Conditional Selectivity for Statistics on Query Expressions

Nicolas Bruno Surajit Chaudhuri
Microsoft Research Microsoft Research
nicolasb@microsoft.com surajitc@microsoft.com
ABSTRACT table statistics, SITs are created on the result of executing some

query expression. (Note that although in this paper we focus on
fying assumptions that usually do not hold in practice. To dimin- SITs as histograms, the same ideas can be applied to other statisti-
ish the impact of inaccurate estimates during optimization, statis- Ca! €stimators, such as wavelets or samples). SITs can then be used

tics on query expressions (SITs) have been previously proposed.to directly mo_del thle distribu_t(ij(_)n OT tples Mermediatlmpdesfog
These statistics help directly model the distribution of tuples on dUErY execution plans, avoiding inaccurate extrapolation of base-

query sub-plans. Past work in statistics on query expressions hadable histograms. The bene_fits of usi_ng_ SITs during optimization
exploited view matching technology to harness their benefits. In are analogqu; to thgse ofusing ma'terlallzed VIEWS for query execu-
this paper we argue against such an approach as it overlooks signif-t'og' maﬁ?rlallzeg VIews speeld .upS:_rIl_pult_kque_rles_ by pre-cc&un;lputlng
icant opportunities for improvement in cardinality estimations. We &N caching sub-query resu s, S lIKeWISe Increaseatioel-
then introduce a framework to reason with SITs based on the no- "2y of _cardlnal_lty estimates of input queries by pre-computing and
tion of conditional selectivity. We present a dynamic programming mc(’éje”"_]g theﬁ'safg’g'an of mte_rm::a_dlate rlesults_l._ btain i di
algorithm to efficiently find the most accurate selectivity estimation -onsider the -1 query in gure (@). O, obtain its carci-
for given queries, and discuss how such an approach can be incornality, _a_tradltlonal optimizer proceeds as follows: (i) estimates the
porated into existing optimizers with a small number of changes. S€lectivity ofnation="USA’ ,andmgal-}’rlce}mOK using his-
Finally, we demonstrate experimentally that our technique results [09'ams ovecustomer . nation andorders.totalprice, re-

in superior cardinality estimations than previous approaches with spectively, (ii) multiplies these selectivity values together assum-

very little overhead. .

Cardinality estimation during query optimization relies on simpli-

ing independence, (iii) estimates the cardinality of the three-way
join lineitem < orders < customer, and (iv) scales down the
join cardinality by the combined selectivity of the filter predicates
1. INTRODUCTION (again assuming independence). Now suppose that our TPC-H

Relational query optimizers explore a large number of execu- database is skewed. Specifically, the number of line-items for a
tion plans to evaluate an input query, and choose the most effi- given order follows a Zipfian distribution. In such a case, although
cient alternative in a cost-based manner. The cost estimation forthe fraction (or selectivity) of expensive orders withttal price
a plan depends on several factors, including resource availability, > 100K is very small, the fraction of line-items that match with
the specific operators composing the plan, and the size of inter- such orders can be very large (with respect to the whole join). The
mediate results that would be generated during the plan execution.reason is that expensive orders typically consist of many line-items.
Among these factors, the intermediate-result size (or cardinality) For that reason, the original cardinality estimation can be a severe
estimation is one of the key sources of inaccuracies during opti- underestimate. Intuitively, the problem arises from assuming inde-
mization. To estimate cardinality values, the optimizer relies on pendence between predicatestal price>100K andlineiten
several simplifying assumptions (e.g., independence between pred< orders. Similarly, if the majority of customers live in the US,
icates), which often do not hold. Thus, resulting cardinality esti- the same problem also arises from predieateion =" USA’.
mates can be off by orders of magnitude and lead the optimizer to Now suppose that we create a SIT fertal_price on the result
choose low-quality execution plans. of evaluatingLO = lineitem i< orders (we denote such SIT as

To diminish error propagation through complex query plans, the SIT(LO.total price|lineitem > orders)). Then, using tech-
concept of statistics on query expressions (or on views) was intro- Niques in [4], we rewrite the original query of Figure 1(a) into the
duced in [4, 26]. Borrowing the terminology from [4], in this paper ~€quivalent query of Figure 1(b), which exploits the SIT. (Refer-
we refer to these statistics as “SITs”. SITs have the same structureence [4] identifies whether or not a SIT is applicable to a given plan

and functionality as base-table statistics. However, unlike base- leveraging materialized view matching techniques.) We now esti-
mate the query cardinality using the SIT instead of the base-table

histogram ovebrders.total_price, obtaining a more accurate
estimate (the SIT correctly models the interaction between expen-

Permission to make digital or hard copies of all or part of thizkfor sive orders and the number of line items that join with them). Sim-
personal or classroom use is granted without fee providatidbpies are ilarly, if we create SITOC.nation|orders b customer), we can
not made or distributed for profit or commercial advantage, hatidopies rewrite the original query of Figure 1(a) into the equivalent query

bear this notice and the full citation on the first page. Toyootherwise, to of Figure 1(c) to obtain, again, a better cardinality estimate.

republish, to post on servers or to redistribute to listguiees prior specific If in our sample databageoth filter predicates are skewed, the
ermission and/or a fee. .o -

g,GMOD 2004June 13-18, 2004, Paris, France. cardinality obtained when using any one of the available SITs in

Copyright 2004 ACM 1-58113-859-8/04/06 $5.00.

0]

O.total price>1(00K AND C.nation='US’ C.nation='US’ O.total_price>100K
> customer C 10.total_price>100K customer C lineitem L O oc purionerusr
r L.O oC
lineitem L orders O] o
SIT(LO.total_price|lineitem[dorders) SIT(OC.nation|orders ™ customer)
(a) Original Query. (b) Using SIT obineitem b orders. (c) Using SIT ororders < customer.

Figure 1: Exploiting SITs using view matching.

isolation can still be an arbitrary underestimation (although more instead is a general framework to decide how to best (and correctly)
accurate than if no SITs are used). In general, if two or more SITs use available SITs together to estimate cardinality values.
are available, it is a good idea to use them together (whenever pos- In this paper we focus on the class8H#J queries (see [3] for
sible) to estimate cardinality values: each SIT might correct errors extensions that handle optior@oup-By clauses) and introduce a
introduced in different parts of the input query. Unfortunately, in systematic and comprehensive approach to decide how to exploit
Figure 1 there is no transformation, based purely on view matching multiple (possibly conflicting) SITs to estimate cardinality values.
techniques, that exploits both SIEsnultaneously The reason is As we show in Section 5, our technique results in estimation errors
that the SITs query expressions are mutually exclusive from a view that can be an order of magnitude smaller than those obtained by
matching perspective. previous approaches for the same set of available SITs.
As shown in Figures 1 and 2, there are in general different alter-
N natives to exploit available SITs for cardinality estimation. Since
/\ our goal is to obtain accurate cardinality estimations, we need a
procedure to “rank” different alternatives based on their expected
accuracy (we address this issue in Sections 3.2 and 3.5). Unfortu-

O.total price>1Q0K C.naticn="US’

qu l>|4 nately, as we show in Section 2, there is a combinatorial explosion

PN PN of alternatives to approximate cardinality values for given SITs.
D} customer C D} customer C To address this problem, we study some properties that can sig-
/\ /\ nificantly prune the search space without missing the most accu-
Lineifem I onders O lineifem I orders O rate alternatives, and introduce an efficient, dynamic-programming

based algorithm to enumerate this smaller search space. Since car-
dinality estimation is an integral aspect of query optimization, the
proposed techniques should be aware and exploit certain properties

(a) Rewriting the original query.

N of the optimization process. For instance, during the optimization
/\ of a single query, many selectivity requests would refer to “similar”
> X query plans (g.g., itis likely that.be.fore requesting an estimatioq fpr
/\ /\ the plan of Figure 1(a), the optimizer already requested selectivity
O, otat pricesioon customer ¢ Lineitem L Oorcionroe estimates for many of its sub-plans). It is then important that our
L‘o O‘C technique reuses previous computations during the optimization of
the same query to satisfy new selectivity requests.
In this paper we address the challenges discussed above by intro-
STT(10.total_price|lineitenbdorders) ducing the concept afonditional selectivityWe develop a frame-
ST7(0C. nation|ordersbeustoner) work that, given a set of SITs, allows us to easily identify and effi-
(b) Using both SITs simultaneously. ciently search théull space of alternatives to obtain accurate esti-
Figure 2: Exploiting SITs beyond view matching. mates by exploiting SITs. We can draw an analogy between the use

of SITs and work in traditional query optimization. During opti-

Alternatively, consider the following approach: if we were to mization, algebraic properties (e.g., associativity and commutativ-
rewrite the original query of Figure 1(a) as in Figure 2(a), then we ity of joins) provide different equivalent logical plans to represent
could exploit SITs as explained earlier for each sub-query of the in- the same input query. In this paper, conditional selectivity proper-
tersection operator (see Figure 2(b)) and obtain the final cardinality ties result in many alternative ways (we call thdecompositions
estimate by assuming independence only at the root node. By us-to estimate the same selectivity value. Optimizers efficiently navi-
ing both SITs simultaneously, we eliminate one independence as-gate through these equivalent logical plans guided by a cost model,
sumption compared to the alternatives in Figures 1(b) and 1(c). Of and choose a set of access paths (e.g., sequential or index ecans)
course, this example relies on a special rewriting that is typically implement each logical plan. Analogously, we suggest a dynamic
not explored by optimizers. However, it shows that purely relying programming algorithmgetSelectivitythat exploits the structure
on the existing view matching infrastructure provided by the opti- of the input query to efficiently search the space of decompositions,
mizer falls short of capturing the whole spectrum of alternatives to and identifies the “best” way to approximate a selectivity value us-
exploit SITs for cardinality estimation. It also shows that the best ing SITs. In particular, SITs are the implementation mechanism
cardinality estimate that can be obtained using previous techniquesto approximate decompositions, and the searajeiSelectivitys
(e.g., [4]) might be significantly more inaccurate than what is pos- guided by the expected benefit of each alternative.
sible to accomplish using the available information. What we need

The rest of the paper is structured as follows. In Section 2 we in-
troduce conditional selectivity. In Section 3 we present a dynamic
programming algorithm to find the most accurate cardinality esti-
mation using SITs. In Section 4 we show how the algorithm can
be integrated with relational optimizers. We report experimental
results in Section 5 and review related work in Section 6.

2. CONDITIONAL SELECTIVITY

In the previous section we illustrated how relying purely on view

matching techniques to exploit SITs can sometimes hinder accurate

cardinality estimations. We now introduce the conceptarfdi-
tional selectivityand then discuss how it relates to SITs. Condi-
tional selectivity allows expressing the selectivity of a given SPJ
query in many different but equivalent ways. In this paper, we rep-
resent an arbitrary SPJ query ircanonical formby first forming

the cartesian product of the tables referenced in the query, then ap
plying all predicates (including joins) to such cartesian product,
and finally projecting out the desired attributes. Thus, we represent
a generic SPJ query as.,,....a,, (TpiA...Apn, (1 X ... X Ry))
wherea; are attributes ofR; x ... x R,, andp; are predicates
overR; x ... x R, (e.9.,R1.a < 25, or Ri.z=R»>.y). Each set

of predicates{p; } applied toR; x ... x R, results in the subset

of tuples thasimultaneouslatisfy allp;. To estimate the size of
the output, or its cardinality, we first approximate the fraction of
tuplesinR; x ... X R, that simultaneously satisfy all predicates
p; (i.e., theselectivityof all p;), and then multiply such fraction by
|R1 X ... X Ry|, which can be obtained by simple lookups over
the system catalogs. We now extend the definition of selectivity.

DEFINITION 1. LetR ={Ri,...,R,} be asetoftables, and
P = {p1,...,p;}and @ = {q,...,qx} be sets of predicates
over Ry X ... x R,. Theconditional selectivitySelr (P|Q) is
defined as the fraction of tuplesdn, a...aq, (R1 X ... X R,) that
simultaneously satisfy all predicates i Therefore,

_ |O’p1/\.“/\pj (Uql/\.“/\qk (R1 X ...X Rn))|
|ogiA.ng, (R1 X ... X Ry)|

If @ = 0 we write Selr (P), which coincides with the original
definition of selectivity.

Selr(P|Q)

We denote the set of tables referenced by a set of predifaass
tableg P), and the set of attributes mentioneditmasattr(P). To
simplify the presentation, we also usk Q" to denote ‘PUQ" and
“p, Q" to denote {p}UQ", wherep is a predicate an& andQ are
sets of predicates. Finally, for a set of tabfes= {Ri,..., R},
we useR ™ to refer to the cartesian produt x ... x R,.

In general, for a given quemy,, a...ap, (R™), our task is to esti-
mateSelz (p1,...,pr). The key property of conditional selectiv-
ity is atomic decompositigrwhich uses the notion of conditional
probability to unfold a selectivity value as the product of two con-
ditional selectivity values.

PROPERTY1 (ATOMIC DECOMPOSITION. Givenasetofta-
blesR and sets of predicateB and Q:

Selr (P, Q) = Selr (P|Q) - Selr(Q)

This property holds for arbitrary sets of predicates and tables,
without relying onany simplifying assumptiorAn atomic decom-
position divides the problem of estimatifeiz (P, Q) into two
sub-problems (estimatin§el= (P|Q) andSelr (Q)). The decom-
position property is essential to develop a framework for exploiting
SITs. In fact, we will rely on available SItgo estimate the first

lDetermining which SITs to use (and how to use them) to approxiraat
selectivity factor is discussed in Section 3.3.

factorSelr (P|Q). For instance, we can use SH.a|R 1 S) to
approximateSel g g (R.a<10|R < S). In turn, if Q consists of
a single predicate we use a standard technique to estimate the sec-
ond factorSelr (Q), or otherwise recursively apply another atomic
decomposition t&elr (Q).

By repeatedly applying atomic decompositions, we might obtain
a very large number of alternative expressions for a given selec-
tivity value, which we simply caldecompositionsA decomposi-
tion of a given selectivity value is then an expression of the form
S1 - ... Sk, where eactS; = Selg, (P;|Q:) andQy = 0. If
each factoSel, (P;|Q:) is calculated precisely, then every pos-
sible decomposition ofelr (P) evaluates to the same value (be-
cause we obtain each alternative decomposition through a series
of equalities). However, in real scenarios only a small number of
SITs are available. It follows that, depending on the set of SITs
at hand, some decompositions might be more accurate than oth-

ers. Suppose that we assign to each decomposition of a selectivity
value Selr (P) a measure of how accurately the decomposition
can be approximated using the current set of available SITs. Then,
estimatingSelr (P) can be seen as an optimization problem: we
want to obtain the “most accurate” decompositiorSet (P) for

the given set of available SITs (see Section 3.2 for our definition
of accuracy). In principle, we could explore exhaustively all pos-
sible decompositions afelr (P), estimate the accuracy of each
decomposition and return the most accurate one. Unfortunately,
this approach is prohibitively expensive given the large number of
possibilities, as illustrated below.

LEMMA 1. The number of possible decompositions of
Selr(p1,-..,pn), denotedl’(n), is bounded by

05 -(n+ 1) <T(n) <1.5"-nl, forallm > 1

In the next section we introduce a comprehensive approach to
obtain the most accurate cardinality estimation for a given query
and a set of available SITs. We discuss how diceuracyof a
decomposition is measured and derive a dynamic programming al-
gorithm that efficiently returns the most accurate decomposition of
a given selectivity value.

3. OBTAINING THE BEST SELECTIVITY
ESTIMATION

Conditional selectivity provides a framework for exploiting SITs
to obtain query cardinality estimates. Unfortunately, the space of
decompositions of a given selectivity value can be very large. In
Section 3.1 we discuss how to safely prune this search space (with-
out missing the most accurate decomposition) by leveraging some
properties of conditional selectivity values. Then, in Section 3.2
we discuss how to estimate the accuracy of a given decomposition
(which in turn allows us to rank different decompositions). Next,
in Section 3.3 we show how to exploit available SITs to approxi-
mate a single factor in a decomposition. In Section 3.4 we derive
an dynamic-programming algorithm that returns the most accurate
decomposition for a selectivity value (we also show that the com-
plexity of the algorithm is drastically reduced compared to the ap-
proach that enumerates all alternative decompositions). Finally, in
Section 3.5 we introduce an improved procedure to rank alternative
decompositions that results in better estimations than the simple
metric described in [4] (see Section 5 for experimental results).

3.1 Safely Pruning Decompositions

In this section we introduce the notion of “separability” of a de-
composition. Theseparabilityproperty can be seen as a syntactic

notion of independence that allows simplifying a selectivity value

LEMMA 2. There is a unique decomposition 8&ir (P) as

whenever certain properties hold, and can further reduce the searchSelr, (P1) - ... - Selg, (P.), Where eaclSelr, (P;) is not sepa-

space without missing any relevant decomposition.

DEFINITION 2. We say thaSelr (P|Q) is separabléwith @
possibly empty) if we can find non-empty s€tsand X; such that
P UQ=X; U X, and table$X;) N tableg X>)=0. We also say
that X; and X, separatsSelr (P|Q).

Intuitively, the expressioelr (P|Q) is separable ifpag (R ™)
combines some tables iR by using cartesian products. Note,

however, that even if the original query does not use any carte-
sian product, after applying atomic decompositions some factor Valué, andS = S -

rable. We call it thestandard decomposition Sfelx (P).

We will use this result in the Section 3.4 to safely prune the
search space of decompositions.
3.2 Ranking Candidate Decompositions

We now define the notion ofrror, which measures the (esti-
mated) accuracy of a decomposition for given SITs.

DEFINITION 3. Lets = Selz(p1,...,pn) be a selectivity
... - Sk be a decomposition of, where

might become separable. Consider the non-separable expressiof®: = S€lr, (Fi|Q:). If we use SITH; to approximateS;, then

Sel(g, 5}(R.a<10, S.b>5, R.x=S.y). After applying an atomic
decomposition, we gefelr g)(R.2=S.y|R.a <10,S.b > 5)-
Sel(g, S}(R.a < 10,S8.b > 5), whose second factor is separa-
ble. We now introduce the separable decomposition property.

PROPERTY2 (SEPARABLE DECOMPOSITION. Suppose that
{P1, P>} and{Q1, Q2} are partitions ofP and@, and X;=P; U
Q1 and X, = P,UQ; separateSelr (P|Q). LetR,=tableg X)
andR.=tableg X3). Then,

Selr (P|Q) = Selr, (P1|Q1) - Selr, (P2|Q2)

ExampLE 1. Since{T.b = 5} and {R.z=S.y,S.a < 10}
separates = Selr s 7(T.b=5,5.a < 10|R.z=S.y), we rewrite
s=Selyr.g(S.a < 10|R.x=5.y) - SelyTy(T.b > 5). Here, both
resulting factors are no longer separablp.

Using the separable decomposition property, we make the fol-
lowing natural assumption concerning histograms.

ASSUMPTION1 (MINIMALITY OF HISTOGRAMS). Suppose
thatSelr (P|Q) is separable aselr, (P1|Q1) - Selr, (P2]Q2),
and letH be a histogram that directly approximat&elz (P|Q).
We assume that there exist histografis and H, approximating
Selr, (P1|Q1) andSelg, (P2|Q2), respectively, such that: (1
and H, combined require no more space than and (ii) approxi-
matingSelr (P|Q) with H; and H; is as accurate as witlf.

Consider, for instance§el g, 51 (R.a < 10, S.b > 20), which
is separable aSel;ry(R.a <10) - Sel;s1(S.b > 20). Suppose

that we estimate each factor using a unidimensional histogram on

H(R.a) and H(S.b), respectively, and then multiply the result-

ing selectivity values assuming independence (which holds in this
case). we claim that this approach is at least as accurate as directl

using a two-dimensional histograffi(R.a, S.b) built on R x S.

Since the independence assumption holds, the joint distribution

over {R.a, S.b} can be accurately modelled from unidimensional
distributions overR.a andS.b.

We can then avoid maintaining SITs that directly approximate
separable factors of decompositions, because such SITs can be r

placed by more accurate and space-efficient ones. For that rea-
son, we can safely discard from the search space all decomposi-

tionsS = S; - ... - S, for which someS; is separable, without

missing the most accurate decomposition. The separable decompoof S = Selg, (P1|Q1) -

sition property and the minimality assumption for histograms can

e-

error(H;, S;) measures the accuracy &f; approximatingsS;. The
value erroi(H;, S;) is a positive real number, where smaller val-
ues represent better accuracy. The (estimated) overall error for
S§=8; - ... - Sk is given by an aggregate functidii(es, . .., exn),
wheree; = error(H;,S;). We focus omonotonicand algebraic
aggregate functions:

e Function E is monotonicif every time thatr; < z; for all 4,
we have that(x1, ..., z,) < E(x},..., ;). Monotonic-
ity is a reasonable property for functions measuring overall
accuracy [6, 9, 10]: if each errok; is at least as high as
e;, then the overall erroF (e, . . . , e},) should be at least as
highasE(es,...,en).

Function F' is distributiveif, for some functiorG, it holds
thatF(xl, ce ,{En): G(F({Bl, ceey l’i), F({Ei+1, c. ,ZEn))
For instance max (with G=max) and count (with G=sum)
are distributive functions. A functiof is algebraidf there is
afunctionH and distributive function$h, . . . , F,,, such that
E(z1,...,zn)=H(F1(z1,...,Zn)y- .., Fn(z1,. .., 20)).
Function averageis algebraic (with Fi=sum, F>=count,
and H(z,y) = z/y). To simplify the notation, we define
Emerge(E(z1, ... 2:), E(Tig1,...,2n))=E(z1,...,Tn)
for an algebraic functiont. Therefore, as an example, we
have thatavg,,, ... (avg(l,2), avg(3,4))=avg(1, 2, 3,4).

Monotonicity imposes the principle of optimality for error values
(i.e., the components of a globally optimal solution are themselves
optimal), and allows a dynamic programming strategy to find the
best decomposition &elz (P). That is, we can find the most ac-
curate decomposition delr (P) by trying all atomic decompo-
sitionsSelr (P)=Selr (P1|P2) - Selr (P2), recursively obtaining
the optimal decomposition &elr (P2) (only once), and combin-

¥ng the partial results. The key property of algebraic aggregates

is that a small fixed-size vector can summarize all necessary sub-
aggregations and therefore bounds the amount of information to
carry over between recursive calls to obtafror values.

Below we adapt a simple error function introduced previously
in [4], and then in Section 3.5 we introduce a novel definition of
error(H, S) that significantly improves estimation quality.

Counting Independence Assumptions:The nind error func-
tion (adapted from [4]) is simple and intuitive. We define éneor
... Selr, (Pn|@Qn), Wwhen each factor
Selg, (P:]Q;) is approximated usingITx, (A:|Q}) (@} C Qu),

substantially reduce the search space, since we avoid considering @s the total number of independence assumptions in the approxi-

large number of decompositions.

In general, there is always a unique decompositio§@fz (P)
into non-separable factors of the forfielir, (P;). That is, if we
start withSelr (P) and repeatedly apply separable decompositions
until no single resulting factor is separable, we always obtain the
same non-separable decompositioefr (P).

mation. Formally,

nind({(S:, Hi)}) = Z 1P| 1Q: — Qi

where each term above represents the factFhandQ; — Q; are
assumed to be independent with respec®to and therefore the

number of independence assumptions is givepry- |Q; — Q;).

For instancenind({Selz (p|q1,g2), SIT=(plg1)}) is equal to 1
(i.e., one independence assumption). It is easy to seethdis
monotonic and algebraic (according to Definition 3, we have that
e; = |P;|-|Qi — Qj| andE is the sum operator). Clearlyindis a
syntactic definition that results in rough error approximations, but
it can be computed very efficiently.

3.3 Approximating a Selectivity Factor

In general, the statistical information needed to estimate a given
Selr (P|Q) consists of multiple SITs: although simple filter con-
ditions can be approximated using a single SIT, join predicates
in general require at least two SITs. For simplicity, we slightly
modify the notation to represent SITs as follows. Consider query
expressiony= op, a...ap, (R*). We use SlTaq,...,a;|q) and
SITr(a1,...,a;|p1,...,pr) interchangeably. That is, we enu-
merate the set of predicatesgioverR *, which agrees with the no-
tation for selectivity values. Thus§ITr(aq,...,a;|p1,...,Dk)
expresses a histogram over attribufes, . . ., a; } built on the re-
sult of executingry, a...ap, (R™). If there are no predicates in ¢
we write SITz (a1, ..., a;), which is a traditional base-table his-
togram. We now review the notion pfedicate independendbat
we use to define the set of candidate SITs to consider for approxi-
mating a given selectivity value.

DEFINITION 4 (PREDICATE INDEPENDENCH. LetPy, Ps,
and@ be sets of predicates. Thefs, and P, are independentvith
respect toQ if SelR(Pl, P2|Q):361R1 (P1|Q) . Sele (PQ‘Q),
whereR=tableg P, Q) and R.=tables(P, Q).

It is fairly easy to show that i, and P, are independent with
respect tal), thenSelr (P1| Pz, Q)=Selr, (P1|Q). We use inde-
pendence between predicates as follows. Consldgt (P|Q) and
suppose there are no available SITs approximafabz (P|Q),
but there are SITs approximatidiz (P|Q’) for someQ’ C Q.
Then, we implicitlyassumendependence betwedhand@’ with
respect ta) — Q' and use those SITs to approxim&elz (P|Q).
Using this idea we now define the candidate set of SITs to approx-
imateSelr (P|Q).

Filter Predicates

Let S=Selr (P|Q), whereP is a set of filter predicates, such as
{R.a=5 A S5.b > 8}. The candidate SITs to approximaseare all
SITr(A|Q") that satisfy:

1. attr(P) C A (i.e., the SIT supports the predicates).

2. Q' C Q (i.e., the SIT is consistent with the input query).
In this case, we assume independence betdandQ-Q’.
In a traditional optimizerQ’ = @, so P andQ are always
assumed to be independent.

3. @' is maximal that is, there is no availabl§ITx (A|Q")
such that)’ c Q" C Q.

The set of candidate SITs can be defined in a more flexible way
(e.g., acceptingITr (A|Q’), where@’ subsumes) [14]). We

SITr(R.a) does not qualify since its query expression is not max-
imal. Similarly, SITx (R.a|p1, p2, p3s) does not qualify since it
contains an additional predicates. il

Filter and Join Predicates

Consider a selectivity factafelr (P|Q) where P contains both
filter and join predicates (e.gP={R.a < 5, R.xz=S.y, S.b > 5}).
We use the following observation about histograms. Het =
SITr(z,X|Q) andH, = SITr(y,Y|Q) be SITs. Ahistogram

join Hy t<i;—, H, returns not only the valu§elr (z=y|Q) for

the join, but also a new histografis = SITx (z, X, Y |z=y, Q).
Therefore, we can usH; to estimate the remaining predicates in-

volving attributesc(=y), X, andY'.

ExAaMPLE 3. ConsiderSelr (R.a < 5, R.z=S.y|Q) and SITs
H, = SITR,(R.x,R.a|Q) and Hy = SITR,(S.y|Q). The join
H, Rr.»—s.y Ho returns a scalar value; representing selectiv-
ity Selz (R.x = S.y|Q), and alsoH3=SITr (R.a|R.z=S.y, Q).
We then estimate;, the selectivity of filter predicatéR.a < 5)
using Hs, and obtainSelr (R.z=S.y, R.a < 5|Q) = s1 - s2 =
Selr(R.a < 5|R.z=8.y, Q) - Selr (R.z=S.y|Q) (implicitly ap-
plying an atomic decompositior§.

As the example shows, we can approximsitér (P|Q) by get-
ting SITs covering all attributes i®, joining such SITs accord-
ingly, and finally estimating the remaining range predicate®.in
In general, the set of candidate SITs to approxindatk: (P|Q) is
conceptuallyobtained as follows:

1. We transform all join predicates iR to pairs ofwildcard
selection predicatesFor the query in Example 3, predicate
R.xz = S.yisreplaced by R.x =7, S.y =7}, obtaining the
selectivity expressiofelr (R.x =?,S.y =7, R.a < 5|Q).
Wildcard selection predicates represent the fact that to esti-
mate a join we need to obtain cardinality estimates for many
different regions in the join column’s domains, and the es-
timates for each column could in principle be provided by
different histograms.

. Let P’ be the set of predicates obtained in the previous step.
Because we replaced join predicates with filter predicates,
the resulting selectivity expression becomes separable. We
apply the separable decomposition propert$tdr (P’ |Q)
and obtainSelg, (P1|Q1) - ... - Selr, (P|Qk), where no
factorSelr, (P{|Q:) is separable. For our running example,
we obtainSelr, (R.2=7, R.a < 5|Q1)-Selgr, (S.y=?|Q2).

. Now, eachSelg, (P/|Q:) contains only filter predicates in
P/, so we find each candidate set of SITs independently as
described earlier. Then, to approximate the original selectiv-
ity value with the chosen SITEH; }, we first join all H; on
the selection wildcard predicate attributes, and then estimate
the actual range predicates over the result, as illustrated in
Example 3.

Obtaining the best candidates

only consider the candidate SITs described above since they pro-Once we obtain the candidate set of SITs to approximate a selectiv-

vide a good balance between the simplicity of the procedures to
identify candidate SITs and the resulting approximation quality.

ExAaMPLE 2. ConsiderS = Selr(R.a < 5|p1,p2) and the
following SITs:SITR (R.a), SITr (R.a|p1), SITr (R.a|p2), and
SITr(R.alp1,p2,ps). In this case, the set of candidate SITs for
S include bothSITr (R.a|p1) and SITx (R.a|pz). In contrast,

ity factor Selr (P|Q), we simply select the alternative that is ex-
pected to result in the most accurate estimatiorsidi: (P|Q) ac-
cording to the definition oérror (see Section 3.2). In other words,
we choose the alternativ¢ that minimizeserror(H, Selz (P|Q)).

In the next section we use the concepts introduced so far and de-
scribe an algorithm to obtain the most accurate decomposition of a
selectivity expression.

3.4 Algorithm getSelectivity

We now introduceyetSelectivityR, P), a dynamic programming
algorithm that obtains the most accurate estimatiaficdf: (P) for
a givenerror function. Our technique relies on tleeror function
being monotonic and algebraic, and avoids considering decompo-
sitions with separable factors (see Sections 3.1 and 3.2).

Algorithm getSelectivitys shown in Figure 3.4. Lines 1-2 test
whether the desired selectivity value was previously calculated, and
if so returns it using a lookup in the memoization table. Otherwise,
lines 4-7 handle the case in whidelx (P) is separable. Lines
4-5 obtain the standard decompositiorSef = (P) (Lemma 2) and
recursively callgetSelectivityfor each factorSelr, (P;). Then,
lines 6-7 combine the partial results. OtherwiseS§#ir (P) is
non-separable), lines 9-17 evaluaté atomic decompositions of
Selr (P)=Selr (P'|Q)-Selr(Q). For that purpose, line 11 recur-

sively obtains the most accurate estimation (and the corresponding

error) forSelr (@) and line 12 locally obtains the best SH'to ap-
proximateSelr (P’'|Q) among the set of available SITs (see Sec-
tion 3.3). If no SITs are available for approximatiSgiz (P'|Q),

we seterror, o = oo and continue with the next atomic decom-
position. Lines 13-15 keep track of the most accurate decomposi-
tion for Selr (P), and after exploring all atomic decompositions,
lines 16-17 obtain the most accurate estimation§etz (P). In

all cases, before returningel (P) and its associated error in line
19, getSelectivitystores these values in the memoization table. As
a byproduct ofgetSelectivitfiR, P), we get the most accurate se-
lectivity estimation for every sub-quewyp/(R*) with P’ C P.

In Section 4 we exploit these “free” selectivity estimates when in-
tegratinggetSelectivityvith existing optimizers.

THEOREM 1. Algorithm getSelectivifyR, P) returns the most
accurate approximation aelr (P) for a given definition of error
among all non-separable decompositions.

The worst-case complexity getSelectivityR, P), with | P|=n,
is O(3™). In fact, the number oflifferentcalls of getSelectivitys
at most2™, one for each subset df. Due to memoization, only
the first call for each subset @? actually produces some work.
The running time ofetSelectivityor k£ input predicates (not count-
ing recursive calls) i€ (k?) in lines 4-7 and?(2) in lines 9-17.
Therefore, the complexity afetSelectivitys O(3"7_, (7) - 2),
or O(3™). We contrast the worst-case complexitygetSelectivity
O(3™), with the lower bound of possible decompositions of Sec-
tion 2,0((n + 1)!). Since(n + 1)!/3™ is (2™), by using mono-
tonicerror functions we obtain an exponential decrease in the num-
ber of decompositions that are explored without missing the best
one. If many subsets d? are separable, the running time is further
reduced, since we solve strictly smaller problems independently.

We note thagetSelectivityas defined in Figure 3.4, iterates over
every (different) non-separable decomposition to obtain the most
accurate selectivity estimation of an input query. This is not strictly
required and, in certain situations, the running timgetSelectivity
can be reduced by further pruning the search space. While this
is not the focus of this paper, we briefly comment one approach
next. If the number of available SITs is small, those SITs can
drive the search for the best decomposition instead of blindly try-
ing, in lines 10-15, a large number of atomic decompositions that
are known not to be successful. Specifically, instead of trying ev-
ery decompositioelr (P’'|Q) - Selr (Q) in line 10, we can only
explore those decompositions that could be approximated using
some available SIT. For instance, suppose that the only SIT avail-
able is SITR.a|R > S). In this case, to approximate the value
Selr(R.a < 10,5.b > 5, R < S), line 10 should only explore
decompositiorSelr (R.a < 10|S.b > 5, R S) - Selr(S.b >

getSelectivity (R : tables, P : predicates over R*)

returns (Selg (P),errorp) with minimum errorp.

01 if (Selr(P) was already calculated)

02 (Selr (P),errorp) = memo_table_lookup(P)

03 else if Selr(P) is separable

04 get the standard decomposition of Selg(P),

Selr(P) = Selg, (P1) - ... Selg, (Pn)

05 (Sp,,errorp,) = getSelectivit(R;, P;), i=1..n

06 Sp:Spl'...~Spn

07 errorp = Emerge(errorp,,...,errorp,)

08 else [/ Selr(P) is non-separable

09 errorp = oo; bestH = NULL

10 for each PP C P, Q=P - P

/I consider atomic decompositidelk (P’|Q) - Selr (Q)

11 (Sq,errorg) = getSelectivit R, Q)

12 (H,errorps|g) = best SIT and error for
Selr (P'|Q) Il see Sections 3.3 and 3.5

13 if (Emerge(errorp/‘Q7 errorg) < errorp)

14 error p=Emerge(errorp/|g, errory)

15 bestH = H

16 Sprig= estimation of Selg(P’|Q) using bestH

17 Sp = Sp/‘Q -So

18 memo_table_insert(P, Sp, errorp)

19 return (Sp, errorp)

Figure 3: Obtaining the most accurate selectivity estimation.

5,R 1 S). Other atomic decompositions, such&dx (S.b >
5|R.a < 10,R 1 S) - Selr(R.a < 10, R > S) can be safely
discarded.

Line 12 in getSelectivityobtains the SITS that minimize the
valueerror(H, Selr (p|Q)) (see Section 3.3). In Section 3.2 we
adapted a simplerror function from [4]. We now introduce a novel
formulation oferror that results in better estimations.

3.5 Diff: An Improved Error Function

A critical subroutine irgetSelectivitys error(H, S), which mod-
els the estimated accuracy of approximating selectiitysing
SITsH. We identify two requirements for argrror function:

Coarseness of available information:At first sight, it is tempt-
ing to reformulateerror as a meta-estimation problem: to
estimate the error between actual selectivity values and SIT-
approximated selectivity values, we could maintain meta-
statistics over the difference of such distributions. Thus, es-
timating error(#, S) would be equivalent to approximate
range queries over these meta-statistics. However, this ap-
proach is flawed, since if we do have such meta-statistics,
we could combine them with the original SITs and obtain
more accurate results in the first place. For instance, consider
S = Selr(R.a < 10|p1,p2) being approximated by =
SITr(R.alp1). If we have available meta-statistigsl to
estimate valuesrror(H, Selr (c1 < R.a < c2|p1,p2)), we
can combineH and. M to obtain new SITs that directly ap-
proximateSelr (R.a < 10[p1, p2).

Efficiency: Evaluatingerror(,S) values must be efficient, since
error is called repeatedly in the inner loop gétSelectivity
Very accurate but inefficiergrror functions are not useful,
since the overall optimization time would increase and there-
fore exploiting SITs would become less attractive.

Therefore, we need efficient and coarse mechanisms to estimate
error values. Thenlnd metric (see Section 3.2) satisfies these two
properties. However, many alternatives often result in the same
nind value, and we need to break ties arbitrarily. This behavior is
problematic when there are two or more available SITs to approx-
imate a selectivity value, and while they result in the same “syn-

tactic” nind score, the actual benefit of using each one of them is
drastically different, as illustrated in the following example.

EXAMPLE 4. ConsiderR > ,_g s (05.a<105) Mg 7. T,
where both joins are defined between primary and foreign keys.
Also consider the following factor of a decomposition for the query:
S1=Selir s (S.a < 10|R > S, S > T'). Suppose that the only
candidates to approximat®, are H,=SIT g g (S.a|R > S) and
Hy=SIT(r g (S.a|S > T). If we use nind, errciSy, Hy) =
error(S1, H2) = 1/2, so in general each alternative would be ar-
bitrarily chosen. HoweverH; is a much better choice thaHo.

In fact, sinceS is..—7.. T is a foreign-key join, the distribution
of S.a over the result o5 s =7+ T is exactly the same as the
distribution of S.a over base table5. Therefore,S <ig¢—7.+ S is
actually independent &f.a < 10, and H» provides no benefit over
the base histogrant/ (S.a). il

Inspired by the example above, we define an improved error
function,Diff , as follows. Suppose first that we associate with each
available SITH=SIT (R.a|Q) a single valu® < diff , < 1 that
measures the discrepancy between the distributioR.afon the
base table and that dt.a on the result of executing query expres-
sion@. In particulardiff ; = 0 when the two distributions are the
same, andiff ;; grows up tol when such distributions are very dif-

ferent (note that, in general, there are multiple possible distributions

for which diff ; = 1, but only one for whictdiff ;, = 0). Consider
H=SIT7(R.a|Q). If we denote7” to the result of evaluating
over7* (i.e., 7' = og(T™)), we definediff as follows:

f(R,x) f(T' x)
Ieg;n(a) |R| 7|

diff ; = 1/2-

where f(R,z) and f (7', z) are the frequencies of valuein R
and 7" respectively. The valudiff ;; measures the deviation of

frequencies between the base table distribution and the result of

executingH'’s query expression. Values dfff are calculated just

once and stored with each SIT, so there is no overhead at runtime

We can calculateliff ¢, ., 0, When we createsITr (a|Q) by

inspecting actual data tffples, but that might impose a certain over-

head to the query processor to get valfiéR, a) if the tuples are
not sorted by attribute. Instead, we approximatdiff ;, by ma-
nipulating bothST7T» (a|Q) and the corresponding base-table his-
togram on columne. This procedure is similar to techniques that

Of courseDiff is just a heuristic ranking function and has some
natural limitations. For instance, it uses a single numbédf)
to summarize the amount of divergence between two distributions.
However, as we will see in SectionBiff is much more robust and
accurate thanlnd with almost no additional overhead.

4. INTEGRATION WITH AN OPTIMIZER

In this section we show hogetSelectivitgan be integrated with
rule-based optimizers. Fgr= op, r...np, (R™), getSelectivitye-
turns the most accurate selectivity estimation for hptnd all its
sub-queries (i.eSelz (P) forall P C {p1,...,pr}). A simple
approach to incorporatgetSelectivityinto an existing rule-based
optimizer is to executgetSelectivity beforeptimization starts, and
then use the resulting memoization table to answer selectivity re-
quests over arbitrary sub-queries. Instead, we propose to interleave
the execution ofietSelectivitwvith the optimizer's own search strat-
egy. This waygetSelectivitgan be integrated into current optimiz-
ers with very small changes. In Section 4.1 we describe Cascades,
a framework used in current optimizers. Then, in Section 4.2 we
show how we can couplgetSelectivityith the search strategy of
a Cascades-based optimizer.

4.1 Cascades-based Optimization

Cascades is one state-of-the-art rule-based optimization frame-
work used in current optimizers such as Tandem’s NonStop SQL
and Microsoft SQL Server. During the optimization of an input
query, a Cascades-based optimizer keeps track of many alterna-
tive sub-plans that could be used to evaluate the query. Sub-plans
are grouped into equivalence classes, and each equivalence class
is stored as a separate node in a memoization table. Thus, each
node in the memo contains a list of logically equivalent alternatives
explored so far. Each entry in a memo node has the form

[op, {parma,...,parm}, {inputy, ... input,}]

whereop is a logical operator, such §8in, parm, are parameters

for the operator (such as the range fof dter operator, or the

columns for @join operator), andinput; are pointers to other
memo nodes (i.e., classes of equivalent sub-queries) that espres
the input values to the operator.

ExampPLE 5. The memo node at the top of Figure 4 groups to-
gether all the query plans explored so far that are equivalent to

approximate joins using histograms, but we omit the details due t0 (o ,<10(R)) XR.2=s.y (05.6>20(S5)). The first entry in this top

space constraints.

Usingdiff values, thDiff error function provides a less syntactic
notion of independence. In particular, the oveealbr value for a
decompositionS = Selg, (P1|Q1) - ... - Selr, (Pa]|@n) when
approximated usingf1, ..., H, is:

Diff ({(Si, Hi)}) = Z |Pil - (1 — diff ;)

Intuitively, the valueg1 — diff ;) above represent the “semantic”
degree of independence when approximatfagvith H;, and re-
place the “syntactic” valugQ; — Q;| of nind (see Section 3.2).
In Example 4,diff ;,, = 0, and H> effectively contributes the
same as a base-table histogrdfi{S.a), so in that case the er-
ror function is 1 (the maximum possible value). In contrast, for
H1=SIT(p, 51(S.a|R < S), the more different the distributions
of S.a on S and on the result of executing >« S, the more likely
that H, encodes dependencies betwé&emand{R < S, S < T'},
and the lower the overall error value.

2A similar metric, ficount, 1S proposed in [13] to compare two histogram
distributions.

node,[SELECT, { R.a < 10}, {R Xr.2=s.y (0s.5>20(5))}], cor-
responds to a filter operator, with parametBra < 10, applied to

the node that groups all equivalent alternatives to sub-expression
R XR.z=5.y (0s.b>20(S5)). Similarly, the second entry in the top
node corresponds to a join operator applied to two other nolles.

During optimization, each node in the memo is populated by
applying transformation rulego the set of explored alternatives.
Rules consist of antecedent and consequent patterns, and optional
applicability conditions. For instance, the first entry at the top node
of Figure 4 could have been obtained from the second entry by
applying the transformation rule below, which pulls out selections
above join predicates:

[T1] = (op[T2]) = op([T1] = [T2])
whereT; andT; are placeholders for arbitrary sub-queries.

4.2 Integrating getSelectivityvith Cascades

We now discuss how algorithigetSelectivitycan be integrated
with a Cascades-based optimizer. Specifically, we couple the exe-
cution ofgetSelectivitwith the optimizer’s own search strategy. As

Sel(R.x=S.y, R.a<10, $.b>20)
SELECT (a<10, &—]

JOIN(X7,K

| SelRx=Sy|Ra<10, 5.b>20) * SelRa<10, S.b>20)= |
| Sel(Rx=S.y | Ra<10, §6>20) * Sel(R a<10) * Sel($.6>20)!

i \

s
C)-a<1 0 0-b>20 1)
| \ 2)
R s 3)

{ Sel(R.a<10 | Rx=S.y, §.6>20) * Sel(R.x=S.y, $.6>20) |

Sel(R.x=S.y,S.b>20)

1) JOIN (x=y, 9 ,¢)
2. /J

Sel(R.a<10) Sel(S.b>20)

T a<10
| |1) SELECT (a<10,0)

c‘)-h>20

s

1) SELECT (b>20/)

7
| Sel(Rx=S.y | 5.6>20) * Sel(S.b>20) |

. _/

1) GET(R)

R s | 1) GET(S)

Figure 4: Intermediate memo in a Cascades-based optimizer.

we will see, the pruning is guided by the optimizer’'s own heuristics,
and therefore might prevemgetSelectivityfrom finding the most
accurate estimation for some selectivity values. However, the over-
head imposed to an existing optimizer is very small and, as we will
see, the overall increase in quality can be substantial.

Consider an input SPJ quefy= op, a...ap, (R™). As explained
in Section 4.1, each node in the memoization table of the optimizer
groups alternative representations of a sub-query. ofherefore,

5. EXPERIMENTS

In this section, we experimentally studgtSelectivitysing both
nind and Diff as the underlying error functions, and compare it
against the approach of [4]. As we will see, using conditional selec-
tivity values results in more accurate estimations than when solely
relying on materialized view matching to exploit SITs. Also, when
usingDiff , thegetSelectivityapproximations are close to being op-
timal. For our experiments we use the following setting:

Data Sets: We generate a synthetic database with a snowflake
schema, consisting of 8 tables with 1K to 1M tuples and 4 to 8
attributes. Attribute values are generated with different degrees of
skew and correlation. Additionally, some foreign-key joins do not
satisfy referential integrity. In such situations, for a foreign-key
join R >1.5, we chose a certain percentage of tupleRitbetween
5% and 20%) and replace the join attribute in those tuples with
NULL values. The choice of the dangling tuples is either random
or correlated with attribute values.

Workloads: Each workload consists of 100 randomly generated
SPJ queries, with parametefgnumber of join predicates) and
(number of filter predicates). In our experiments, we& threé
and varyJ from 3 to 7. For each query, we choose filter predicates
such that the selectivity of each one is around 0.05. If the query
result is empty, we progressively stretch the filter ranges until at
least one tuple is present in the result. We also used predicates with
selectivities around 0.5 and obtained similar trends, but we believe

we can estimate the selectivity of the sub-query represented by eachnat those queries are less frequent in real applications, so we omit

nodeN in the memo, oSelr (P) for P C {p1,...,pr}. More
importantly, eactentryin N is associated with decompositiorof
the sub-query represented By This is illustrated below.

ExAMPLE 5. (cont.) Consider again the node at the top of
Figure 4, which groups all equivalent alternatives for evaluating
(0R.a<10(R)) MR.2=s.y (0s.b>20(5)). The second entry in such
node (thejoin operator) can be associated with decomposition
Seljrg(R.x = Sy|R.a < 10,S.b > 20) - Seljrg(R.a <
10, 5.b > 20). The first factor of this decomposition is approxi-

mated using available SITs as explained in Section 3. The second

factor is separable aSelry (R.a < 10) - Sel;s; (S.b > 20). We
obtain the estimated selectivity of each factor of the separable de-
composition above by simply examining the corresponding memo
nodes (the input of thgoin entry we are processing). Finally, we
multiply such estimations and the first factor of the atomic decom-
positionSelr,g (R.z=S.y|R.a < 10, 5.b > 20) to obtain a new
estimation forSel r g (R.z=5.y, R.a < 10,5.b > 20).1

As hinted in the previous example, each erdtiyn a memo node
N divides the set of predicatésthat are represented By into two
groups: (i) the parameters 6f denotedps, and (i) the predicates
in the set that are input t6, denotedQs=P—ps. We then asso-
ciate the decompositioSelr (P) = Selr(ps|Q¢) - Selr(Qe)
with entry £. We note that to obtain the best SITs to approximate
Selr (pe|Qe) we can reuse the view matching sub-routines in the
optimizer and exploit theroperty derivationframework in Cas-
cades, but we omit those details in this paper. It is fairly easy
to show that for each operator & Selr(Q¢) is separable into
Selr, (Q¢) - ... Selr, (QF), where eactSelr, (Q%) is associ-
ated with thei-th input of £.

In summary, we restrict the set of decompositions in line 10 of
getSelectivityo those induced by the optimization search strategy.
Each time we apply a transformation rule that results in a new entry
£ in the node associated wiSelz (P), we obtain the decomposi-
tion S = Selr (pe|Q¢) - Selr(Q¢e), and keep the decomposition

with the best estimated accuracy. We discuss the overhead imposed

to a traditional optimizer experimentally in the following section.

those results.

Available SITs: We experiment with different pools of available
SITs. Each SIT is a unidimensiomalxDiffhistogram [22] with at
most 200 buckets. Each set of SlT;scontains all histograms of the
form SITx (a|@), where@ consists ofat most: join predicates,
and bothQ anda are syntactically present in some query in the
workload (Jo contains all and only base-table histograms). The
number of available SITs ranged from 82 (fér) to 680 (forJ7).

Techniques Compared:We implemented the technique of [4],
which we refer to a&sVM (for Greedy View Matching), and sev-
eral variations of the algorithrgetSelectivity In particular, we
implementedGS-nind the variation that counts the number of in-
dependence assumptions, &8-Diff, the variation that uses ad-
ditional information about the data distribution. We also imple-
mentedGS-Opt which uses the actual difference between the true
selectivityS and the approximation usirfg to defineerror(H, S):

this definition oferror is the best possible one, but is only of the-
oretical interest since it cannot be implemented efficiently (it in-
spects the actual data). Finally, we implememte8it which mim-

ics current optimizers and exploits base-table histograms only.

Metrics: We compare the accuracy of the different techniques
as follows. For each queryin the workload, we first estimate the
cardinality of each sub-query af using the different techniques.
Then, we evaluate each sub-query to obtain its actual cardinality
value, and finally obtain the average estimation error over all sub-
series ofy. We average this individual result over each query in the
workload. A comprehensive study on how plans are affected by the
estimation techniques proposed in this paper is part of future work.

5.1 Comparison with Previous Approaches

We first comparésVM againstGS-nind so that the error func-
tion in getSelectivityagrees with that of the greedy procedure in
GVM. Any difference in accuracy is then duedetSelectivityex-

3We obtained similar results when using more filter predicates.

ploring the full search space, and not caused by an improved error5.2 ~ Accuracy ofgetSelectivity

function such a®iff. Figure 5 shows a two-dimensional graph,

Figure 7 shows the average absolute error for workloads of 3-, 5-,

where each point represents one query in a workload consisting ofang 7-way join queries. In all cases, the absolute error is reduced

3- to 7-way join queries. The- andy-axes represent the abso-
lute cardinality error for each query usi®)/M andgetSelectivity
respectively. As shown in the figure, all points lie under the line
x = y, which means thakS-nindresults in consistently better car-
dinality estimates tha®VM. The reason is that the search space
in GVM is a strict subset of the space of decompositions explored
by GS-nind In addition, GVM uses a greedy technique to itera-
tively select SITs, which further reduces the set of decompositions
explored. AlthoughGS-nindis based on the same metric to rank

drastically when all SITs with join query expressiods)are avail-

able (e.g., the average absolute error is reduced from 62,466 to
1,679 in Figure 7(a)). In particulaGS-Diff is very close to the
optimal strategyGS-Opt and results in considerably more accu-
rate estimations tha@S-nind For GS-Diff, the largest reduction

in error occurs forJ; and J,. In our experiments, SITs with 2-
and 3-way join query expressions are responsible for most of the
accuracy gains.

candidate SITs, it can result in absolute errors that are as much ax 3 Efficiency ofgetSeIectivity

80% lower than those of theVM technique.

80000

60000 -

40000 -

20000 1

Absolute Error for GS-nind

0 ‘ ‘ ‘
0 20000 40000 60000

Absolute Error for GVM

Figure 5: Accuracy of GS-nindvs. GVM.

80000

To compare the efficiency of both techniques, we proceed as fol-
lows. BothGVM and getSelectivityshare the same view match-
ing algorithm in their inner loops to select SITSGYM during the
greedy procedure, angetSelectivityas a subroutine in line 12).

Figure 8 shows the average execution timec8-Diff for dif-
ferent input workloads (results f@S-nindare very similar). We
partition the execution time afetSelectivitynto two components.
The decomposition analysis the time spent to process the differ-
ent decompositions and choose the best candidate SITshi¥he
togram manipulatiorcorresponds to line 16 afetSelectivityand
measures the actual estimation of selectivity values using the se-
lected SITs. The reason for this division is that different techniques
choose different histograms to estimate the same selectivity values.
Different histograms take different amounts of time to estimate the
same predicates, so we report these components separately.

Figure 8 shows that, in genergletSelectivityesults in a small
overhead ovenoSit under 6 milliseconds in all scenarios (under 4
milliseconds if we also consider the histogram manipulation com-
ponent). We note that the overheadyetSelectivitys proportional
to the number of candidates considered in the algorithm, and scales
gracefully with the number of available SITs. For instance, in Fig-
ure 8, getSelectivityexecutes in around 6 msecs. for (with 82
SITs), and in around 9 msecs. fdy (with 680 SITs).

In conclusion, we expect that the overheadgyefSelectivityn a

We then chose to compare the average number of calls to the view'€al optimizer will be very small, since Figure 8 accounts for just

matching routind shown in Figure 6 for botlgetSelectivityand
GVM, and for different workloads. The dynamic programming al-
gorithm used byetSelectivityesults in drastically fewer calls, de-
spite searching the whole space of decompositions. Alth@gd

is more efficient thametSelectivityfor a single invocation, it does
not exploit commonalities between different sub-plans, and thus re-
sults in even 5 times as many view matching callgetSelectivity

7000

OGS-nind EBGVM

6000 -

5000 ~

4000 -+

3000 -

invocations

2000 +

Number of "view matching"

3 5 7
Number of Joins in Input Queries

Figure 6: Efficiency of GS-nIndvs. GVM.

To summarize, in this section we experimentally established the
superiority ofGS-nIndoverGVM, both in terms of accuracy and ef-
ficiency, for SPJ queries. We now take a closer loakeaBelectivity
and compar& S-nindand GS-Diff.

“We also compared execution times and the trends were similfiotet
presented here.

a portion of the total optimization time. Other components, such
as sophisticated rule-based engines, also contribute to the overall
optimization time.

6. RELATED WORK

Virtually all optimization frameworks (e.g., [15, 17, 24]), rely
on statistics over base tables in the database to choose the most
efficient execution plan in a cost-based manner. There is a large
body of work that studies representation of statistics on a given col-
umn [18, 19, 21, 22] or combination of columns [1, 5, 16, 20, 23].
In this paper we rely on existing histogram technigues and focus on
approximating attribute distributions over query expressions.

The idea of building statistics over non-base tables first appears
(implicitly) in [2]. This reference introducggin synopseswhich
are pre-computed samples of a small set of distinguished joins.
Joins must be defined between foreign and primary keys, and there-
fore a single sample for each table is enough to provide approxi-
mate answers for a large number of queries. The idea is to con-
ceptually materialize the extended table obtained by applying all
foreign-key joins, and then take a uniform sample over this result.
Reference [11] extends this approach by introdudiinges, a new
class of samples that tune themselves to a dynamic workload. In-
tuitively, the probability of a tuple being present in an icicle is pro-
portional to its importance for answering queries in the workload.

References [4, 26] introduced the concept of statistics on query
expressions (or views), and showed how to incorporate them into
existing query optimizers. Specifically, the idea in [4] is to trans-
form each input query sub-plan into an equivalent one that exploits

100000 2

m
2 O Histogram Manipulation
—+—noSit § B Decomposition Analysis
o ——GS-nind 2
i —o— GS-Diff £
£ 10000 - —e—GS-Opt ®
= £
2 S
< S
5
[$]
ai
1000 T T T
Jo Ji J2 J3 nosSit Ji J2 J3
(a) Available Statistics (@ Available Statistics
100000 oy 7
; ; 7§ 6l OHistogram Manipulaton
—+—noSit 2 B Decomposition Analysis
S ——GS-nind 2
i —0— GS-Diff g
£ 10000 - —e—GS-Opt <
S E
2 [
< S
=
[S]
Q
>
1000 [
Jo Ji) J2 J?_:) J4 J5 noSit Ji J2 J3 J4 J5
(b) Available Statistics (b) Available Statistics
100000 - 18
t t t t t t t = O Histogram Manipulation
—+—noSit S 15 - B Decomposition Analysis
- —>*—GS-nind b
(=] —
= —O— GS-Diff =
' —e—GS-Opt S
£ 10000 | P P
S £
2 [
< e o S
=
o
Q
>
1000 : : : : : : : w
Jo Ji1 J2 J3 J4 J5 J6 J7 noSit J1 J2 J3 J4 J5 J6 J7
(c) Available Statistics (©) Available Statistics
Figure 7: Average absolute error for (a) 3-, (b) 5-, and (c) 7-wg Figure 8: Execution time for (a) 3-, (b) 5-, and (c) 7-way join
join queries. queries.

SITs, leveraging materialized view matching techniques [7, 14]. tion of multiple attributes in one table, or in different tables that
The transformation step is based on a greedy procedure that selectare combined using foreign-key joins. It uses the concept of con-
which SITs result in the transformed plan using the minimal num- ditional independence between attributes to decompose the rep-
ber of independence assumptions. In this work we critically ana- resentation of a join distribution into factors that capture the ac-
lyze the main drawbacks of the techniques in [4, 26]. We propose tual independencies that hold in the data domain, therefore ob-
a novel framework to reason with SITs and an efficient algorithm taining a compact representation of the actual distribution. This
that returns the optimal decomposition of a selectivity value. work mostly focuses on point queries and assumes that each at-
Similar to previous work in self-tuning histograms [1, 5], refer- tribute has a small discrete domain. With a similar motivation,
ence [25] presents an online algorithm that repairs incorrect statis- reference [8] uses statistical interaction models to explicitly iden-
tics and cardinality estimates of a query execution plan. By moni- tify and exploit the statistical characteristics of the underlying data.
toring previously executed queries, [1, 5, 25] compute adjustments The rationale is that real tables are characterized by complex cor-
to base-table statistics that might be used during future query opti- relation patterns, where a certain subset of the attributes can be
mizations. The key difference with our approach is that [25] main- (unconditionally) independent of another attribute subset, or, alter-
tains a single adjusted histogram per attribute and still relies on the natively, can be (conditionally) independent of given a third subset
independence assumption during cardinality estimation. However, of attributes. The idea in [8] is to break the statistics (e.g., multidi-
the adjustments are done in such a way that the cardinality of the mensional histograms) into (i) an interaction model that accurately
processed query is correctly calculated despite assuming indepen<aptures significant correlation and independence patterns in data,
dence. Instead, we rely on different statistics for the same attribute and (ii) a collection of lower-dimensional histograms that, based
depending on its particular context in the corresponding query plan. on the model, can provide accurate approximations of the over-
References [8, 12] use conditional probability concepts to model all joint data distribution. We believe that the ideas introduced in
multidimensional distributions. Reference [12] shows how to use both [8] and [12] can be fairly easily incorporated into our frame-
probabilistic relational models to approximate the joint distribu- work of Section 3. If we can infer from the data distribution that

some predicates are conditionally independent of others, we can[10] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation

apply semanticversions of the “separable decomposition” prop- algorithms for middleware. IRroc. of the Twentieth ACM
erty to further reduce the space of decompositions. As a sim- Symposium on Principles of Database Syst&2081.
ple example, consideSelr (p1,p2,p3). If we can infer thatp, [11] V. Ganti, M.-L. Lee, and R. Ramakrishnan. Icicles:
is conditionally independent gf. given ps using the techniques Self-tuning samples for approximate query answering. In
described above, we can decompose the given selectivity value as Proceedings of the International Conference on Very Large
Selr(p1,p2,p3) = Selr(p1|p2) - Selr (p2, ps) Withoutrelying Databases (VLDB)2000.
on any assumption, such as independence. [12] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation
using probabilistic models. IRroceedings of the ACM

7. SUMMARY International Conference on Management of Data

In this paper we introduced the novel framework of conditional (SIGMOD) 2001.
selectivity to reason with selectivity values. This framework allows [13] P. Gibbons, Y. Matias, and V. Poosala. Fast incremental
us to identify the space of decompositions to approximate selec- maintenance of approximate histogramsPhoceedings of
tivity values for a given set of available SITs with high efficiency the 23rd International Conference on Very Large Databases
and accuracy. We designed a dynamic programming algorithm, (VLDB), 1997.
getSelectivitythat returns the most accurate selectivity estimation [14] J. Goldstein and P.-A. Larson. Optimizing queries using
for an input querygetSelectivitgan be integrated with existing op- materialized views: A practical, scalable solution. In
timizers by coupling its execution with the optimizer’s own search Proceedings of the ACM International Conference on
strategy. Our preliminary experiments show thatSelectivitye- Management of Data (SIGMODP2001.

sults in much more accurate estimations than previous approacheg15] G. Graefe. The Cascades framework for query optimization.
(both the ones that consider SITs or rely on base-table statistics Data Engineering Bulletin18(3), 1995.

only), and that the expected overheadgeftSelectivityis small [16] D. Gunopulos et al. Approximating multi-dimensional
enough to increase overall performance of current optimizers. aggregate range queries over real attributePrareedings

of the ACM International Conference on Management of
Acknowledgments Data (SIGMOD) 2000.

[17] L. M. Haas et al. Extensible query processing in Starburst. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD)989.

We thank Luis Gravano and Cesar Galindo Legaria for providing
valuable feedback on earlier versions of this paper.

[18] H. V. Jagadish et al. Optimal histograms with quality
8. REFERENCES guarantees. IRroceedings of the 24th International
[1] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms: Conference on Very Large Databases (VLPE)98.
Building histograms without looking at data. Rioceedings [19] A. C. Konig and G. Weikmun. Combining histograms and
of the ACM International Conference on Management of parametric curve fitting for feedback-driven query result-size
Data (SIGMOD) 1999. estimation. InProceedings of the 25th International

[2] S. Acharya et al. Join synopses for approximate query Conference on Very Large Databases (VLDPE)99.
answering. IrProceedings of the ACM International [20] M. Muralikrishna and D. J. DeWitt. Equi-depth histograms
Conference on Management of Data (SIGMOL§99. for estimating selectivity factors for multidimensional

[3] N. Bruno. Statistics on query expressions in relational queries. InProceedings of the ACM International
database management systems. Ph.D. thesis, Columbia Conference on Management of Data (SIGMQI988.
University, 2003. [21] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of

[4] N. Bruno and S. Chaudhuri. Exploiting statistics on query the number of tuples satisfying a condition.Rroceedings
expressions for optimization. Froceedings of the ACM of the ACM International Conference on Management of
International Conference on Management of Data Data (SIGMOD) 1984.

(SIGMOD) 2002. [22] V. Poosala et al. Improved histograms for selectivity

[5] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A estimation of range predicates.Pnoceedings of the ACM
multidimensional workload-aware histogram.Rroceedings International Conference on Management of Data
of the ACM International Conference on Management of (SIGMOD) 1996.

Data (SIGMOD) 2001. [23] V. Poosala and Y. E. loannidis. Selectivity estimation without

[6] N. Bruno, L. Gravano, and A. Marian. Evaluating tép- the attribute value independence assumptiofProteedings
queries over web-accessible databaseBrateedings of the of the 23rd International Conference on Very Large
International Conference on Data EngineerjrZp02. Databases (VLDB)1997.

[7]1 S. Chaudhuri et al. Optimizing queries with materialized [24] P. G. Selinger et al. Access path selection in a relational
views. InProceedings of the International Conference on database management systenPfaceedings of the ACM
Data Engineering (ICDE)1995. International Conference on Management of D&it@79.

[8] A. Deshpande, M. Garofalakis, and R. Rastogi. [25] M. Stillger et al. LEO - DB2’s learning optimizer. In
Independence is good: Dependency-based histogram Proceedings of the 27th International Conference on Very
synopses for high-dimensional dataRroceedings of the Large Databases (VLDBR0O01.

ACM International Conference on Management of Data [26] F. Waas, C. Galindo-Legaria, M.-C. Wu, and M. Joshi.
(SIGMOD) 2001. Statistics on views. IProceedings of the 29th International
[9] R. Fagin. Fuzzy queries in multimedia database systems. In Conference on Very Large Databases (VLPE)O03.

Proceedings of the Seventeenth ACM Symposium on
Principles of Database Systendsine 1998.

APPENDIX
Proofs

PROPERTY1 (ATOMIC DECOMPOSITION. Givenasetofta-
blesR and sets of predicateB and Q:

Proof: Using the definition of conditional selectivity, the above
equality is expressed as:

jorra(R*)| _ lor(0q(R¥))]
[R-] [oQ(R¥)]

oo (R7)]
R

or, equivalently,

R7)| = lop(oq(R™))|
which always holds in relational algebil.

lopaq(

LEMMA 1. The number of possible decompositions of
Selr(p1,...,pn), denotedl'(n), is bounded by

05 -(n+ 1) <T(n)<1.5" -n! foralln > 1
Proof: The number of decompositions 8kl (P), where|P| =
n, is given by the following equation:

1 ifn=1

T(n) = { S (1) T(n—1i) otherwise

In fact, for eachl < i < n, we can first decompos8elr (P)
into SelR(P1|P2) . SelR(PQ), Where|P1| =1 and|P2\ =n —
i. Then, we recursively obtain all decompositions &l (P-).
After some manipulation, it follows that

The fraction in the summation above satigfy< 541 < 22
(fori = 0 andi = n — 1, respectively). From the first |nequaI|ty, it
follows thatT'(n+1) > (n+1)-T(n) +T(n) = (n+2)-T(n).

By solving this simpler recurrence, we conclude thét + 1) >

0.5 - (n + 2)!, as desired. The remaining bound follows from an
analogous analysis of the second inequalftyn 4 1) < 1.5""1.

n+1L1

PROPERTY2 (SEPARABLE DECOMPOSITION. Suppose that
{P1, P} and {Q1,Q2} are partitions of P and @, respectively,
and X;=P; U Q; and X, = P, U Q2 separateSelr (P|Q).
Let R.=tableg X;) and Ro=tableg X2). Then,Selr(P|Q) =
Selr, (P1|Q1) - Selr, (P2|Q2).

Proof: Let7 =R —
Selr (P|Q)

(R1 UR2). We have that:

= Selr, Ur, U T (P1, P2|Q1,Q2) =definition ofSel

0P AP (0Q17@ (RT X RS x T7))|
l0Q1r@2 (RY X Ry x TX))|

=relational algebra

|UP1/\Q1 (Rf” i |0P2AQ2 (R§)| : |TX|
00, (R{)| - loga (R3] - 1T %]

—definition ofSel

Selr, (P1]Q1) - Selr, (P:|Q2)

LEMMA 2. There is a unique decomposition Stir (P) as
Selr, (P1) - ... Selg, (Pn), where eactSelr, (FP;) is not sepa-
rable. We caII |t thestandard decomposition éfelR().

Proof: Suppose that there are two standard decompositiots of
namelyS; = Selg, (P1)-...-Selr,, (Pm) andS; = Sels, (Q1)-

- Sels,, (Qn) of Selr (P). SinceS; andS; are different and
U; P, = U;Q; = P, there must be a pait?;, Q;) such thatP; #
QJ‘ andPiﬂQ]- 75 @ LetXi’j = PlﬂQj Then,Xi,]‘ andPime-
separateSel, (P;). To prove that, lel; ; = tablegX; ;). Itis
fairly easy to show thal; ; C R; andT; ; C S;. Also, by defini-
tion of Sz, Q; andP — Q; separateSelr (P), so no single predi-
cate fromP references attributes &; andR — S; simultaneously.
Therefore, no predicate iR references attributes ifj ; C S; and
(Ri — Ti,5) € (R — S;), which essentially means thai; ; and
P; — X, ; separatéSelr, (P;). Analogously,T; ; and@; — T; ;
separateSels, (Q;). Therefore, neither decomposition above is
standardll

THEOREM 1. Algorithm getSelectivifyR, P) returns the most
accurate approximation el (P) for a given definition of error
among all non-separable decompositions.

Proof: [Sketch] We prove the theorem by induction ¢R|. The
base case|P| = 1), is trivially verified. For the general case, if

S = Selr(P) is non-separable, line 10 exhaustively explores all
atomic decompositions &. Using the inductive hypothesis and
the principle of optimality ofrror we prove the inductive step for
this case. Otherwise, if is separable, we show that we do not
miss any non-separable decompositiorSdby processing instead

its standard decomposition (lines 4-7). Consifler Selr (P, Q),
where P and Q separateS, and letS'=Selz (P, Q1|P2, Q) -

Selr (P2, Q2) be an arbitrary atomic decomposition §f Both
factors of S’ are separable, so applying the separable decomposi-
tion property it follows thatS’ = Selg (P1|P:) - Selr (Q1]Q2) -

Selr (P2) - Selr(Q2). We then know thatS’ is explored from
Selr (P) - Selr (Q), the standard decomposition8f Therefore,

we do not miss any non-separable decomposition and again, by
using the inductive hypothesis and the monotoniciteobr, we
prove the theorendl

