamic
programming algorithm to find the most accurate cardinality esti-
mation using SITs. In Section 4 we show how the algorithm can
be integrated with relational optimizers. We report experimental
results in Section 5 and review related work in Section 6.

2. CONDITIONAL SELECTIVITY
In the previous section we illustrated how relying purely on view

matching techniques to exploit SITs can sometimes hinder accurate
cardinality estimations. We now introduce the concept ofcondi-
tional selectivityand then discuss how it relates to SITs. Condi-
tional selectivity allows expressing the selectivity of a given SPJ
query in many different but equivalent ways. In this paper, we rep-
resent an arbitrary SPJ query in acanonical formby first forming
the cartesian product of the tables referenced in the query, then ap-
plying all predicates (including joins) to such cartesian product,
and finally projecting out the desired attributes. Thus, we represent
a generic SPJ query asπa1,...,ana

(σp1∧...∧pnp
(R1 × . . . × Rn))

whereai are attributes ofR1 × . . . × Rn, andpi are predicates
overR1 × . . . × Rn (e.g.,R1.a ≤ 25, or R1.x=R2.y). Each set
of predicates{pi} applied toR1 × . . . × Rn results in the subset
of tuples thatsimultaneouslysatisfy allpi. To estimate the size of
the output, or its cardinality, we first approximate the fraction of
tuples inR1 × . . . × Rn that simultaneously satisfy all predicates
pi (i.e., theselectivityof all pi), and then multiply such fraction by
|R1 × . . . × Rn|, which can be obtained by simple lookups over
the system catalogs. We now extend the definition of selectivity.

DEFINITION 1. LetR = {R1, . . . , Rn} be a set of tables, and
P = {p1, . . . , pj} and Q = {q1, . . . , qk} be sets of predicates
over R1 × . . . × Rn. Theconditional selectivitySelR(P |Q) is
defined as the fraction of tuples inσq1∧...∧qk

(R1 × . . .×Rn) that
simultaneously satisfy all predicates inP . Therefore,

SelR(P |Q) =

∣

∣σp1∧...∧pj
(σq1∧...∧qk

(R1 × . . . × Rn))
∣

∣

|σq1∧...∧qk
(R1 × . . . × Rn)|

If Q = ∅ we writeSelR(P), which coincides with the original
definition of selectivity.

We denote the set of tables referenced by a set of predicatesP as
tables(P), and the set of attributes mentioned inP asattr(P). To
simplify the presentation, we also use “P, Q” to denote “P∪Q” and
“p, Q” to denote “{p}∪Q”, wherep is a predicate andP andQ are
sets of predicates. Finally, for a set of tablesR = {R1, . . . , Rn},
we useR× to refer to the cartesian productR1 × . . . × Rn.

In general, for a given queryσp1∧...∧pk
(R×), our task is to esti-

mateSelR(p1, . . . , pk). The key property of conditional selectiv-
ity is atomic decomposition, which uses the notion of conditional
probability to unfold a selectivity value as the product of two con-
ditional selectivity values.

PROPERTY1 (ATOMIC DECOMPOSITION). Given a set of ta-
blesR and sets of predicatesP andQ:

SelR(P, Q) = SelR(P |Q) · SelR(Q)

This property holds for arbitrary sets of predicates and tables,
without relying onany simplifying assumption. An atomic decom-
position divides the problem of estimatingSelR(P, Q) into two
sub-problems (estimatingSelR(P |Q) andSelR(Q)). The decom-
position property is essential to develop a framework for exploiting
SITs. In fact, we will rely on available SITs1 to estimate the first
1Determining which SITs to use (and how to use them) to approximate a
selectivity factor is discussed in Section 3.3.

factorSelR(P |Q). For instance, we can use SIT(R.a|R ./ S) to
approximateSel{R,S}(R.a<10|R ./ S). In turn, if Q consists of
a single predicate we use a standard technique to estimate the sec-
ond factorSelR(Q), or otherwise recursively apply another atomic
decomposition toSelR(Q).

By repeatedly applying atomic decompositions, we might obtain
a very large number of alternative expressions for a given selec-
tivity value, which we simply calldecompositions. A decomposi-
tion of a given selectivity value is then an expression of the form
S1 · . . . · Sk, where eachSi = SelRi

(Pi|Qi) andQk = ∅. If
each factorSelRi

(Pi|Qi) is calculated precisely, then every pos-
sible decomposition ofSelR(P) evaluates to the same value (be-
cause we obtain each alternative decomposition through a series
of equalities). However, in real scenarios only a small number of
SITs are available. It follows that, depending on the set of SITs
at hand, some decompositions might be more accurate than oth-
ers. Suppose that we assign to each decomposition of a selectivity
valueSelR(P) a measure of how accurately the decomposition
can be approximated using the current set of available SITs. Then,
estimatingSelR(P) can be seen as an optimization problem: we
want to obtain the “most accurate” decomposition ofSelR(P) for
the given set of available SITs (see Section 3.2 for our definition
of accuracy). In principle, we could explore exhaustively all pos-
sible decompositions ofSelR(P), estimate the accuracy of each
decomposition and return the most accurate one. Unfortunately,
this approach is prohibitively expensive given the large number of
possibilities, as illustrated below.

LEMMA 1. The number of possible decompositions of
SelR(p1, . . . , pn), denotedT (n), is bounded by

0.5 · (n + 1)! ≤ T (n) ≤ 1.5n · n!, for all n ≥ 1

In the next section we introduce a comprehensive approach to
obtain the most accurate cardinality estimation for a given query
and a set of available SITs. We discuss how theaccuracyof a
decomposition is measured and derive a dynamic programming al-
gorithm that efficiently returns the most accurate decomposition of
a given selectivity value.

3. OBTAINING THE BEST SELECTIVITY
ESTIMATION

Conditional selectivity provides a framework for exploiting SITs
to obtain query cardinality estimates. Unfortunately, the space of
decompositions of a given selectivity value can be very large. In
Section 3.1 we discuss how to safely prune this search space (with-
out missing the most accurate decomposition) by leveraging some
properties of conditional selectivity values. Then, in Section 3.2
we discuss how to estimate the accuracy of a given decomposition
(which in turn allows us to rank different decompositions). Next,
in Section 3.3 we show how to exploit available SITs to approxi-
mate a single factor in a decomposition. In Section 3.4 we derive
an dynamic-programming algorithm that returns the most accurate
decomposition for a selectivity value (we also show that the com-
plexity of the algorithm is drastically reduced compared to the ap-
proach that enumerates all alternative decompositions). Finally, in
Section 3.5 we introduce an improved procedure to rank alternative
decompositions that results in better estimations than the simple
metric described in [4] (see Section 5 for experimental results).

3.1 Safely Pruning Decompositions
In this section we introduce the notion of “separability” of a de-

composition. Theseparabilityproperty can be seen as a syntactic

notion of independence that allows simplifying a selectivity value
whenever certain properties hold, and can further reduce the search
space without missing any relevant decomposition.

DEFINITION 2. We say thatSelR(P |Q) is separable(with Q
possibly empty) if we can find non-empty setsX1 andX2 such that
P ∪ Q=X1 ∪ X2 and tables(X1) ∩ tables(X2)=∅. We also say
thatX1 andX2 separateSelR(P |Q).

Intuitively, the expressionSelR(P |Q) is separable ifσP∧Q(R×)
combines some tables inR by using cartesian products. Note,
however, that even if the original query does not use any carte-
sian product, after applying atomic decompositions some factor
might become separable. Consider the non-separable expression
Sel{R, S}(R.a<10, S.b>5, R.x=S.y). After applying an atomic
decomposition, we getSel{R, S}(R.x=S.y|R.a < 10, S.b > 5)·

Sel{R, S}(R.a < 10, S.b > 5), whose second factor is separa-
ble. We now introduce the separable decomposition property.

PROPERTY2 (SEPARABLE DECOMPOSITION). Suppose that
{P1, P2} and{Q1, Q2} are partitions ofP andQ, andX1=P1 ∪
Q1 andX2 = P2 ∪Q2 separateSelR(P |Q). LetR1=tables(X1)
andR2=tables(X2). Then,

SelR(P |Q) = SelR1
(P1|Q1) · SelR2

(P2|Q2)

EXAMPLE 1. Since{T.b = 5} and {R.x=S.y, S.a < 10}
separates = Sel{R,S,T}(T.b=5, S.a < 10|R.x=S.y), we rewrite
s=Sel{R,S}(S.a < 10|R.x=S.y) · Sel{T}(T.b > 5). Here, both
resulting factors are no longer separable.

Using the separable decomposition property, we make the fol-
lowing natural assumption concerning histograms.

ASSUMPTION1 (MINIMALITY OF HISTOGRAMS). Suppose
thatSelR(P |Q) is separable asSelR1

(P1|Q1) · SelR2
(P2|Q2),

and letH be a histogram that directly approximatesSelR(P |Q).
We assume that there exist histogramsH1 andH2 approximating
SelR1

(P1|Q1) andSelR2
(P2|Q2), respectively, such that: (i)H1

andH2 combined require no more space thanH, and (ii) approxi-
matingSelR(P |Q) with H1 andH2 is as accurate as withH.

Consider, for instance,Sel{R, S}(R.a < 10, S.b > 20), which
is separable asSel{R}(R.a <10) · Sel{S}(S.b > 20). Suppose
that we estimate each factor using a unidimensional histogram on
H(R.a) and H(S.b), respectively, and then multiply the result-
ing selectivity values assuming independence (which holds in this
case). we claim that this approach is at least as accurate as directly
using a two-dimensional histogramH(R.a, S.b) built on R × S.
Since the independence assumption holds, the joint distribution
over{R.a, S.b} can be accurately modelled from unidimensional
distributions overR.a andS.b.

We can then avoid maintaining SITs that directly approximate
separable factors of decompositions, because such SITs can be re-
placed by more accurate and space-efficient ones. For that rea-
son, we can safely discard from the search space all decomposi-
tionsS = S1 · . . . · Sn for which someSi is separable, without
missing the most accurate decomposition. The separable decompo-
sition property and the minimality assumption for histograms can
substantially reduce the search space, since we avoid considering a
large number of decompositions.

In general, there is always a unique decomposition ofSelR(P)
into non-separable factors of the formSelRi

(Pi). That is, if we
start withSelR(P) and repeatedly apply separable decompositions
until no single resulting factor is separable, we always obtain the
same non-separable decomposition ofSelR(P).

LEMMA 2. There is a unique decomposition ofSelR(P) as
SelR1

(P1) · . . . · SelRn
(Pn), where eachSelRi

(Pi) is not sepa-
rable. We call it thestandard decomposition ofSelR(P).

We will use this result in the Section 3.4 to safely prune the
search space of decompositions.

3.2 Ranking Candidate Decompositions
We now define the notion oferror, which measures the (esti-

mated) accuracy of a decomposition for given SITs.

DEFINITION 3. Let s = SelR(p1, . . . , pn) be a selectivity
value, andS = S1 · . . . · Sk be a decomposition ofs, where
Si = SelRi

(Pi|Qi). If we use SITHi to approximateSi, then
error(Hi,Si) measures the accuracy ofHi approximatingSi. The
value error(Hi,Si) is a positive real number, where smaller val-
ues represent better accuracy. The (estimated) overall error for
S=S1 · . . . · Sk is given by an aggregate functionE(e1, . . . , en),
whereei = error(Hi,Si). We focus onmonotonicand algebraic
aggregate functions:

• FunctionE is monotonicif every time thatxi ≤ x′
i for all i,

we have thatE(x1, . . . , xn) ≤ E(x′
1, . . . , x

′
n). Monotonic-

ity is a reasonable property for functions measuring overall
accuracy [6, 9, 10]: if each errore′i is at least as high as
ei, then the overall errorE(e′1, . . . , e

′
n) should be at least as

high asE(e1, . . . , en).

• FunctionF is distributive if, for some functionG, it holds
thatF (x1, . . . , xn)= G(F (x1, . . . , xi), F (xi+1, . . . , xn)).
For instance,max (with G=max) andcount (with G=sum)
are distributive functions. A functionE is algebraicif there is
a functionH and distributive functionsF1, . . . , Fm such that
E(x1, . . . , xn)=H(F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)).
Function averageis algebraic (withF1=sum, F2=count,
and H(x, y) = x/y). To simplify the notation, we define
Emerge(E(x1, . . . , xi), E(xi+1, . . . , xn))=E(x1, . . . , xn)
for an algebraic functionE. Therefore, as an example, we
have thatavgmerge(avg(1, 2), avg(3, 4))=avg(1, 2, 3, 4).

Monotonicity imposes the principle of optimality for error values
(i.e., the components of a globally optimal solution are themselves
optimal), and allows a dynamic programming strategy to find the
best decomposition ofSelR(P). That is, we can find the most ac-
curate decomposition ofSelR(P) by trying all atomic decompo-
sitionsSelR(P)=SelR(P1|P2) · SelR(P2), recursively obtaining
the optimal decomposition ofSelR(P2) (only once), and combin-
ing the partial results. The key property of algebraic aggregates
is that a small fixed-size vector can summarize all necessary sub-
aggregations and therefore bounds the amount of information to
carry over between recursive calls to obtainerror values.

Below we adapt a simple error function introduced previously
in [4], and then in Section 3.5 we introduce a novel definition of
error(H,S) that significantly improves estimation quality.

Counting Independence Assumptions:The nInd error func-
tion (adapted from [4]) is simple and intuitive. We define theerror
of S = SelR1

(P1|Q1) · . . . · SelRn
(Pn|Qn), when each factor

SelRi
(Pi|Qi) is approximated usingSITRi

(Ai|Q
′
i) (Q′

i ⊆ Qi),
as the total number of independence assumptions in the approxi-
mation. Formally,

nInd({(Si, Hi)}) =
∑

i

|Pi| · |Qi − Q′
i|

where each term above represents the fact thatPi andQi − Q′
i are

assumed to be independent with respect toQi, and therefore the

number of independence assumptions is given by|Pi| · |Qi − Q′
i|.

For instance,nInd({SelR(p|q1, q2), SITR(p|q1)}) is equal to 1
(i.e., one independence assumption). It is easy to see thatnInd is
monotonic and algebraic (according to Definition 3, we have that
ei = |Pi| · |Qi −Q′

i| andE is the sum operator). Clearly,nInd is a
syntactic definition that results in rough error approximations, but
it can be computed very efficiently.

3.3 Approximating a Selectivity Factor
In general, the statistical information needed to estimate a given

SelR(P |Q) consists of multiple SITs: although simple filter con-
ditions can be approximated using a single SIT, join predicates
in general require at least two SITs. For simplicity, we slightly
modify the notation to represent SITs as follows. Consider query
expressionq= σp1∧...∧pk

(R×). We use SIT(a1, . . . , aj |q) and
SITR(a1, . . . , aj |p1, . . . , pk) interchangeably. That is, we enu-
merate the set of predicates inq overR×, which agrees with the no-
tation for selectivity values. Thus,SITR(a1, . . . , aj |p1, . . . , pk)
expresses a histogram over attributes{a1, . . . , aj} built on the re-
sult of executingσp1∧...∧pk

(R×). If there are no predicatespi in q
we writeSITR(a1, . . . , aj), which is a traditional base-table his-
togram. We now review the notion ofpredicate independencethat
we use to define the set of candidate SITs to consider for approxi-
mating a given selectivity value.

DEFINITION 4 (PREDICATE INDEPENDENCE). LetP1, P2,
andQ be sets of predicates. Then,P1 andP2 are independentwith
respect toQ if SelR(P1, P2|Q)=SelR1

(P1|Q) · SelR2
(P2|Q),

whereR1=tables(P1, Q) andR2=tables(P2, Q).

It is fairly easy to show that ifP1 andP2 are independent with
respect toQ, thenSelR(P1|P2, Q)=SelR1

(P1|Q). We use inde-
pendence between predicates as follows. ConsiderSelR(P |Q) and
suppose there are no available SITs approximatingSelR(P |Q),
but there are SITs approximatingSelR(P |Q′) for someQ′ ⊂ Q.
Then, we implicitlyassumeindependence betweenP andQ′ with
respect toQ−Q′ and use those SITs to approximateSelR(P |Q).
Using this idea we now define the candidate set of SITs to approx-
imateSelR(P |Q).

Filter Predicates
Let S=SelR(P |Q), whereP is a set of filter predicates, such as
{R.a=5 ∧ S.b > 8}. The candidate SITs to approximateS are all
SITR(A|Q′) that satisfy:

1. attr(P) ⊆ A (i.e., the SIT supports the predicates).

2. Q′ ⊆ Q (i.e., the SIT is consistent with the input query).
In this case, we assume independence betweenP andQ-Q′.
In a traditional optimizer,Q′ = ∅, soP andQ are always
assumed to be independent.

3. Q′ is maximal, that is, there is no availableSITR(A|Q′′)
such thatQ′ ⊂ Q′′ ⊆ Q.

The set of candidate SITs can be defined in a more flexible way
(e.g., acceptingSITR(A|Q′), whereQ′ subsumesQ [14]). We
only consider the candidate SITs described above since they pro-
vide a good balance between the simplicity of the procedures to
identify candidate SITs and the resulting approximation quality.

EXAMPLE 2. ConsiderS = SelR(R.a < 5|p1, p2) and the
following SITs:SITR(R.a), SITR(R.a|p1), SITR(R.a|p2), and
SITR(R.a|p1, p2, p3). In this case, the set of candidate SITs for
S include bothSITR(R.a|p1) and SITR(R.a|p2). In contrast,

SITR(R.a) does not qualify since its query expression is not max-
imal. Similarly, SITR(R.a|p1, p2, p3) does not qualify since it
contains an additional predicatep3.

Filter and Join Predicates
Consider a selectivity factorSelR(P |Q) whereP contains both
filter and join predicates (e.g.,P={R.a < 5, R.x=S.y, S.b > 5}).
We use the following observation about histograms. LetH1 =
SITR(x, X|Q) andH2 = SITR(y, Y |Q) be SITs. Ahistogram
join H1 ./x=y H2 returns not only the valueSelR(x=y|Q) for
the join, but also a new histogramH3 = SITR(x, X, Y |x=y, Q).
Therefore, we can useH3 to estimate the remaining predicates in-
volving attributesx(=y), X, andY .

EXAMPLE 3. ConsiderSelR(R.a < 5, R.x=S.y|Q) and SITs
H1 = SITR1

(R.x, R.a|Q) and H2 = SITR2
(S.y|Q). The join

H1 ./R.x=S.y H2 returns a scalar values1 representing selectiv-
ity SelR(R.x = S.y|Q), and alsoH3=SITR(R.a|R.x=S.y, Q).
We then estimates2, the selectivity of filter predicate(R.a < 5)
usingH3, and obtainSelR(R.x=S.y, R.a < 5|Q) = s1 · s2 =
SelR(R.a < 5|R.x=S.y, Q) · SelR(R.x=S.y|Q) (implicitly ap-
plying an atomic decomposition).

As the example shows, we can approximateSelR(P |Q) by get-
ting SITs covering all attributes inP , joining such SITs accord-
ingly, and finally estimating the remaining range predicates inP .
In general, the set of candidate SITs to approximateSelR(P |Q) is
conceptuallyobtained as follows:

1. We transform all join predicates inP to pairs ofwildcard
selection predicates. For the query in Example 3, predicate
R.x = S.y is replaced by{R.x =?, S.y =?}, obtaining the
selectivity expressionSelR(R.x =?, S.y =?, R.a < 5|Q).
Wildcard selection predicates represent the fact that to esti-
mate a join we need to obtain cardinality estimates for many
different regions in the join column’s domains, and the es-
timates for each column could in principle be provided by
different histograms.

2. LetP ′ be the set of predicates obtained in the previous step.
Because we replaced join predicates with filter predicates,
the resulting selectivity expression becomes separable. We
apply the separable decomposition property toSelR(P ′|Q)
and obtainSelR1

(P ′
1|Q1) · . . . · SelRk

(P ′
k|Qk), where no

factorSelRi
(P ′

i |Qi) is separable. For our running example,
we obtainSelR1

(R.x=?, R.a < 5|Q1) ·SelR2
(S.y=?|Q2).

3. Now, eachSelRi
(P ′

i |Qi) contains only filter predicates in
P ′

i , so we find each candidate set of SITs independently as
described earlier. Then, to approximate the original selectiv-
ity value with the chosen SITs{Hi}, we first join allHi on
the selection wildcard predicate attributes, and then estimate
the actual range predicates over the result, as illustrated in
Example 3.

Obtaining the best candidates
Once we obtain the candidate set of SITs to approximate a selectiv-
ity factor SelR(P |Q), we simply select the alternative that is ex-
pected to result in the most accurate estimation forSelR(P |Q) ac-
cording to the definition oferror (see Section 3.2). In other words,
we choose the alternativeH that minimizeserror(H,SelR(P |Q)).
In the next section we use the concepts introduced so far and de-
scribe an algorithm to obtain the most accurate decomposition of a
selectivity expression.

3.4 Algorithm getSelectivity
We now introducegetSelectivity(R, P), a dynamic programming

algorithm that obtains the most accurate estimation ofSelR(P) for
a givenerror function. Our technique relies on theerror function
being monotonic and algebraic, and avoids considering decompo-
sitions with separable factors (see Sections 3.1 and 3.2).

Algorithm getSelectivityis shown in Figure 3.4. Lines 1-2 test
whether the desired selectivity value was previously calculated, and
if so returns it using a lookup in the memoization table. Otherwise,
lines 4-7 handle the case in whichSelR(P) is separable. Lines
4-5 obtain the standard decomposition ofSelR(P) (Lemma 2) and
recursively callgetSelectivityfor each factorSelRi

(Pi). Then,
lines 6-7 combine the partial results. Otherwise (ifSelR(P) is
non-separable), lines 9-17 evaluateall atomic decompositions of
SelR(P)=SelR(P ′|Q)·SelR(Q). For that purpose, line 11 recur-
sively obtains the most accurate estimation (and the corresponding
error) forSelR(Q) and line 12 locally obtains the best SITH to ap-
proximateSelR(P ′|Q) among the set of available SITs (see Sec-
tion 3.3). If no SITs are available for approximatingSelR(P ′|Q),
we seterrorp|Q = ∞ and continue with the next atomic decom-
position. Lines 13-15 keep track of the most accurate decomposi-
tion for SelR(P), and after exploring all atomic decompositions,
lines 16-17 obtain the most accurate estimation forSelR(P). In
all cases, before returningSelR(P) and its associated error in line
19, getSelectivitystores these values in the memoization table. As
a byproduct ofgetSelectivity(R, P), we get the most accurate se-
lectivity estimation for every sub-queryσP ′(R×) with P ′ ⊆ P .
In Section 4 we exploit these “free” selectivity estimates when in-
tegratinggetSelectivitywith existing optimizers.

THEOREM 1. Algorithm getSelectivity(R, P) returns the most
accurate approximation ofSelR(P) for a given definition of error
among all non-separable decompositions.

The worst-case complexity ofgetSelectivity(R, P), with |P |=n,
is O(3n). In fact, the number ofdifferentcalls ofgetSelectivityis
at most2n, one for each subset ofP . Due to memoization, only
the first call for each subset ofP actually produces some work.
The running time ofgetSelectivityfor k input predicates (not count-
ing recursive calls) isO(k2) in lines 4-7 andO(2k) in lines 9-17.
Therefore, the complexity ofgetSelectivityis O(

∑n

k=1

(

n

k

)

· 2k),
orO(3n). We contrast the worst-case complexity ofgetSelectivity,
O(3n), with the lower bound of possible decompositions of Sec-
tion 2,O((n + 1)!). Since(n + 1)!/3n is Ω(2n), by using mono-
tonicerror functions we obtain an exponential decrease in the num-
ber of decompositions that are explored without missing the best
one. If many subsets ofP are separable, the running time is further
reduced, since we solve strictly smaller problems independently.

We note thatgetSelectivity, as defined in Figure 3.4, iterates over
every (different) non-separable decomposition to obtain the most
accurate selectivity estimation of an input query. This is not strictly
required and, in certain situations, the running time ofgetSelectivity
can be reduced by further pruning the search space. While this
is not the focus of this paper, we briefly comment one approach
next. If the number of available SITs is small, those SITs can
drive the search for the best decomposition instead of blindly try-
ing, in lines 10-15, a large number of atomic decompositions that
are known not to be successful. Specifically, instead of trying ev-
ery decompositionSelR(P ′|Q) · SelR(Q) in line 10, we can only
explore those decompositions that could be approximated using
some available SIT. For instance, suppose that the only SIT avail-
able is SIT(R.a|R ./ S). In this case, to approximate the value
SelR(R.a < 10, S.b > 5, R ./ S), line 10 should only explore
decompositionSelR(R.a < 10|S.b > 5, R ./ S) · SelR(S.b >

getSelectivity (R : tables, P : predicates over R×)
returns (SelR(P), errorP) with minimum errorP .
01 if (SelR(P) was already calculated)

02
(

SelR(P), errorP

)

= memo table lookup(P)
03 else if SelR(P) is separable
04 get the standard decomposition of SelR(P),

SelR(P) = SelR1
(P1) · . . . · SelRn

(Pn)
05 (SPi

, errorPi
) = getSelectivity(Ri, Pi), i = 1..n

06 SP = SP1
· . . . · SPn

07 errorP = Emerge(errorP1
, . . . , errorPn

)
08 else // SelR(P) is non-separable
09 errorP = ∞; bestH = NULL
10 for each P ′ ⊆ P, Q = P − P ′

// consider atomic decompositionSelR(P ′|Q) · SelR(Q)
11 (SQ, errorQ) = getSelectivity(R, Q)
12 (H, errorP ′|Q) = best SIT and error for

SelR(P ′|Q) // see Sections 3.3 and 3.5
13 if (Emerge(errorP ′|Q, errorQ) ≤ errorP)

14 errorP =Emerge(errorP ′|Q, errorQ)
15 bestH = H
16 SP ′|Q= estimation of SelR(P ′|Q) using bestH

17 SP = SP ′|Q · SQ

18 memo table insert(P, SP , errorP)
19 return (SP , errorP)

Figure 3: Obtaining the most accurate selectivity estimation.

5, R ./ S). Other atomic decompositions, such asSelR(S.b >
5|R.a < 10, R ./ S) · SelR(R.a < 10, R ./ S) can be safely
discarded.

Line 12 in getSelectivityobtains the SITsH that minimize the
valueerror(H,SelR(p|Q)) (see Section 3.3). In Section 3.2 we
adapted a simpleerror function from [4]. We now introduce a novel
formulation oferror that results in better estimations.

3.5 Diff : An Improved Error Function
A critical subroutine ingetSelectivityiserror(H,S), which mod-

els the estimated accuracy of approximating selectivityS using
SITsH. We identify two requirements for anyerror function:

Coarseness of available information:At first sight, it is tempt-
ing to reformulateerror as a meta-estimation problem: to
estimate the error between actual selectivity values and SIT-
approximated selectivity values, we could maintain meta-
statistics over the difference of such distributions. Thus, es-
timating error(H,S) would be equivalent to approximate
range queries over these meta-statistics. However, this ap-
proach is flawed, since if we do have such meta-statistics,
we could combine them with the original SITs and obtain
more accurate results in the first place. For instance, consider
S = SelR(R.a < 10|p1, p2) being approximated byH =
SITR(R.a|p1). If we have available meta-statisticsM to
estimate valueserror(H,SelR(c1 ≤ R.a ≤ c2|p1, p2)), we
can combineH andM to obtain new SITs that directly ap-
proximateSelR(R.a < 10|p1, p2).

Efficiency: Evaluatingerror(H,S) values must be efficient, since
error is called repeatedly in the inner loop ofgetSelectivity.
Very accurate but inefficienterror functions are not useful,
since the overall optimization time would increase and there-
fore exploiting SITs would become less attractive.

Therefore, we need efficient and coarse mechanisms to estimate
error values. ThenInd metric (see Section 3.2) satisfies these two
properties. However, many alternatives often result in the same
nInd value, and we need to break ties arbitrarily. This behavior is
problematic when there are two or more available SITs to approx-
imate a selectivity value, and while they result in the same “syn-

tactic” nInd score, the actual benefit of using each one of them is
drastically different, as illustrated in the following example.

EXAMPLE 4. ConsiderR ./
→

R.s=S.s (σS.a<10S) ./
→

S.t=T.t T ,
where both joins are defined between primary and foreign keys.
Also consider the following factor of a decomposition for the query:
S1=Sel{R,S,T}(S.a < 10|R ./ S, S ./ T). Suppose that the only
candidates to approximateS1 areH1=SIT{R,S}(S.a|R ./ S) and
H2=SIT{R,S}(S.a|S ./ T). If we use nInd, error(S1, H1) =

error(S1, H2) = 1/2, so in general each alternative would be ar-
bitrarily chosen. However,H1 is a much better choice thanH2.
In fact, sinceS ./S.t=T.t T is a foreign-key join, the distribution
of S.a over the result ofS ./S.t=T.t T is exactly the same as the
distribution ofS.a over base tableS. Therefore,S ./S.t=T.t S is
actually independent ofS.a < 10, andH2 provides no benefit over
the base histogramH(S.a).

Inspired by the example above, we define an improved error
function,Diff , as follows. Suppose first that we associate with each
available SITH=SITR(R.a|Q) a single value0 ≤ diff H ≤ 1 that
measures the discrepancy between the distribution ofR.a on the
base table and that ofR.a on the result of executing query expres-
sionQ. In particular,diff H = 0 when the two distributions are the
same, anddiff H grows up to1 when such distributions are very dif-
ferent (note that, in general, there are multiple possible distributions
for whichdiff H = 1, but only one for whichdiff H = 0). Consider
H=SITT (R.a|Q). If we denoteT ′ to the result of evaluatingQ
overT × (i.e.,T ′ = σQ(T ×)), we definediff as follows2:

diff H = 1/2 ·
∑

x∈dom(a)

∣

∣

∣

∣

f(R, x)

|R|
−

f(T ′, x)

|T ′|

∣

∣

∣

∣

wheref(R, x) andf(T ′, x) are the frequencies of valuex in R
andT ′ respectively. The valuediff H measures the deviation of
frequencies between the base table distribution and the result of
executingH ’s query expression. Values ofdiff are calculated just
once and stored with each SIT, so there is no overhead at runtime.
We can calculatediff SITR(a|Q) when we createSITR(a|Q) by
inspecting actual data tuples, but that might impose a certain over-
head to the query processor to get valuesf(R, a) if the tuples are
not sorted by attributea. Instead, we approximatediff H by ma-
nipulating bothSITR(a|Q) and the corresponding base-table his-
togram on columna. This procedure is similar to techniques that
approximate joins using histograms, but we omit the details due to
space constraints.

Usingdiff values, theDiff error function provides a less syntactic
notion of independence. In particular, the overallerror value for a
decompositionS = SelR1

(P1|Q1) · . . . · SelRn
(Pn|Qn) when

approximated usingH1, . . . , Hn is:

Diff ({(Si, Hi)}) =
∑

i

|Pi| · (1 − diff Hi
)

Intuitively, the values(1 − diff Hi
) above represent the “semantic”

degree of independence when approximatingSi with Hi, and re-
place the “syntactic” value|Qi − Q′

i| of nInd (see Section 3.2).
In Example 4,diff H2

= 0, and H2 effectively contributes the
same as a base-table histogramH(S.a), so in that case the er-
ror function is 1 (the maximum possible value). In contrast, for
H1=SIT{R, S}(S.a|R ./ S), the more different the distributions
of S.a onS and on the result of executingR ./ S, the more likely
thatH1 encodes dependencies betweenS.a and{R ./ S, S ./ T},
and the lower the overall error value.
2A similar metric,µcount, is proposed in [13] to compare two histogram
distributions.

Of course,Diff is just a heuristic ranking function and has some
natural limitations. For instance, it uses a single number (diff H)
to summarize the amount of divergence between two distributions.
However, as we will see in Section 5,Diff is much more robust and
accurate thannInd with almost no additional overhead.

4. INTEGRATION WITH AN OPTIMIZER
In this section we show howgetSelectivitycan be integrated with

rule-based optimizers. Forq = σp1∧...∧pk
(R×), getSelectivityre-

turns the most accurate selectivity estimation for bothq and all its
sub-queries (i.e.,SelR(P) for all P ⊆ {p1, . . . , pk}). A simple
approach to incorporategetSelectivityinto an existing rule-based
optimizer is to executegetSelectivity beforeoptimization starts, and
then use the resulting memoization table to answer selectivity re-
quests over arbitrary sub-queries. Instead, we propose to interleave
the execution ofgetSelectivitywith the optimizer’s own search strat-
egy. This way,getSelectivitycan be integrated into current optimiz-
ers with very small changes. In Section 4.1 we describe Cascades,
a framework used in current optimizers. Then, in Section 4.2 we
show how we can couplegetSelectivitywith the search strategy of
a Cascades-based optimizer.

4.1 Cascades-based Optimization
Cascades is one state-of-the-art rule-based optimization frame-

work used in current optimizers such as Tandem’s NonStop SQL
and Microsoft SQL Server. During the optimization of an input
query, a Cascades-based optimizer keeps track of many alterna-
tive sub-plans that could be used to evaluate the query. Sub-plans
are grouped into equivalence classes, and each equivalence class
is stored as a separate node in a memoization table. Thus, each
node in the memo contains a list of logically equivalent alternatives
explored so far. Each entry in a memo node has the form

[

op, {parm1, . . . , parmk}, {input1, . . . , inputn}
]

whereop is a logical operator, such asjoin, parmi are parameters
for the operator (such as the range for afilter operator, or the
columns for ajoin operator), andinputj are pointers to other
memo nodes (i.e., classes of equivalent sub-queries) that represent
the input values to the operator.

EXAMPLE 5. The memo node at the top of Figure 4 groups to-
gether all the query plans explored so far that are equivalent to
(σR.a<10(R)) ./R.x=S.y (σS.b>20(S)). The first entry in this top
node,

[

SELECT, {R.a < 10}, {R ./R.x=S.y (σS.b>20(S))}
]

, cor-
responds to a filter operator, with parameterR.a < 10, applied to
the node that groups all equivalent alternatives to sub-expression
R ./R.x=S.y (σS.b>20(S)). Similarly, the second entry in the top
node corresponds to a join operator applied to two other nodes.

During optimization, each node in the memo is populated by
applying transformation rulesto the set of explored alternatives.
Rules consist of antecedent and consequent patterns, and optional
applicability conditions. For instance, the first entry at the top node
of Figure 4 could have been obtained from the second entry by
applying the transformation rule below, which pulls out selections
above join predicates:

[T1] ./ (σP [T2]) ⇒ σP ([T1] ./ [T2])

whereT1 andT2 are placeholders for arbitrary sub-queries.

4.2 Integrating getSelectivitywith Cascades
We now discuss how algorithmgetSelectivitycan be integrated

with a Cascades-based optimizer. Specifically, we couple the exe-
cution ofgetSelectivitywith the optimizer’s own search strategy. As

1) SELECT (b>20,)
ghij
k

lmnopqrstuv

1) SELECT (a<10,)
wxyj
z

lmno{q|}~uv

2) JOIN (x=y, ,)
1) SELECT (a<10,)

lmno{q��pq��{q|}~u�pqrstuv

wxyj ghij
z k

lmno{q|}~u�{q��pq��pqrstuv�lmno{q��pq��pqrstuv

1) GET(S)k1) GET(R)z

lmno{q��pq��{q|}~u�pqrstuv�lmno{q|}~u�pqrstuv�lmno{q��pq��{q|}~u�pqrstuv�lmno{q|}~uv�p��opqrstuv

lmno{q��pq��pqrstuv�lmnopqrstuv

ghijz

k
1) JOIN (x=y, ,)
2) ...

lmno{q��pq��pqrstuv

3) ...

Figure 4: Intermediate memo in a Cascades-based optimizer.

we will see, the pruning is guided by the optimizer’s own heuristics,
and therefore might preventgetSelectivityfrom finding the most
accurate estimation for some selectivity values. However, the over-
head imposed to an existing optimizer is very small and, as we will
see, the overall increase in quality can be substantial.

Consider an input SPJ queryq = σp1∧...∧pk
(R×). As explained

in Section 4.1, each node in the memoization table of the optimizer
groups alternative representations of a sub-query ofq. Therefore,
we can estimate the selectivity of the sub-query represented by each
nodeN in the memo, orSelR(P) for P ⊆ {p1, . . . , pk}. More
importantly, eachentry in N is associated with adecompositionof
the sub-query represented byN . This is illustrated below.

EXAMPLE 5. (cont.) Consider again the node at the top of
Figure 4, which groups all equivalent alternatives for evaluating
(σR.a<10(R)) ./R.x=S.y (σS.b>20(S)). The second entry in such
node (thejoin operator) can be associated with decomposition
Sel{R,S}(R.x = S.y|R.a < 10, S.b > 20) · Sel{R,S}(R.a <
10, S.b > 20). The first factor of this decomposition is approxi-
mated using available SITs as explained in Section 3. The second
factor is separable asSel{R}(R.a < 10) · Sel{S}(S.b > 20). We
obtain the estimated selectivity of each factor of the separable de-
composition above by simply examining the corresponding memo
nodes (the input of thejoin entry we are processing). Finally, we
multiply such estimations and the first factor of the atomic decom-
positionSel{R,S}(R.x=S.y|R.a < 10, S.b > 20) to obtain a new
estimation forSel{R,S}(R.x=S.y, R.a < 10, S.b > 20).

As hinted in the previous example, each entryE in a memo node
N divides the set of predicatesP that are represented byN into two
groups: (i) the parameters ofE , denotedpE , and (ii) the predicates
in the set that are input toE , denotedQE=P–pE . We then asso-
ciate the decompositionSelR(P) = SelR(pE |QE) · SelR(QE)
with entryE . We note that to obtain the best SITs to approximate
SelR(pE |QE) we can reuse the view matching sub-routines in the
optimizer and exploit theproperty derivationframework in Cas-
cades, but we omit those details in this paper. It is fairly easy
to show that for each operator inE , SelR(QE) is separable into
SelR1

(Q1
E) · . . . · SelRk

(Qk
E), where eachSelRi

(Qi
E) is associ-

ated with thei-th input ofE .
In summary, we restrict the set of decompositions in line 10 of

getSelectivityto those induced by the optimization search strategy.
Each time we apply a transformation rule that results in a new entry
E in the node associated withSelR(P), we obtain the decomposi-
tion S = SelR(pE |QE) · SelR(QE), and keep the decomposition
with the best estimated accuracy. We discuss the overhead imposed
to a traditional optimizer experimentally in the following section.

5. EXPERIMENTS
In this section, we experimentally studygetSelectivityusing both

nInd and Diff as the underlying error functions, and compare it
against the approach of [4]. As we will see, using conditional selec-
tivity values results in more accurate estimations than when solely
relying on materialized view matching to exploit SITs. Also, when
usingDiff , thegetSelectivityapproximations are close to being op-
timal. For our experiments we use the following setting:

Data Sets: We generate a synthetic database with a snowflake
schema, consisting of 8 tables with 1K to 1M tuples and 4 to 8
attributes. Attribute values are generated with different degrees of
skew and correlation. Additionally, some foreign-key joins do not
satisfy referential integrity. In such situations, for a foreign-key
join R ./

→

S, we chose a certain percentage of tuples inR (between
5% and 20%) and replace the join attribute in those tuples with
NULL values. The choice of the dangling tuples is either random
or correlated with attribute values.

Workloads: Each workload consists of 100 randomly generated
SPJ queries, with parametersJ (number of join predicates) andF
(number of filter predicates). In our experiments, we setF to three3

and varyJ from 3 to 7. For each query, we choose filter predicates
such that the selectivity of each one is around 0.05. If the query
result is empty, we progressively stretch the filter ranges until at
least one tuple is present in the result. We also used predicates with
selectivities around 0.5 and obtained similar trends, but we believe
that those queries are less frequent in real applications, so we omit
those results.

Available SITs: We experiment with different pools of available
SITs. Each SIT is a unidimensionalmaxDiffhistogram [22] with at
most 200 buckets. Each set of SITsJi contains all histograms of the
form SITR(a|Q), whereQ consists ofat mosti join predicates,
and bothQ anda are syntactically present in some query in the
workload (J0 contains all and only base-table histograms). The
number of available SITs ranged from 82 (forJ1) to 680 (forJ7).

Techniques Compared:We implemented the technique of [4],
which we refer to asGVM (for Greedy View Matching), and sev-
eral variations of the algorithmgetSelectivity. In particular, we
implementedGS-nInd, the variation that counts the number of in-
dependence assumptions, andGS-Diff, the variation that uses ad-
ditional information about the data distribution. We also imple-
mentedGS-Opt, which uses the actual difference between the true
selectivityS and the approximation usingH to defineerror(H,S):
this definition oferror is the best possible one, but is only of the-
oretical interest since it cannot be implemented efficiently (it in-
spects the actual data). Finally, we implementednoSit, which mim-
ics current optimizers and exploits base-table histograms only.

Metrics: We compare the accuracy of the different techniques
as follows. For each queryq in the workload, we first estimate the
cardinality of each sub-query ofq using the different techniques.
Then, we evaluate each sub-query to obtain its actual cardinality
value, and finally obtain the average estimation error over all sub-
series ofq. We average this individual result over each query in the
workload. A comprehensive study on how plans are affected by the
estimation techniques proposed in this paper is part of future work.

5.1 Comparison with Previous Approaches
We first compareGVM againstGS-nInd, so that the error func-

tion in getSelectivityagrees with that of the greedy procedure in
GVM. Any difference in accuracy is then due togetSelectivityex-

3We obtained similar results when using more filter predicates.

ploring the full search space, and not caused by an improved error
function such asDiff . Figure 5 shows a two-dimensional graph,
where each point represents one query in a workload consisting of
3- to 7-way join queries. Thex- andy-axes represent the abso-
lute cardinality error for each query usingGVM andgetSelectivity,
respectively. As shown in the figure, all points lie under the line
x = y, which means thatGS-nIndresults in consistently better car-
dinality estimates thanGVM. The reason is that the search space
in GVM is a strict subset of the space of decompositions explored
by GS-nInd. In addition,GVM uses a greedy technique to itera-
tively select SITs, which further reduces the set of decompositions
explored. AlthoughGS-nIndis based on the same metric to rank
candidate SITs, it can result in absolute errors that are as much as
80% lower than those of theGVM technique.

0

20000

40000

60000

80000

0 20000 40000 60000 80000
Absolute Error for GVM

A
b

s
o

lu
te

 E
rr

o
r

fo
r

G
S

-n
In

d

Figure 5: Accuracy of GS-nIndvs. GVM.

To compare the efficiency of both techniques, we proceed as fol-
lows. BothGVM andgetSelectivityshare the same view match-
ing algorithm in their inner loops to select SITs (GVM during the
greedy procedure, andgetSelectivityas a subroutine in line 12).
We then chose to compare the average number of calls to the view
matching routine4, shown in Figure 6 for bothgetSelectivityand
GVM, and for different workloads. The dynamic programming al-
gorithm used bygetSelectivityresults in drastically fewer calls, de-
spite searching the whole space of decompositions. AlthoughGVM
is more efficient thangetSelectivityfor a single invocation, it does
not exploit commonalities between different sub-plans, and thus re-
sults in even 5 times as many view matching calls asgetSelectivity.

0

1000

2000

3000

4000

5000

6000

7000

3 5 7
Number of Joins in Input Queries

N
um

be
r o

f "
vi

ew
 m

at
ch

in
g"

in

vo
ca

tio
ns

GS-nInd GVM

Figure 6: Efficiency of GS-nIndvs. GVM.

To summarize, in this section we experimentally established the
superiority ofGS-nIndoverGVM, both in terms of accuracy and ef-
ficiency, for SPJ queries. We now take a closer look atgetSelectivity
and compareGS-nIndandGS-Diff.
4We also compared execution times and the trends were similar to those
presented here.

5.2 Accuracy ofgetSelectivity
Figure 7 shows the average absolute error for workloads of 3-, 5-,

and 7-way join queries. In all cases, the absolute error is reduced
drastically when all SITs with join query expressions (J7) are avail-
able (e.g., the average absolute error is reduced from 62,466 to
1,679 in Figure 7(a)). In particular,GS-Diff is very close to the
optimal strategyGS-Opt, and results in considerably more accu-
rate estimations thanGS-nInd. For GS-Diff, the largest reduction
in error occurs forJ1 andJ2. In our experiments, SITs with 2-
and 3-way join query expressions are responsible for most of the
accuracy gains.

5.3 Efficiency ofgetSelectivity
Figure 8 shows the average execution time ofGS-Diff for dif-

ferent input workloads (results forGS-nIndare very similar). We
partition the execution time ofgetSelectivityinto two components.
Thedecomposition analysisis the time spent to process the differ-
ent decompositions and choose the best candidate SITs. Thehis-
togram manipulationcorresponds to line 16 ofgetSelectivityand
measures the actual estimation of selectivity values using the se-
lected SITs. The reason for this division is that different techniques
choose different histograms to estimate the same selectivity values.
Different histograms take different amounts of time to estimate the
same predicates, so we report these components separately.

Figure 8 shows that, in general,getSelectivityresults in a small
overhead overnoSit, under 6 milliseconds in all scenarios (under 4
milliseconds if we also consider the histogram manipulation com-
ponent). We note that the overhead ofgetSelectivityis proportional
to the number of candidates considered in the algorithm, and scales
gracefully with the number of available SITs. For instance, in Fig-
ure 8,getSelectivityexecutes in around 6 msecs. forJ1 (with 82
SITs), and in around 9 msecs. forJ7 (with 680 SITs).

In conclusion, we expect that the overhead ofgetSelectivityin a
real optimizer will be very small, since Figure 8 accounts for just
a portion of the total optimization time. Other components, such
as sophisticated rule-based engines, also contribute to the overall
optimization time.

6. RELATED WORK
Virtually all optimization frameworks (e.g., [15, 17, 24]), rely

on statistics over base tables in the database to choose the most
efficient execution plan in a cost-based manner. There is a large
body of work that studies representation of statistics on a given col-
umn [18, 19, 21, 22] or combination of columns [1, 5, 16, 20, 23].
In this paper we rely on existing histogram techniques and focus on
approximating attribute distributions over query expressions.

The idea of building statistics over non-base tables first appears
(implicitly) in [2]. This reference introducesjoin synopses, which
are pre-computed samples of a small set of distinguished joins.
Joins must be defined between foreign and primary keys, and there-
fore a single sample for each table is enough to provide approxi-
mate answers for a large number of queries. The idea is to con-
ceptually materialize the extended table obtained by applying all
foreign-key joins, and then take a uniform sample over this result.
Reference [11] extends this approach by introducingicicles, a new
class of samples that tune themselves to a dynamic workload. In-
tuitively, the probability of a tuple being present in an icicle is pro-
portional to its importance for answering queries in the workload.

References [4, 26] introduced the concept of statistics on query
expressions (or views), and showed how to incorporate them into
existing query optimizers. Specifically, the idea in [4] is to trans-
form each input query sub-plan into an equivalent one that exploits

1000

10000

100000

J0 J1 J2 J3
(a) Available Statistics .

A
bs

ol
ut

e
E

rr
or

noSit

GS-nInd

GS-Diff

GS-Opt

1000

10000

100000

J0 J1 J2 J3 J4 J5
(b) Available Statistics .

A
bs

ol
ut

e
E

rr
or

noSit

GS-nInd

GS-Diff

GS-Opt

1000

10000

100000

J0 J1 J2 J3 J4 J5 J6 J7
(c) Available Statistics .

A
bs

ol
ut

e
E

rr
or

noSit

GS-nInd

GS-Diff

GS-Opt

Figure 7: Average absolute error for (a) 3-, (b) 5-, and (c) 7-way
join queries.

SITs, leveraging materialized view matching techniques [7, 14].
The transformation step is based on a greedy procedure that selects
which SITs result in the transformed plan using the minimal num-
ber of independence assumptions. In this work we critically ana-
lyze the main drawbacks of the techniques in [4, 26]. We propose
a novel framework to reason with SITs and an efficient algorithm
that returns the optimal decomposition of a selectivity value.

Similar to previous work in self-tuning histograms [1, 5], refer-
ence [25] presents an online algorithm that repairs incorrect statis-
tics and cardinality estimates of a query execution plan. By moni-
toring previously executed queries, [1, 5, 25] compute adjustments
to base-table statistics that might be used during future query opti-
mizations. The key difference with our approach is that [25] main-
tains a single adjusted histogram per attribute and still relies on the
independence assumption during cardinality estimation. However,
the adjustments are done in such a way that the cardinality of the
processed query is correctly calculated despite assuming indepen-
dence. Instead, we rely on different statistics for the same attribute
depending on its particular context in the corresponding query plan.

References [8, 12] use conditional probability concepts to model
multidimensional distributions. Reference [12] shows how to use
probabilistic relational models to approximate the joint distribu-

0

1

2

noSit J1 J2 J3
(a) Available Statistics .

Ex
ec

ut
io

n
Ti

m
e

(m
ill

is
ec

on
ds

)

Histogram Manipulation

Decomposition Analysis

0

1

2

3

4

5

6

7

noSit J1 J2 J3 J4 J5
 (b) Available Statistics .

Ex
ec

ut
io

n
Ti

m
e

(m
ill

is
ec

on
ds

)

Histogram Manipulation

Decomposition Analysis

0

3

6

9

12

15

18

noSit J1 J2 J3 J4 J5 J6 J7
(c) Available Statistics .

Ex
ec

ut
io

n
Ti

m
e

(m
ill

is
ec

on
ds

)

Histogram Manipulation

Decomposition Analysis

Figure 8: Execution time for (a) 3-, (b) 5-, and (c) 7-way join
queries.

tion of multiple attributes in one table, or in different tables that
are combined using foreign-key joins. It uses the concept of con-
ditional independence between attributes to decompose the rep-
resentation of a join distribution into factors that capture the ac-
tual independencies that hold in the data domain, therefore ob-
taining a compact representation of the actual distribution. This
work mostly focuses on point queries and assumes that each at-
tribute has a small discrete domain. With a similar motivation,
reference [8] uses statistical interaction models to explicitly iden-
tify and exploit the statistical characteristics of the underlying data.
The rationale is that real tables are characterized by complex cor-
relation patterns, where a certain subset of the attributes can be
(unconditionally) independent of another attribute subset, or, alter-
natively, can be (conditionally) independent of given a third subset
of attributes. The idea in [8] is to break the statistics (e.g., multidi-
mensional histograms) into (i) an interaction model that accurately
captures significant correlation and independence patterns in data,
and (ii) a collection of lower-dimensional histograms that, based
on the model, can provide accurate approximations of the over-
all joint data distribution. We believe that the ideas introduced in
both [8] and [12] can be fairly easily incorporated into our frame-
work of Section 3. If we can infer from the data distribution that

some predicates are conditionally independent of others, we can
apply semanticversions of the “separable decomposition” prop-
erty to further reduce the space of decompositions. As a sim-
ple example, considerSelR(p1, p2, p3). If we can infer thatp1

is conditionally independent ofp2 given p3 using the techniques
described above, we can decompose the given selectivity value as
SelR(p1, p2, p3) = SelR(p1|p2) · SelR(p2, p3) without relying
on any assumption, such as independence.

7. SUMMARY
In this paper we introduced the novel framework of conditional

selectivity to reason with selectivity values. This framework allows
us to identify the space of decompositions to approximate selec-
tivity values for a given set of available SITs with high efficiency
and accuracy. We designed a dynamic programming algorithm,
getSelectivity, that returns the most accurate selectivity estimation
for an input query.getSelectivitycan be integrated with existing op-
timizers by coupling its execution with the optimizer’s own search
strategy. Our preliminary experiments show thatgetSelectivityre-
sults in much more accurate estimations than previous approaches
(both the ones that consider SITs or rely on base-table statistics
only), and that the expected overhead ofgetSelectivityis small
enough to increase overall performance of current optimizers.

Acknowledgments
We thank Luis Gravano and Cesar Galindo Legaria for providing
valuable feedback on earlier versions of this paper.

8. REFERENCES
[1] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms:

Building histograms without looking at data. InProceedings
of the ACM International Conference on Management of
Data (SIGMOD), 1999.

[2] S. Acharya et al. Join synopses for approximate query
answering. InProceedings of the ACM International
Conference on Management of Data (SIGMOD), 1999.

[3] N. Bruno. Statistics on query expressions in relational
database management systems. Ph.D. thesis, Columbia
University, 2003.

[4] N. Bruno and S. Chaudhuri. Exploiting statistics on query
expressions for optimization. InProceedings of the ACM
International Conference on Management of Data
(SIGMOD), 2002.

[5] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A
multidimensional workload-aware histogram. InProceedings
of the ACM International Conference on Management of
Data (SIGMOD), 2001.

[6] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k
queries over web-accessible databases. InProceedings of the
International Conference on Data Engineering, 2002.

[7] S. Chaudhuri et al. Optimizing queries with materialized
views. InProceedings of the International Conference on
Data Engineering (ICDE), 1995.

[8] A. Deshpande, M. Garofalakis, and R. Rastogi.
Independence is good: Dependency-based histogram
synopses for high-dimensional data. InProceedings of the
ACM International Conference on Management of Data
(SIGMOD), 2001.

[9] R. Fagin. Fuzzy queries in multimedia database systems. In
Proceedings of the Seventeenth ACM Symposium on
Principles of Database Systems, June 1998.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. InProc. of the Twentieth ACM
Symposium on Principles of Database Systems, 2001.

[11] V. Ganti, M.-L. Lee, and R. Ramakrishnan. Icicles:
Self-tuning samples for approximate query answering. In
Proceedings of the International Conference on Very Large
Databases (VLDB), 2000.

[12] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation
using probabilistic models. InProceedings of the ACM
International Conference on Management of Data
(SIGMOD), 2001.

[13] P. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histograms. InProceedings of
the 23rd International Conference on Very Large Databases
(VLDB), 1997.

[14] J. Goldstein and P.-A. Larson. Optimizing queries using
materialized views: A practical, scalable solution. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD), 2001.

[15] G. Graefe. The Cascades framework for query optimization.
Data Engineering Bulletin, 18(3), 1995.

[16] D. Gunopulos et al. Approximating multi-dimensional
aggregate range queries over real attributes. InProceedings
of the ACM International Conference on Management of
Data (SIGMOD), 2000.

[17] L. M. Haas et al. Extensible query processing in Starburst. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD), 1989.

[18] H. V. Jagadish et al. Optimal histograms with quality
guarantees. InProceedings of the 24th International
Conference on Very Large Databases (VLDB), 1998.

[19] A. C. Konig and G. Weikmun. Combining histograms and
parametric curve fitting for feedback-driven query result-size
estimation. InProceedings of the 25th International
Conference on Very Large Databases (VLDB), 1999.

[20] M. Muralikrishna and D. J. DeWitt. Equi-depth histograms
for estimating selectivity factors for multidimensional
queries. InProceedings of the ACM International
Conference on Management of Data (SIGMOD), 1988.

[21] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of
the number of tuples satisfying a condition. InProceedings
of the ACM International Conference on Management of
Data (SIGMOD), 1984.

[22] V. Poosala et al. Improved histograms for selectivity
estimation of range predicates. InProceedings of the ACM
International Conference on Management of Data
(SIGMOD), 1996.

[23] V. Poosala and Y. E. Ioannidis. Selectivity estimation without
the attribute value independence assumption. InProceedings
of the 23rd International Conference on Very Large
Databases (VLDB), 1997.

[24] P. G. Selinger et al. Access path selection in a relational
database management system. InProceedings of the ACM
International Conference on Management of Data, 1979.

[25] M. Stillger et al. LEO - DB2’s learning optimizer. In
Proceedings of the 27th International Conference on Very
Large Databases (VLDB), 2001.

[26] F. Waas, C. Galindo-Legaria, M.-C. Wu, and M. Joshi.
Statistics on views. InProceedings of the 29th International
Conference on Very Large Databases (VLDB), 2003.

APPENDIX

Proofs

PROPERTY1 (ATOMIC DECOMPOSITION). Given a set of ta-
blesR and sets of predicatesP andQ:

SelR(P, Q) = SelR(P |Q) · SelR(Q)

Proof: Using the definition of conditional selectivity, the above
equality is expressed as:

|σP∧Q(R×)|

|R×|
=

|σP

(

σQ(R×)
)

|

|σQ(R×)|
·
|σQ(R×)|

|R×|

or, equivalently,

|σP∧Q(R×)| = |σP (σQ(R×))|

which always holds in relational algebra.

LEMMA 1. The number of possible decompositions of
SelR(p1, . . . , pn), denotedT (n), is bounded by

0.5 · (n + 1)! ≤ T (n) ≤ 1.5n · n!, for all n ≥ 1

Proof: The number of decompositions ofSelR(P), where|P | =
n, is given by the following equation:

T (n) =

{

1 if n = 1
∑n

i=1

(

n

i

)

· T (n − i) otherwise

In fact, for each1 ≤ i ≤ n, we can first decomposeSelR(P)
into SelR(P1|P2) · SelR(P2), where|P1| = i and |P2| = n −
i. Then, we recursively obtain all decompositions forSelR(P2).
After some manipulation, it follows that

T (n + 1) =
n

∑

i=0

(

n + 1

i

)

· T (i) =

(n + 1) · T (n) +

n−1
∑

i=0

n + 1

n + 1 − i
·

(

n

i

)

· T (i)

The fraction in the summation above satisfy1 ≤ n+1
n+1−i

≤ n+1
2

(for i = 0 andi = n− 1, respectively). From the first inequality, it
follows thatT (n+1) ≥ (n+1) ·T (n)+T (n) = (n+2) ·T (n).
By solving this simpler recurrence, we conclude thatT (n + 1) ≥
0.5 · (n + 2)!, as desired. The remaining bound follows from an
analogous analysis of the second inequality:T (n + 1) ≤ 1.5n+1 ·
(n + 1)!.

PROPERTY2 (SEPARABLE DECOMPOSITION). Suppose that
{P1, P2} and {Q1, Q2} are partitions ofP and Q, respectively,
and X1=P1 ∪ Q1 and X2 = P2 ∪ Q2 separateSelR(P |Q).
Let R1=tables(X1) and R2=tables(X2). Then,SelR(P |Q) =
SelR1

(P1|Q1) · SelR2
(P2|Q2).

Proof: Let T = R− (R1 ∪R2). We have that:

SelR(P |Q) = SelR1 ∪ R2 ∪ T (P1, P2|Q1, Q2) =definition ofSel

|σP1∧P2
(σQ1∧Q2

(R×
1 ×R×

2 × T ×))|

|σQ1∧Q2
(R×

1 ×R×
2 × T ×)|

=relational algebra

|σP1∧Q1
(R×

1)| · |σP2∧Q2
(R×

2)| · |T ×|

|σQ1
(R×

1)| · |σQ2
(R×

2)| · |T ×|
=definition ofSel

SelR1
(P1|Q1) · SelR2

(P2|Q2)

LEMMA 2. There is a unique decomposition ofSelR(P) as
SelR1

(P1) · . . . · SelRn
(Pn), where eachSelRi

(Pi) is not sepa-
rable. We call it thestandard decomposition ofSelR(P).

Proof: Suppose that there are two standard decompositions ofS,
namelyS1 = SelR1

(P1)·. . .·SelRm
(Pm) andS2 = SelS1

(Q1)·
. . . · SelSn

(Qn) of SelR(P). SinceS1 andS2 are different and
∪iPi = ∪jQj = P , there must be a pair(Pi, Qj) such thatPi 6=
Qj andPi∩Qj 6= ∅. LetXi,j = Pi∩Qj . Then,Xi,j andPi−Xi,j

separateSelRi
(Pi). To prove that, letTi,j = tables(Xi,j). It is

fairly easy to show thatTi,j ⊆ Ri andTi,j ⊆ Sj . Also, by defini-
tion of S2, Qj andP − Qj separateSelR(P), so no single predi-
cate fromP references attributes inSj andR−Sj simultaneously.
Therefore, no predicate inP references attributes inTi,j ⊆ Sj and
(Ri − Ti,j) ⊆ (R − Sj), which essentially means thatXi,j and
Pi − Xi,j separateSelRi

(Pi). Analogously,Ti,j andQj − Ti,j

separateSelSj
(Qj). Therefore, neither decomposition above is

standard.

THEOREM 1. Algorithm getSelectivity(R, P) returns the most
accurate approximation ofSelR(P) for a given definition of error
among all non-separable decompositions.

Proof: [Sketch] We prove the theorem by induction on|P |. The
base case (|P | = 1), is trivially verified. For the general case, if
S = SelR(P) is non-separable, line 10 exhaustively explores all
atomic decompositions ofS. Using the inductive hypothesis and
the principle of optimality oferror we prove the inductive step for
this case. Otherwise, ifS is separable, we show that we do not
miss any non-separable decomposition ofS by processing instead
its standard decomposition (lines 4-7). ConsiderS = SelR(P, Q),
whereP and Q separateS, and letS ′=SelR(P1, Q1|P2, Q2) ·
SelR(P2, Q2) be an arbitrary atomic decomposition ofS. Both
factors ofS ′ are separable, so applying the separable decomposi-
tion property it follows thatS ′ = SelR(P1|P2) · SelR(Q1|Q2) ·
SelR(P2) · SelR(Q2). We then know thatS ′ is explored from
SelR(P) · SelR(Q), the standard decomposition ofS. Therefore,
we do not miss any non-separable decomposition and again, by
using the inductive hypothesis and the monotonicity oferror, we
prove the theorem.

