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ABSTRACT
This paper deals with testing of nondeterministic software
systems. We assume that a model of the nondeterministic
system is given by a directed graph with two kind of vertices:
states and choice points. Choice points represent the non-
deterministic behaviour of the implementation under test
(IUT). Edges represent transitions. They have costs and
probabilities. Test case generation in this setting amounts
to generation of a game strategy. The two players are the
testing tool (TT) and the IUT. The game explores the graph.
The TT leads the IUT by selecting an edge at the state ver-
tices. At the choice points the control goes to the IUT. A
game strategy decides which edge should be taken by the TT
in each state. This paper presents three novel algorithms 1)
to determine an optimal strategy for the bounded reachabil-
ity game, where optimality means maximizing the probabil-
ity to reach any of the given final states from a given start
state while at the same time minimizing the costs of traver-
sal; 2) to determine a winning strategy for the bounded
reachability game, which guarantees that given final vertices
are reached, regardless how the IUT reacts; 3) to determine
a fast converging edge covering strategy, which guarantees
that the probability to cover all edges quickly converges to
1 if TT follows the strategy.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Reliability,Sta-
tistical methods; D.2.5 [Testing and Debugging]: Testing
tools

General Terms
Algorithms,Reliability
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1. INTRODUCTION
Modeling is a popular way of representing the behavior

of a system. A common type of model in computing is a
state graph, or finite state machine. State graphs are a use-
ful way to think about software behavior and testing [6].
The application begins in some state (such as “main win-
dow displayed”), the user applies an input (“open file”) and
the software moves into a new state (“open file dialog dis-
played”). Model based software testing of an application
can be viewed as traversing a path through the graph of
the model and verifying that the implementation under test
(IUT) works as predicted by the model.

Using state graphs or finite state machines (FSM) to test
software systems is well understood and often used (see [21]
for an excellent overview of testing theory using FSMs).
However, most of the existing theory assumes that the FSM
or state graph is deterministic, which means that the test
harness has complete control of the IUT.

Modern systems, however, are often multithreaded if not
distributed. For example the upcoming version of Windows
will contain the Indigo system that provides a unified pro-
gramming model and communications infrastructure for dis-
tributed applications [7]. Controlling and observing those
systems is a very difficult task and often requires complex
test architectures; see [2, 17, 20, 27] for recent model based
testing tools architectures in this regard. In this paper we
take a different approach: we simply model the implementa-
tion nondeterministically. And we don’t assume that we can
rely on controlling the nondeterminism (i.e. the scheduling)
of the IUT. Instead we only observe the behavior of the im-
plementation and generate test strategies that try to cover
as much as possible of the behavior of the IUT. Since the
state graph is nondeterministic the user guides the generated
walks of the state graph by assigning costs and probabilities
to the edges. This information is used during a walk of the
graph, so that traversals are statistically more likely follow
the higher probability edges. But since we also associate
costs to edges we also want to minimize the total cost of
traversals.

Markov chain probabilities (see for example [23, 11]), non-
deterministic and probabilistic FSMs [1, 15, 28] and labelled
transition systems [8, 26] have been proposed to test non-
deterministic systems. But the important problem of how
to find “optimal” traversals, i.e. those with minimal total
costs and maximal probability, that lead from a start state
to a set of goals states within a given number of steps has

1



not been fully explored. The work in [29] is related to our
work in this regard (see Section 7). However, that is ex-
actly what testers usually want: Testers want to bring the
system into a particular state within a length-bounded test
sequence. And they want to know what it costs and which
chance of success it has. Likewise, testers want to see as
soon as possible (i.e. with the least costly test sequence) all
possible behaviours distinguished by the model. But again,
what is its likelihood of success (here all edges are covered)
if nondeterminism is involved?

In this paper we propose three novel algorithms for test-
ing nondeterministic systems. Test case generation in our
setting amounts to generation of a game strategy. The two
players are the testing tool (TT) and the IUT. The game
explores some graph of states. The TT leads the IUT by
choosing an edge in the graph everywhere except of the
states where the application under test is nondeterministic.
At the last states the control goes to the IUT. We suppose
that the probabilities of the application choices are known
and totally defined by the current graph vertex. To ensure
short test cases we introduce a cost function on edges. A
game strategy decides which edge should be taken by the
TT in each state to win the game. This paper presents
algorithms to do the following.

1. To determine an optimal strategy for the bounded
reachability game, where optimality means maximiz-
ing the probability to reach any of the given goal nodes
while at the same time minimizing the cost of traver-
sal.

2. To determine a winning strategy for the bounded reach-
ability game, which guarantees that goal nodes are
reached, regardless how the IUT reacts.

3. To determine a fast converging edge covering strategy,
which guarantees that the probability to cover all edges
quickly converges to 1 if one follows the strategy.

All three algorithms are implemented in the AsmL Test
tool [4], which is used by Microsoft product groups on a
daily basis.

The remainder of this paper is structured as follows: In
Section 2 we describe test graphs giving setting to the games.
Algorithms for computing an optimal strategy for the bounded
reachability game, for winning in the bounded reachability
game and for the fast converging edge coverage strategy are
given in Section 3, 4, and 5, respectively. Section 6 presents
aspects of the current implementation. Section 7 discusses
related work.

2. TEST GRAPHS
We use test graphs to describe nondeterministic systems.

A test graph G has a set V of vertices and a set E of directed
edges. There are two functions source and target from E to
V providing for each edge the source and the target of that
edge, respectively. V is divided into two disjoint sets of
vertices: states (States) and choice points (CP) . There is
a probability function p mapping edges exiting from choice
points to non-negative real numbers such that, for every
choice point v,

∑

e∈E,source(e)=v

p(e) = 1. (1)

Notice that this implies that for every choice point there is
at least one edge starting from it. Finally, there is a cost

function cost from edges to non-negative reals. Formally we
denote G by the tuple

(V, E,CP, source, target, p, cost).

We sometimes use the shorthand notation (u, v) for an edge
with source u and target v if the identity of the edge is
irrelevant. Notice that in general there may be several edges
with the same source and target but with different costs
and probabilities. This corresponds to several actions being
enabled from a given source state that nevertheless lead to
the same target state.

3. BOUNDED REACHABILITY GAME
Given a test graph G, a bounded reachability game over

G is given by a start vertex s, a non-negative maximum
number n of moves and a set of goal vertices P ⊂ States.
We denote a bounded reachability game by the tuple (s, n),
excluding P from the notation since P is always fixed.

There are two players in the game, a tester (TT ) and an
implementation under test (IUT ). The current state of the
game is given by a vertex v and a number k of moves made
so far. Initially v = s and k = 0. The players make moves
according to the following rules.

if (v is a choice point){
if (k ≥ n) {TT loses and the game stops;}
else {

IUT chooses an edge (v,u);
v=u; k=k+1;

}
}
else if (v in P) {TT wins and the game stops;}
else if (k ≥ n) {TT loses and the game stops;}
else {

TT chooses an edge (v,u) or loses if no choice is possible;
v=u; k=k+1;

}

It is assumed that IUT chooses an edge e with probability
p(e). Every particular run of a game over G produces a path
in G which we will call a game path. A game produces no
paths if TT wins or loses at the start of the game. Without
loss of generality for the bounded reachability game we may
assume that there are no edges exiting from P , since the
game always terminates at this point.

3.1 Strategies for bounded reachability game
A strategy for a bounded reachability game (v, n) over a

test graph

G = (V, E, CP, source, target, p, cost)

is a function S from States×{0, . . . , n} to E∪{null}, where
null is a special value indicating that the strategy is not
defined for the given arguments and TT loses at this point.
For any state v and k ≤ n, either S(v, k) = null or S(v, k)
is an edge exiting from v.

A strategy S is used by TT to choose an edge S(v, n− k)
at the k’th step of the game. In other words, S(v, m) is the
edge to be used when at most m moves remain to the end
of the game. If TT follows a strategy S then the body of
the last else case above becomes the following rule:

let e = S(v,n-k);
if (e = null) {TT loses;}
else {v=target(e);k=k+1;}
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We define a bounded reachability game (v, n, S) to be the
game (v, n) where TT follows the strategy S.

3.2 Comparing strategies
We would like to measure bounded reachability game strate-

gies and compare them. To this end, we define two functions
on strategies: Prob and Cost. Consider a bounded reacha-
bility game (v, n, S). Recall that TT wins if a goal vertex is
reached in at most n steps, and loses in the opposite case.

Let ProbS(v, n) denote the probability of TT winning in
the game (v, n, S). One can see that

ProbS(u, n) =














































1, if v ∈ P ;

0, if v /∈ P and n = 0;

0, if v /∈ P and S(u, n) = null;

Prob(v, n − 1), if v /∈ P ,

u is a state, n > 0 and S(u, n) = (u, v);
∑

(u,v)∈E
p((u, v))ProbS(v, n − 1),

if u is a choice point and n > 0.

(2)

The last equation holds since an event of playing a game with
n steps starting from a choice point can be considered as a
disjoint sum of events of choosing an edge starting from the
choice point and then playing the n − 1 step game starting
from the target of the edge.

The cost of a game path is the sum of the costs of all its
edges. The cost of a game (v, n, S), CostS(v, n), is the cost
of a game path with the highest cost, or 0 if there are no
game paths. One can formally describe the cost function as
follows.

CostS(u, n) =






































cost(S(u, n)) + CostS(v, n − 1),

if u is a state,S(u, n) = (u, v), u /∈ P

and n > 0

max(u,v)∈E cost((u, v)) + CostS(v, n − 1),

if u is a choice point and n > 0

0, if u ∈ P or S(u, v) = null or n = 0.

(3)

As a single measure of a strategy S for fixed n and P
we consider the pair of functions (ProbS,CostS) where the
domain of each function is V ×{0, . . . , n}. Let [0, 1] denote
the segment of non-negative real numbers at most 1, and let
< be the set of non-negative real numbers. By a performance

value we mean an element in the following set of pairs of real
numbers.

Pairs = [0, 1] ×<.

Consider a total preorder (transitive and reflexive relation)
� (“at least as good as”) on performance values. Let the
game bound n and the set P of goal states be fixed. We say
that a strategy S improves a strategy S′ (with respect to
�), denoted by S � S′, if for every vertex v and k ≤ n,

(ProbS(v, k),CostS(v, k)) � (ProbS′(v, k), CostS′(v, k)).

In other words, S improves S′ if the performance of S from
every vertex and bound is at least as good as that of S ′.
Clearly improvement is a preorder. We say that two strate-
gies are equally good if they improve each other. A strategy

S (for a given game) is optimal (for �) if every other strat-
egy that improves it is equally good as S. Notice that there
are only finitely many strategies for a given game, several
of which may be optimal. Notice also that not all optimal
strategies are necessarily equally good because the improve-
ment preorder may be partial. In other words, one strategy
may perform better from one vertex whereas another strat-
egy may perform better from another vertex.

Example 1. To motivate this measure on strategies let
us consider a preorder � on Pairs such that (0, c) is a great-
est element for any c ≥ 0 (TT cannot win) and that if
p′ > 0 then (p, c) ≺ (p′, c′) if either p > p′ (the proba-
bility is higher) or, p′ = p and c < c′ (the probability is the
same but the cost is lower). In this case an optimal strategy
gives for TT the maximum probability to win (if winning is
possible at all) while minimizing the maximal path cost. If
TT cannot win then all strategies have winning probability
0 and all strategies are equally good and optimal.

Another possibility for measuring strategies would be com-
bining of the cost and the probability into a singe expected
cost value. However, the best expectation does not necessar-
ily guarantee that in a particular run of the game the path
cost is low. For example if the cost of edges corresponds to
the time of the transition execution then our approach gen-
erates test strategies running not longer then some known
time interval. In this sense the maximal cost is a safer cri-
terion than the expected value.

3.3 Reachability Strategy Calculation
We provide an algorithm for computing strategies. We

start by providing the intuition of the algorithm. We then
explain the algorithm in detail using an intuitive pseudo
code notation. The input to the algorithm is a bounded
reachability game and it computes a strategy S, a probabil-
ity function Pr and a cost function C. Proposition 1 estab-
lishes the correctness of the algorithm, i.e. that the com-
puted probability and cost functions coincide with ProbS

and CostS , respectively.
The algorithm builds an optimal strategy for preorders

that satisfy some additional restrictions, introduced below
as acceptable preorders. This is proved in Theorem 1.

The intuition of the algorithm is as follows. The algorithm
performs a breadth-first backward search with some repeti-
tions. It starts from the set of goal states P that is the initial
value of its frontier and iterates a main calculation phase n
times, where n is the bound of the game. During the k’th it-
eration it updates the frontier and calculates the next value
of the strategy, probability function and cost function. Each
iteration preserves the optimality of the strategy computed
so far if the preorder is acceptable.

The algorithm has the following variables. The variable
front is the frontier of vertices that is initially equal to P .
The variable newfront is the new frontier that is produced
by the current step of the algorithm; newfront is initially
empty. The set newfront is also used to avoid unnecessary
recalculations of Pr and C for the choice points.

The procedure Initialize establishes the initial state of
the algorithm.

Initialize () {
front=P; newfront=∅;
foreach (v ∈ P)

Pr(v,0)=1;
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foreach (v ∈ V - P)
Pr(v,0)=0;

foreach (v ∈ V)
C(v,0)=0;

foreach (v ∈ States)
S(v,0) = null ;

}

The main body of the algorithm is a bounded loop of n
iterations. During the i’th iteration of the loop, edges ending
in the current frontier are traversed backwards and values
of S(v, i), Pr(v, i) and C(v, i) are updated.

for (i=1; i≤n; i=i+1){
PropagateChanges(i);

foreach ( edge in E where target(edge) ∈ front )
TraverseEdge(edge,i);

front=newfront;
newfront=∅;

}

The procedure PropogateChanges prepares the i’th step of
the main loop, either using the result of the previous step,
if i > 1, or if i = 1, using the initial settings. The argument
i of PropogateChanges must be in {1, . . . , n}.

PropogateChanges(i){
foreach(v ∈ V){

Pr(v,i)=Pr(v,i-1); C(v,i)=C(v,i-1)
}
foreach(v ∈ States )

S(v,i)=S(v,i-1)
}

The procedure TraverseEdge takes two parameters; an
edge e and the current step number i . Let u be the source
of e. The procedure may update Pr(u, i) and C(u, i) for
some vertex u, and it may also update S(u, i) for some state
u.

Assume u is a choice point. If u /∈ newfront then Pr(u, i)
and C(u, i) are updated based on the values of Pr(w, i − 1)
and C(w, i−1) for all edges (u, w) ∈ E. If u ∈ newfront then
the procedure exits without making any changes, otherwise
u is inserted into newfront .

Assume u is a state. If including the edge e in the strat-
egy improves the performance from u, then the old value
of S(u, i) is replaced by e. The probability and the cost
functions are updated accordingly and u is inserted into
newfront.

TraverseEdge(e,i){
let u = source(e)
let v = target(e)
if (u ∈ CP){

if (u ∈ newfront) return;

L1: Pr(u,i) = sum{prob(d)Pr(target(d),i-1) |
d ∈ E where source(d)=u};

L2: C(u,i) = max{cost(d) + C(target(d),i-1) |
d ∈ E where source(d)=u};

insert u into newfront;
}
else if(Improving(e,i)){

S(u,i) = e;

Pr(u,i) = Pr(v,i-1);
L3: C(u,i) = cost(e)+C(v,i-1);

insert u into newfront;
}

}

The function Improving checks if it is beneficial to set
S(u, i) to e by comparing the new performance value with
the old one.

bool Improving(e, i){
let (u,v)=e;
return
(Pr(v,i-1),cost(e)+C(v,i-1))≺(Pr(u,i),C(u,i));

}

3.3.1 Correctness
The following proposition establishes the correctness of

the algorithm regarding the computation of the probability
and cost functions.

Proposition 1. For the strategy S which has been built

by the algorithm the following is true

ProbS = Pr

and

CostS = C.

Proof. By induction on n. The base case follows from
the definitions.

Suppose that the proposition is true for n − 1. Let us
prove that ProbS(v, n) = Pr(v, n) for any v ∈ V . Let u
be a state and (u, v) = S(u, n). The probability of TT to
win in the game (u, n, S) is ProbS(u, n) = ProbS(v, n − 1)
because TT makes a move S(u, n) and then the game (v, n−
1, S) is played. By induction hypothesis Prob(S)(v, n−1) =
Pr(v, n−1)). The procedure TraverseEdge sets Pr(u, n) to
Pr(v, n − 1). It is proven that ProbS(u, n) = Pr(u, n) for
u ∈ States.

Let u be a choice point then

ProbS(u, n) =
∑

(u,v)∈E

p((u, v))ProbS(v, n − 1)

=
∑

(u,v)∈E

p((u, v))Pr(v, n − 1) = Pr(u, n).

The first equality holds by equation (2), the second one by
the induction hypothesis and the third one by the construc-
tion in the procedure TraverseEdge. We have proven that
ProbS = Pr.

Let us show that CostS = C. Recall that CostS(u, i)
is the cost of the most expensive game path of the game
(v, i, S). The lines L2 and L3 in TraverseEdge ensure that if
CostS(v, n−1) = C(v, n−1) for any v ∈ V then CostS(u, n) =
C(u, n) for any u ∈ V .

3.3.2 Optimality
During the i’th iteration of the algorithm, for a given state

u, S(u, i) is set in such a way that

(ProbS(u, i),CostS(u, i)) =

min
(u,v)∈E

(ProbS(v, i − 1), cost((u, v)) + CostS(v, i − 1)),

where the minimum is taken with respect to the total pre-
order � on Pairs.
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Notice that the values of Pr(u, i) and C(u, i) cannot be in-
fluenced for a choice point u because they are determined by
(2) and (3). This implies that we cannot guarantee optimal-
ity of the computed strategy in the general case. However,
we provide some sufficient conditions on the preorder � un-
der which the proposed algorithm does produce an optimal
strategy.

Definition 1. A total preorder � on Pairs is acceptable if
the following conditions hold.

1. For all c ≥ 0 the pair (0, c) is a greatest element in
Pairs, i.e. for all x ∈ Pairs, x � (0, c).

2. Let (Pi, Ci), (P
′
i , C

′
i) ∈ Pairs, pi ∈ [0, 1], ci ∈ <, for

1 ≤ i ≤ m, such that
∑

i
piPi ≤ 1 and

∑

i
piP

′
i ≤ 1. If

(Pi, Ci) � (P ′
i , C′

i), for 1 ≤ i ≤ m,

then

(
∑

i

piPi, max
i

(ci + Ci)) � (
∑

i

piP
′

i , max
i

(ci + C
′

i )).

The preorder defined in Example 1 is acceptable. It follows
from the fact that (0,c) is a greatest element for any c ≥ 0
and from the observation that if a ≤ a′ and b ≤ b′, then
a + b ≤ a′ + b′ and max(a, b) ≤ max(a′, b′).

Theorem 1. If � is an acceptable preorder then the strat-

egy S computed by the algorithm is optimal for �.

Proof. By induction on the number of game steps. The
constructed strategy S is minimal for any game with 0 steps
because the probability and the cost functions do not depend
on the strategy. This proves the base case of the induction
hypothesis.

Suppose that the theorem is true for games with n − 1
steps. Let R be any strategy. We need to show that

(ProbS(u, n),CostS(u, n)) � (ProbR(u, n),CostR(u, n)).
(4)

There are two cases.

1. Assume u is a state. If R(u, n) = null and u /∈ P then

(ProbR(u, n), CostR(u, n)) = (0, 0)

and by Definition 1.1, we have

(ProbS(u, n),CostS(u, n)) � (0, 0).

If R(u, n) = null and u ∈ P then

(ProbR(u, n), CostR(u, n)) = (1, 0)

= (ProbS(u, n),CostS(u, n)).

And thus (4) follows by reflexivity of �.

Now suppose that R(u, n) = (u, w) for some w ∈ V.

Then we have

(ProbS(u, n),CostS(u, n))

= (5)

min
(u,v)∈E

(ProbS(v, n − 1), cost((u, v)) + CostS(v, n − 1))

� (6)

min
(u,v)∈E

(ProbR(v, n − 1), cost((u, v)) + CostR(v, n − 1))

� (7)

(ProbR(w, n − 1), cost((u, w)) + CostR(w, n − 1))

= (8)

(ProbR(u, n),CostR(u, n)).

Equality (5) holds by construction of S. Equation (6)
holds by the induction hypothesis. Equation (7) is true
because � is total and a least element (with respect
to �) of a set is not greater than any of its elements.
Equality (8) follows from the equations (2,3). Thus
(4) follows by transitivity of �.

2. Assume u is a choice point. Consider all edges ei =
(u, vi) exiting form u, where 1 ≤ i ≤ m. Let

pi = p(ei),

ci = cost(ei),

Pi = ProbS(vi, n − 1),

Ci = CostS(vi, n − 1),

P ′
i = ProbR(vi, n − 1),

C′
i = CostR(vi, n − 1).

Then

(ProbS(u, n),CostS(u, n))

= (
∑

i

piPi, max
i

ci + Ci) (9)

� (
∑

i

piP
′
i , max

i
ci + C′

i) (10)

= (ProbR(u, n),CostR(u, n)) (11)

Equations (9) and (11) follow from (2) and (3), equa-
tion (10) follows from the induction hypothesis and
Definition 1.2.

The theorem follows by the induction principle.

If k is the in-degree of the test graph (i.e. for any vertex
v the number of edges entering into v is at most k) then
the running time of the algorithm is O(n|V |k) steps. Since
k ≤ |E| the complexity of the algorithm is O(n|V ||E|).

3.3.3 Application to Blackjack
Note that if a bounded reachability game graph is acyclic

then for some step N of the algorithm front becomes empty
and for any m > N and state v

S(v, N) = S(v, m).

In other words, there is a bound after which the strategy
cannot be further improved. This situation arises for the
card game Blackjack. For completeness we give the basic
rules of Blackjack in the appendix. We used the algorithm
described above to obtain an optimal strategy for a player
playing Blackjack against a dealer with one deck of cards.
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We simplified the game rules by omitting the player options
“Split” , “Double down” and “Insurance” which are not ex-
plained here.

The states of the underlying graph are given by Blackjack
situations where the player can decide between the actions
“Hit” or “Stand”, and the Blackjack situations where the
game stops and the player either wins or loses. The states
where the game stops do not have any outgoing edges. The
goal states are the states where the player wins. The choice
points are the Blackjack situations where the dealer draws
a card. The probability function p on edges is naturally
given by the probability of a specific card being drawn from
the current deck. The cost function cost on edges is 1 for
all edges. So the cost of the game is the maximum total
number of moves that the player and the dealer make. For
the preorder � we used the lexicographic order on pairs as
given in Example 1.

Since the number of steps in Blackjack is not very relevant
the player should follow the strategy S(v, N), for any state
v, saying “Hit” or “Stand” and N being the number of cards.
The function ProbS provides interesting information for the
player on the chances of winning from a given state of the
game; for example with the dealer hand of Eight, and the
player hand of Eight and Nine the strategy advises to “hit”
and gives the probability 0.2354316 of winning.

4. WINNING STRATEGIES
In some cases it is possible to reach a goal state with full

certainty, even though one has to deal with choice points
on the way. The simplest example of this is a diamond-like
behavior pattern where there are two edges exiting from a
choice point but from the resulting target states all edges
lead to a common goal state. This naturally comes up as
a subproblem in testing nondeterministic systems: for ex-
ample in generating a test case to reach a state satisfying a
given property, or in generating a state identifying transfer
tree for fault-detection of nondeterministic FSMs [29].

In terms of games we have the following situation. Let the
test graph and the set of goal states be fixed. From some
states v in the graph and for some bound n ≥ 0 TT can win
the game (v, n) with probability 1, let us call such states
winnable. We describe an algorithm that finds all winnable
states and provides a minimal cost winning strategy from
those states. The algorithm is a variation of Dijkstra’s short-
est path algorithm and reduces to it in the special case when
the graph contains no choice points.

4.1 Optimal Winning Strategy Algorithm
The input to the algorithm is a test graph

G = (V, E,CP, source, target, p, cost)

and a set of goal states P . Without loss of generality, we
assume that there are no edges from choice points whose
probability is 0. If such edges were present they could simply
be removed, since they would never be present in any game
path.

The output of the algorithm is a strategy S that provides
a minimal cost strategy from all winnable states. The algo-
rithm uses the following variables. The variable C is a cost

function defined on V that initially maps all goal states to
0 and all other vertices to the special value ∞ (“infinity”).
The variable N maps choice points to the number of un-
visited successors. For a given choice point v, the value of

N(v) is used to block the algorithm from going backwards to
v until all successors of v have been visited; initially N(v) is
set to the out-degree of v. The variable q is a priority queue

of vertices where the priority of a vertex v is the value of
C(v) (the lower the value of C(v) the higher the priority).
Vertices are removed from the queue in priority order, with
vertices with higher priority being removed first. Initially,
q contains all the elements of P . The variable S, mapping
States to E ∪ {Null}, is the computed strategy. Initially
S maps all vertices to null. In this algorithm the strategy
calculation does not depend on the number of moves. The
procedure Initialize establishes the described initial val-
ues for the variables of the algorithm.

Initialize(){
foreach (v ∈ P) {C(v)=0; q.push(v);}

foreach (v ∈ V-P) C(v)=∞;

foreach (v ∈ CP)
N(v)=|{target(e) : source(e)=v, e ∈ E}|;

foreach (v ∈ V) S(v)= null ;
}

The main body of the algorithm CalculateWinningStrategy

removes elements from the queue in priority order and calls
the procedure Relax until the queue is empty.

CalculateWinningStrategy(){
while (q is not empty){
v = q.pop();
Relax(v);

}
}

The procedure Relax is similar to the one in Dijkstra’s short-
est path algorithm. It processes all edges entering a vertex v
and possibly updates the cost and the strategy information
for those edge sources that are states. The difference is in
the handling of choice points. If (u, v) is an edge where u is
a choice point then the value N(u) is decremented by 1. If
the value N(u) becomes zero then u is also pushed into the
queue and C(u) is calculated.

Relax(v){
foreach (e ∈ E where target(e)=v){
let u = source(e);
if (u ∈ CP){

N(u)=N(u)-1;
if (N(u)=0){
C(u)= max{cost(d)+C(target(d)) |

d ∈ E where source(d)=u};
q.push(u);

}
}
else if (C(u)>cost(e)+C(v)){

C(u)=cost(e)+C(v);
q.push(u);
S(u)=e;

}
}

}

4.2 Analysis
We call a strategy certain if for some number n for every

every winnable vertex the strategy leads to P in no more
than n steps and the strategy is null on non-winnable ver-
tices. Let S be a certaing strategy. For any vertex v we
define CS(v) as the maximum of the game path costs in the
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game starting from v following S if v is a winnable vertex
and ∞ otherwise. A strategy S is optimal if it is certain,
and for any other certain strategy S′, CS(v) ≤ CS′(v) for
any vertex v.

Theorem 2. Let S and C be computed by the algorithm

above. Then S is an optimal and C = CS.

Proof. Similar to the proof of the correctness of Dijk-
stra’s shortest path algorithm.

One can also show, by slightly changing the way the cost
function is calculated and by a careful selection of the data
structures, that the complexity of the algorithm is the same
as the complexity of Dijkstra’s shortest path algorithm.

4.3 Remarks
The algorithm presented above accomplishes really two

tasks: 1) it determines what states are winnable, and 2) it
calculates an optimal strategy for the winnable states. Re-
garding (2) the algorithm is a straightforward extension of
Dijkstra’s shortest path algorithm, by making similar use
of a priority queue. Regarding (1), with no choice points
the problem is simply the graph accessibility problem, with
choice points the problem is equivalent to the alternating
graph accessibility problem AGAP [18] that is also essen-
tially the same as the two-person game problem first ad-
dressed in [19]. To make the connection clear we show how
the problem is related to AGAP following the formulation
in [13]. Input to AGAP is a directed graph D = (V, A) and
two vertices s and t, in D each vertex is marked either as
an and -vertex or and or -vertex. The problem is to decide
whether t is reachable from s. A predecessor of a vertex v
in D is a vertex u such that (u, v) ∈ A. Vertex t is reach-

able from s in D if a “pebble” can be placed on t using the
following rules.

• One can place a pebble on s and on any vertex with
no predecessors.

• A pebble can be placed on an and-vertex if it can be
placed on all of its predecessors.

• A pebble can be placed on an or-vertex if it can be
placed on at least one of its predecessors

Given a test graph G and a set of goal states P , construct D
so that D contains all the vertices of G. The choice points of
G are and-vertices in D and the states of G are or-vertices
in D. For each edge (u, v) in G, D has the edge (v, u), i.e.
the direction of the edges is simply reversed. For each or-
vertex v in D that has no predecessors add the loop (v, v)
to avoid initial pebbles. Finally, add a new or-vertex s to
D, and for each goal state v in P , add an edge (s, v) to D.
On can easily see that a state t is winnable if and only if t is
reachable from s in D. Notice that the placement of pebbles
in D is basically the same as backward search in G starting
from the goal states.

5. EDGE COVERAGE GAME
The classical transition tour method or T-method is per-

haps the most widely used method in practical model-based
testing applications and is supported by virtually all model-
based testing tools, see e.g. [24]. One of the reasons for its
popularity is that it provides coverage of the transitions of

the model that is an easy-to-understand metric for testers
and at the same time provides a cost-optimal test suite.

We describe here a heuristic to generate a test suite in
form of a game strategy so that the total cost of the test
suite may be optimized and the generated strategy (poten-
tially) covers the transitions of the model. In the case when
the model is deterministic the approach reduces to the T-
method. This approach is used in one of the key test case
generation utilities of the AsmL tester tool [4]. We make
here the usual assumption that the system under test has a
Reset method implying that the underlying graph is strongly
connected, (i.e. by resetting you can always return to the
initial state).

Suppose we have a strongly connected test graph G as
defined in 2. A coverage game between TT and IUT is the
game where TT chooses an edge at the state vertices and
IUT at the choice point vertices and TT tries to cover as
many edges as possible. We suggest a heuristic which uses a
tour through the graph, for example Chinese Postman tour,
to produce a strategy for TT. Recall that a tour of G is a
cycle containing all edges of G and a Chinese Postman tour
is a minimal cost tour. A Chinese Postman tour can be
computed efficiently, see for example [12]. Suppose we have
such a tour and we cut it into sequences at choice points.
Now the strategy of TT can be as the follows. If v is a state
vertex then choose a sequence containing it and follow the
sequence until the end which is a choice point. At the choice
point IUT chooses an edge randomly and if the edge target
is a state then TT proceeds with any sequence continuing
that edge. Let us explain the heuristic more formally and es-
timate the probability of TT covering all edges by following
this strategy.

Let T be a sequence of edges composing a tour covering
G. We can assume without loss of generality that there is
at least one choice point and that the start and the end
vertex of the tour is a choice point. The sequence T can be
represented as a concatenation of sequences Ti, 1 ≤ i ≤ n,
such that the source of the first edge of Ti is a choice point,
the target of the last edge of Ti is a choice point, and there
are no choice points internal to Ti. Let TS be the set of
all Ti. The strategy of the coverage game is given by the
pseudo code of Cover. Normally the actual start vertex is
some initial state and not a choice point, in which case TT

first brings the selected vertex to a choice point by following
some Tj containing the initial state.
Cover has two parameters; the selected vertex v which is

a choice point, and an integer k containing the number of
loop iterations.

Cover(vertex v,integer k){
while (k > 0){

k=k-1
let e=edge chosen by IUT
let es=choose randomly any sequence

from TS starting with e;
cover every edge of es;
v=end of es;

}
}

For each choice point v and every i ∈ {1..n} let us denote
by pi,v the probability that the sequence Ti is be covered by
Cover(v,n). Since T is a cycle pi,v > 0 for every i ∈ {1..n}
and for every choice point v. Let

p = min
i∈{1..n},v∈CP

pi,v.
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Obviously, p > 0.

Proposition 2. Let m be a natural number. For any

choice point v the procedure Cover(v,mn) covers all edges of

G with probability at least 1 − n(1 − p)m and therefore the

probability to cover all edges converges to 1 when m goes to

infinity.

Proof. It is enough to prove that Cover(v,mn) covers
all sequences Ti with probability at least 1−n(1− p)m. Let
v1 = v, v2 = v after n steps of Cover and so on and vm is
the value of v after (m−1)n steps of Cover. The probability
that the sequence Tk is not covered by mn steps of Cover

for some k ∈ {1..n} is
∏

i∈{1..m}

(1 − pk,vi
) ≤ (1 − p)m.

The probability that at least one sequence Tk is not covered
by mn steps ofCover is not more than n(1− p)m. Therefore
the probability that all sequences Tk are covered by nm steps
of Cover is not less than 1 − n(1 − p)m.

s1

s2 cp s4

s3

e1

e2

e3

e4

e5 e6
e7

e8

(0.5)

e9

(0.5)

Figure 1: A sample test graph; all vertices are states
except of the one labelled cp that is a choice point.
The probability function is defined on the edges e8

and e9 and maps each of the edges to 0.5. The cost

of each edge is 1

To illustrate the technique described here let us consider
the coverage game on the graph in Figure 1. The edge se-
quence

[e8, e2, e1, e5, e7, e9, e4, e3, e6, e7]

is a Chinese Postman tour of the graph that starts and ends
in cp. The sequence is divided into following subsequences:

[e8, e2, e1, e5, e7] [e9, e4, e3, e6, e7]

Suppose that the initial state is s1. To start with, TT can
follow either [e1, e5, e7] or [e3, e6, e7] to bring the selected
vertex to cp. Consequently, TT will follow the first sequence
if IUT takes the edge e8 or the second sequence if IUT takes
the the edge e9.

6. IMPLEMENTATION
The algorithms presented in the paper are used internally

by the test case generation and the conformance checking
utilities of the AsmL tester tool [4]. The tool is available
from the AsmL web site [3].

In the AsmL tester tool users model nondeterministic sys-
tems using Abstract State Machines (ASMs) [16]. Similar

to ordinary programs, ASMs can have potentially infinite
space. The tool generates an FSM from the model exploring,
generally speaking, only a part of its state using equivalence
classes on states, that are arbitrary user defined relations in
terms of model variables, and other techniques [14].

In earlier versions of the tool we use the traditional ap-
proach of generating test sequences. For example for tran-
sition coverage we build a Chinese Postman tour. The im-
plementation of the Chinese Postman algorithm in the tool
follows the scheme from [12]; the graph is extended to a bal-
anced graph by adding augmenting paths from the vertices
with shortage of outgoing edges (D-) to vertices with short-
age of incoming edges (D+) and then an Euler tour is built
on the extended graph thus producing a Chinese Postman
tour on the original graph. The chosen augmenting paths
can be viewed as a minimal weighted matching of the bi-
partite graph of all paths between D- and D+. To solve the
minimal weighted matching problem the tool utilizes [22].
While a technique of following a test sequence works great
for testing deterministic systems, it needs extensions to work
for nondeterministic systems.

This leads us to rephrase the testing of nondeterministic
systems as games. Now the AsmL test tool generates a test
suite in form of a bounded reachability game strategy that
tries to cover the edges using the approach described in Sec-
tion 5 augmented with winning strategies to reach specific
states generated by the algorithm described in Section 4.
The conformance checking utility of the tool is then used to
perform runtime verification [5] by executing the test suite
against an IUT that is a .NET assembly. The user may
configure several heuristics for controlling how many times
the choice points should be revisited in case some edges are
not taken by the IUT. After each step (edge taken by ei-
ther the tester or the IUT) additional conformance relations
(that are arbitrary user defined Boolean relations in terms
of model variables and implementation variables) are used
to compare the states of the model and the IUT at binary
level. If a discrepancy is encountered the test execution fails
and an error report is produced.

7. RELATED WORK
The bulk of the testing literature deals with deterministic

FSMs [21, 25] where test cases are considered to be action
sequences and the tester is assumed to be in full control of
the state of the IUT. Since many of our applications are
nondeterministic we needed to take a different approach in
our testing framework. It seemed natural for us to look at
test cases as game strategies.

Extension of the FSM based testing theory to nondeter-
ministic and probabilistic FSMs [1, 15, 28] in particular for
testing protocols got some attention ten years ago. However
with the advent of multithreaded and distributed systems,
it recently got more attention. In this regard, the recent pa-
per [29] is closely related to our work. The approach taken
in [29] does not use games though, instead, the notion of
a transfer sequence is extended to the notion of a transfer

tree, which is similar to the way test cases are considered
in the labelled transition system based testing theory [8,
26]. The notion of a transfer tree corresponds to our no-
tion of a game strategy. The two main problems addressed
in [29] that are related to the first two problems that we
address in this paper are MAW: find a transfer tree with
minimum average weight, and MWH: find a transfer tree
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with minimum weighted height. The bounded reachability
strategy calculation is quite different from MAW, we do not
consider the average cost but rather optimality with respect
to a given preorder on performance values. MWH on the
other hand is essentially the problem of finding an optimal
winning strategy. The algorithm we propose was developed
independently and is different from [29, Minimum-weighted-
height algorithm] in that our algorithm is a direct extension
of Dijkstra’s shortest path algorithm. We also show a close
connection of the problem itself with the alternating graph
accessibility problem [19] (see Section 4.3). To the best of
our knowledge, the use of the transition tour method as pre-
sented in Section 5 for nondeterministic state machines has
not been addressed in the literature.

One can show that our test graph and game definitions
are closely related to Markov Decision Processes with finite
horizon (MDP), see for example [23, 11]. A pair (s, a) from
MDP, where s is a state and a is an action, corresponds to an
edge from a state vertex of the test graph to a choice point u.
The function fu(v) =

∑

(u,v)∈E p((u, v)) gives the distribu-

tion on the set of states for MDP. As far as we know, usual
approaches to strategy or policy optimisations on MDP min-
imize the expectation and not the cost maximum combined
with the probability of winning. An example of expectation
is “the expected total reward criterion” [23, Section 4.1.2].
We think that the representation of MDP as a graph sim-
plifies the application of graph algorithms. Using a graph
representation is essential in Section 5. This approach was
also chosen for example in [9] in the definition of Simple
Stochastic Games.

Model-based testing has recently received a lot of atten-
tion and there are several projects and model-based test-
ing tools that build upon FSM based testing theory or LTS
based testing theory [2, 10, 17, 20, 27]. Typically, goal ori-
ented testing is provided through model-checking support
that produces counterexamples that may serve as test se-
quences. The basic assumption in those cases is that the
system under consideration is either deterministic, or that
the nondeterminism can be resolved by the tester (i.e. the
systems are made deterministic from the testers point of
view). Efficient algorithms for generation of goal oriented
test trees or game strategies is not supported in any tools
we know of and has, as far as we know, not been addressed
in general in the context of testing. This is an open field of
research that we are currently investigating.
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Appendix: Blackjack rules
Blackjack is played with 1 to 6 decks of 52 cards each. The
values of the cards correspond to their numerical value from
2-10. All face cards (Jack, Queen, King) count 10 and the
Ace either 1 or 11, as the holders desires. A score with
an ace valued as 11 is named soft-hand. The color of the
cards does not have any effect. The goal of the game is
to reach a score, which is the sum of the cards, as high
as possible but not more than 21. A Blackjack (Ace and a
card whose value is 10) beats all other combination of cards.
If the final sum is higher than the sum of the dealer, the
player gets a play-off of 1:1 of his initial stake. If the players
combination is Blackjack, the play-off is 3:2 of the initial
stake. If the sum of the dealer is higher, the player loses his
bet. If the sum is equal, then nobody wins. If the player
holds a score of 22 or more, he busted and thus he loses
his bet immediately. If the dealer busts, the players wins
independently of his final score. Blackjack can be played
from one to seven players against one dealer. The dealer
shuffles the cards. Now the players must place their bets.
Then each player and the dealer receives one card. The
cards all lie face up. Thereafter the player receive a second
card. The player now can continue to ’buy’ further cards,

one by one, until he believes that he is near enough to 21. If
the player believes to have reached a score high enough he
must to signal the dealer to ’stay’, which means not to call
for any further cards.

10


