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1 Overview

All our submissions from the Microsoft Research Cambridge
(MSRC) team this year continue to explore issues in IR from
a perspective very close to that of the original Okapi team,
working first at City University of London, and then at MSRC.

A summary of the contributions by the team, from TRECs
1 to 7 is presented in [3]. In this work, weighting schemes for
ad-hoc retrieval were developed, inspired by a probabilistic in-
terpretation of relevance; this lead, for instance, to the success-
ful BM25 weighting function. These weighting schemes were
extended to deal with pseudo relevance feedback (blind feed-
back). Furthermore, the Okapi team participated in most of the
early interactive tracks, and also developed iterative relevance
feedback strategies for the routing task.

Following up on the routing work, TRECs 7–11 submis-
sions dealt principally with the adaptive filtering task; this
work is summarised in [5]. Last year MSRC entered only
the HARD track, concentrating on the use of the clarification
forms [6]. We hoped to make use of the query expansion meth-
ods developed for filtering in the context of feedback on snip-
pets in the clarification forms. However, our methods were not
very successful.

In this year’s TREC we took part in the HARD and WEB
tracks. In HARD, we tried some variations on the process
of feature selection for query expansion. On the WEB track,
we investigated the combination of information from different
content fields and from link-based features.

Section 3 briefly describes the system we used. Section 4
describes our HARD participation and Section 5 our TREC
participation.

2 System

The system is the Keenbow experimental environment as de-
scribed in [6]. The experiments described here were run us-
ing Keenbow on a Microsoft SQL Server, running on an Intel
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Quad 700MHz Xeon with 3GB RAM. The basic ranking algo-
rithm in Keenbow is the usual Okapi BM25. The collections
were preprocessed in a standard manner, using a 126 stop-
word list and the Porter stemmer (where stemming is used).

3 HARD Track

For the experiments we submitted to this year’s HARD track,
we concentrated on methods for query expansion to improve
relevance feedback. More formally, our experiments ad-
dressed the following problem: given a fixed ranking func-
tion � , a query�, ranked list of documents�� ranked with
respect to�, and few��� �� snippets corresponding to docu-
ments in�� marked by the user as relevant to the query, how
can we use the relevant snippets to improve the ranked list��?

3.1 Feature selection methods

We are interested in two problems: i) selecting new terms
to be added to the query, and ii) weighting these terms. For
the selection problem, we investigate the use of several func-
tions. We call these functionsfeature selection functions
(noted������. For the weighting problem we are using stan-
dard RSJ feedback weights, except that terms in the query are
given artificially high� and� counts.

We tried two types of feature selection functions:relative
andabsolute. Relative feature selection measures produce an
ordering on the candidate terms, but they do not give us an
indication on the number of terms to be included. The mag-
nitude of the value����� depends on the query in an unknown
way. We use relative functions by deciding on a fixed number
of expansion terms for all queries. Robertson Selection Value
is the only relative function we used.

Absolute feature selection values, on the other hand, can be
tested against a threshold (query-independent) to decide how
many terms to be included. Typically, queries with a large
number of relevant documents can select more terms for in-
clusion.

Before discussing the different feature selection functions
we used, we introduce some useful notation:

� � is the total number of documents in the corpus.

� �� � is the number of distinct terms in the corpus.

� � is the total number of relevant documents (for a fixed
query).



� �� is the number of relevant documents in which term� �
appears.

� �� is the total number of documents in which term� � ap-
pears.

� Probability of term�� in relevant class:�� � ��
�

.

� Probability of term�� in non-relevant class:��� � ����
��� .

� Probability of term�� in corpus:��� �
��

�
.

� 	�
��

� ��
����������

is the number of combinations of�� in
R.

We experimented with the following feature selection func-
tions:

� Robertson Selection Value (RSV) [2]
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� Significance Rule (SGN) [4]
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� Maximum Likelihood Decision Rule (MLDR)
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� Simplified Kullback-Leibler Distance (KLD) [1]

����� � �� ���
��
���

� Modified Chi-Squared (CHI2) [1]

����� �
��������

�

���

The MLDR derives from a maximum likelihood argument,
which will be explored in a later paper. The KLD is a simpli-
fication of the Kullback-Leibler distance between two proba-
bility distributions. In this case the distributions relate to the
events of (presence, absence) of a given term. The full KL
distance would be

�� ���
��
���

	 �
� ��� ���
����
�����

but the second term is ignored here, as is the fact that the
KL distance is asymmetric between the two distributions. The
simplification also has the effect that terms will not be selected
because they are good indicators ofnon-relevance.

3.2 Experiments on Feature Selection

To test for the performance of the feature selection func-
tions for query expansion, we made an experimental setup
similar to the HARD’04 test scenario. We generated clar-
ification forms with snippets and first passages of the top
five retrieved documents for each query in the HARD’04
training set. We marked the snippets as relevant only
if the corresponding document in the corpus had a pos-
itive relevance judgment. Using this, we extracted only
queries����
 ��

 ���
 �
�
 �
�
 �
�
 ���
 ��

 ���
 ���� for
which we got one or more relevant snippets and used this as
the set to test for query expansion using different feature se-
lection functions. Figure 1 shows the plot for mean average
precision against the number of words in the expanded query
for these 10 topics.

It may be noted that all selection value formulae produce
more-or-less comparable peaks. Although two other measures
show slightly higher peaks, KL distance (KLD) has least vari-
ation in the mean average precision for the different number
of words added; in other words, it seems to be less suscep-
tible than the others to non-optimal setting of the threshold.
We tested these measures as well on the Reuters Vol.1 corpus
and HARD’03 obtaining similar results. For example, DLF
consistently gave high mean average precision on query ex-
pansion using (1-3) documents for queries in the Reuters col-
lection. Hence, we chose to use KLD for query expansion on
our submitted runs to HARD04.

Intuitively, KL distance values the dissimilarity between the
distribution of the term in the relevant class and the entire cor-
pus. In other words, words that are infrequent in the corpus but
frequently present in the relevant documents are considered
most informative of relevance and hence best candidate terms
for inclusion to the query. However, as with all the absolute
methods, for a given score threshold there is large variance in
the number of words selected for different queries (1-30). In
particular, we found that it often over-estimates the number of
terms to be included in the query. For this reason, we intro-
duced a second parameter which limits the maximum number
of words to be included in a query (noted maxT).

Figure 2 shows the mean average precision over queries
when using the KLD selection function against an absolute
threshold (plotted in the x-axis), for different values of maxT.
The ’infinity’ line corresponds to the basic KLD measure with-
out maxT threshold. Note that the use of maxT is beneficial
and obtains te best average precision (on the training set at
least).

3.3 Metadata and clarification forms

The clarification forms contained three forms of data: Snip-
pets, Good Phrases and Bad Phrases. That is, we showed the
user a snippet from each of the five top-ranked documents from
the baseline search (passage retrieval methods were used to
identify appropriate snippets, but we made no further passage
retrieval runs, and did not make submissions for the passage
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Figure 1: Mean average precision variation as selected words
are added to the query. The baseline result of search using only
the original query is shown as the first data point with number
of words = 2.5

0.5 1 1.5 2 2.5 3 3.5
0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

Threshold value for KLD score

M
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

infinity
maxT =20
maxT=15
maxT=10
maxT=7

Figure 2: Mean average precision variation as the KLD thresh-
old is varied, for different number of maximum terms (maxT).

retrieval evaluation). Users were asked whether they would
click on each snippet; responses ‘Yes’ or ‘Perhaps’ or ‘No
need’ were taken as relevant (the last category means that the
user could infer the answer they wanted directly from the snip-
pet, without going to the original document). In addition, they
were invited to add up to five words or phrases indicating Good
documents, and up to five indicating Bad documents.

We used these in various ways and in various combinations
for feedback. We made minimal use of the metadata as we
were primarily interested in assessing relevance feedback. The
only form of metadata we used besides the query title, was the
’Description’ field. Often, the query title did not convey suf-
ficient information on which the relevance judgements were
made. For example, the title for Topic 422 was ”Video Game
Crash” but the description in the data was ”Is the market for
interactive software just waiting to crash?” Since our original
search was based only on the query title, our results presented
on the clarifications forms discussed video game crashes in-
stead of market crash for video game software and hence were
all marked as non-relevant. We used the description meta-data
along with the query to generate results for such queries in the
final run.

More specifically, metadata and feedback data were used as
follows in the submitted runs: Ifgood phrases were used, they
were added to the query. Ifbad phrases were used, they were
removed from the query. Ifsnippets were used, all the terms
of the snippets were considered for inclusion using the feature
selection algorithm described bellow. Finally, ifdescriptions
were used and there were no relevant snippets and there were
no good phrases, all the terms in the description were added to
the query.

Terms considered for inclusion (from relevant snippets)
were selected by the following procedure (as described in the
previous section):

PROCEDURE FeatureSelectKLD
(

S = set of all words in relevant snippets ,
ST = score threshold ,
MaxT = maximum number of terms to be included ,

)
�

newSet =�
FOREACH(�� � � ) �

IF (�� � ST)
� newSet = newSet

�
���
SKLD����� 	

	
IF ( size(newSet)� MaxT) �

newSet = SORT(newSet, SKLD(��), DESCENDING)
newSet=newSet(1..MaxT)

	
RETURN newSet

	



3.4 Submitted runs

The parameters we used for the runs include:

� BM25 parameters: k1 = 3.44, b = 0.297

� Term selection function: Kullback-Leibler Distance
(KLD)

� Term section threshold: 2.5

� Maximum number of terms included in each query: 7

� Weighting after selection: terms in the topic title are given
extra weight by considering that they appear a number
���	
 of times in a hypothetical relevance set of size
���	
. These numbers are free parameters, and are added
to the observed�� and� counts. In our runs we set these
parameters to���	
 � �� and���	
 � ��.

The methods used in the various submitted runs are shown in
Table 1.

Table 1: HARD Track: submitted runs

Run Stem Sn* GP BP Desc
MSRCBaseline yes no no no no
MSRCh4SD yes no no no yes
MSRCh4SG yes no yes no no
MSRCh4SGB yes no yes yes no
MSRCh4SSn yes yes no no no
MSRCh4SSnB yes yes no yes no
MSRCh4SSnG yes yes yes no no
MSRCh4SSnGB yes yes yes yes no
MSRCh4SSnGBD yes yes yes yes yes**

* Sn = Snippets; GP = Good Phrases; BP = Bad Phrases; Desc
= Description
** We only used the description for queries with no user
feedback (i.e. no snippets, good phrases or bad phrases).

3.5 Results

Results are shown in Tables 2 and 3.
The results may be summarised as follows. Query expan-

sion from snippets selected by the user helped this year (in
contrast to last year when we failed to get any benefit). Good
phrases also helped, even in the relatively simple-minded way
that we used them (just to add extra single terms). Bad phrases
(in the way that we used them here) did not help; there is
clearly much scope for looking at different ways of using this
information.

4 WEB Track

In the Web Track we focus on three types of evidence:

Table 2: HARD Track, hard relevance evaluation

AveP P@10 RPrec
MSRCBaseline 0.2098 0.2733 0.2336
MSRCh4SD 0.2511 0.3533 0.2539
MSRCh4SG 0.2581 0.3400 0.2752
MSRCh4SGB 0.2585 0.3400 0.2763
MSRCh4SSn 0.2428 0.2622 0.2621
MSRCh4SSnB 0.2396 0.2489 0.2557
MSRCh4SSnG 0.2836 0.3044 0.2981
MSRCh4SSnGB 0.2839 0.3044 0.2992
MSRCh4SSnGBD 0.2841 0.3111 0.2966

Table 3: HARD Track, hard relevance evaluation

AveP P@10 RPrec
MSRCBaseline 0.2077 0.3444 0.2409
MSRCh4SD 0.2544 0.4133 0.2857
MSRCh4SG 0.2490 0.4333 0.2875
MSRCh4SGB 0.2506 0.4289 0.2889
MSRCh4SSn 0.2329 0.3311 0.2591
MSRCh4SSnB 0.2284 0.3178 0.2525
MSRCh4SSnG 0.2612 0.3911 0.2938
MSRCh4SSnGB 0.2615 0.3911 0.2938
MSRCh4SSnGBD 0.2631 0.3978 0.2955

1. Text: title, body and anchor.

2. Link recommendation: PageRank or ClickDistance (de-
fined as the minimum number of hyper-links one needs
to follow to go fromhttp://firstgov.gov to the
page).

3. URL depth: length of URL in characters.

For the text, we use a new variant of BM25 where weights
and length normalisation parameters are distinct per-field (this
is discussed in Section 4.1). For link-based and URL fea-
tures we employ new combination functions, which we find
by analysing the relevant and retrieved documents for a set of
training queries (this is discussed in Section 4.2).

We deal with the mixed HP-NP-TD query stream through
tuning. We have examples of all three types from TREC-2003,
and so we conducted several tuning runs, looking at perfor-
mances specifically to each task and overall (this is discussed
in Section 4.3) The main difference we found across query
types is that stemming helps TD and hurts the other two, so
we vary the stemming across our runs. Our submission runs
and results are discussed in Section 4.4.



4.1 Integrating Content Features Across Mul-
tiple Fields

We refer to the different annotated parts of a document, such
as title and body, asdocument fields. Furthermore we use the
termanchor field to refer to all the anchor text in the collection
pointing to a particular document.

In previous work we showed that combining BM25 scores
across fields can lead to a dangerous over-estimation of the
importance of the term [7]. We proposed to combine the term-
frequencies (weighting them accordingly to their field impor-
tance) and using the resultingpseudo-frequency in the BM25
ranking function. Furthermore we showed how to adapt auto-
matically the parameters�� and� to changes in the weights.

In this submission we have modified slightly this approach
to take into account fields of extremely different field lengths
(such as those of the title and anchor). In particular, we have
modified the function so that it can use a different length nor-
malising factor� for every field-type.

This is done by computing a field-dependant normalised
term-frequency:1
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� � �BODY, TITLE, ANCHOR	 indicates the field type,
�
�
�� is the term frequency of term� in the field type� of
document�, 

�
 is the length of that field, and

 is the av-
erage field length for that field type.�
 is a field-dependant
parameter similar to the� parameter in BM25. In particular, if
�
 � � there is no normalisation and if�
 � 
 the frequency
is completely normalised w.r.t. the average field length.

These term frequencies can then be combined in a linearly
weighted sum to obtain the final termpseudo-frequency, which
is then used in the usual BM25 saturating function. This leads
the following ranking function, which we refer to as BM25F:
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where����
� is the usual RSJ relevance weight for term�, which

reduces to an idf weight in the absence of relevance informa-
tion (note that this does not use field information).

Note that this function requires one�
 and one�
 param-
eter per field, plus a single saturating parameter��. This con-
stitutes a total of�� � � 	 
� parameters. Because of the de-
pendence structure fo the parameters, we can brake down the
global optimisation into smaller optimisation problems of one
or two parameters. The optimisation procedure that we fol-
lowed to is as follows:

� �
 : Independently for every field (setting the other field
weights to zero), optimise�
 and�
.

1The equation for normalised term-frequency and that for BM25 contain
errors in the printed version, which have been corrected in this online version.

Parameter TD’03 NP’03
�� 27.5 4.9
������ 0.95 0.6
����� 0.7 0.5
������� 0.6 0.6
������ 38.4 13.5
����� 1.0 1.0
������� 35 11.5

Table 4: BM25F parameters obtained by optimising the Topic
Distillation (TD) and Name Page (NP) TREC tasks of 2003.
See text for details.

� ��: Setting all field weights� to 1, and using all the�


values previously found, optimise�
.

� �
 : Setting the body weight to 1, the previously found
values of�
 and�
, optimise the weights�
 for the ti-
tle and anchor fields (adapting�� to each weight setting,
as indicated in [7]).

This constitutes (� 	
) optimisations in 2 dimensions (2D)
and one optimisation in 1D. 2D and 1D optimisations were
done by a robust line-search type algorithm, optimising Preci-
sion@10 on a set of training topics.

In order to evaluate our approach against standard BM25
and [7] we used 4-fold cross–validation over a set of TREC
topics. We did this with the 2003 Name Page (NP) and 2003
Topic Distillation (TD) topics sets separately (each has 50 top-
ics). A full optimisation run took approximately 3 days to
complete (running on top of Keenbow without making any
effort to optimise the code for this task). The resulting per-
formances were significantly better for a range of measures,
so we decided to use BM25F for our final submissions.

Since the variance of the parameters was not large across
cross–validation sets, we used for our final submissions the
average parameter values obtained in the cross-validation. The
values of these parameters are indicated in table 4.

4.2 Integrating Document Features

Our new combination functions are suggested based on analy-
sis of the relevant and retrieved documents for a set of training
queries. Examining such sets is reminiscent of Singhal et al
[8].

In general, we address the problem of choosing a score con-
tribution function� for adding static scores� to existing doc-
ument scores�, with ���������	�
� � � 	 ����. As an
illustration, we consider the case were� is BM25 and� is
PageRank (see Figure 3).

For a set of training queries we identify two sets of docu-
ments. The relevant set� is the set of known relevant docu-
ments for the training queries. The retrieved set� is the set
of top-ranked documents if we retrieve using� only. In this
example we use the top� documents for each query, where



Figure 3: Web Track: Analysis for finding the score con-
tribution function for PageRank. The horizontal axis is
log(PageRank). The plots are��� � �������

� ����� ���
(labelled as R),

��� � ������ �
� ����� �� �

(labelled as T) and the difference between the
two (R-T). The choice of score contribution function� is based
on the shape of�� � .

� is the number of known-relevant documents for that query,
which makes� the same size as�.

Assuming that� and� are independent, the correct score
contribution for� � � is ��� � �������

� ����� ���
. In practice we ap-

proximate the set of irrelevant documents�� using the whole
collection	. Based on our training set, the score contribu-
tion is given by the line labelled� in Figure 3. The upwards
slope of the line indicates that PageRank is a useful relevance
indicator.

However,� and� are not independent, and we can see this
if we plot � in the same manner (also Figure 3). The upwards
slope of the line indicates that BM25 is already retrieving high-
PageRank pages. The difference between the curves� � �

suggests the shape of� . We tried log PageRank, since� � �

looks quite straight in the region of interest:

����
����� � � � ������
����� � (1)

We also tried a sigmoid of log PageRank, since� � � does
appear to flatten out. Tuning the sigmoid of log PageRank gave
us our final���� for PageRank:

����
������ �
�


 	 �	�� ��	�������������
(2)

although due to time constraints we fixed� � 
.
Similar analysis for� � ���	�������	� suggested:

�����	������ � �
�

� 	 ���	�����
(3)

Run Average TD MAP NP MRR HP MRR

MSRC04B1S 0.5392 0.159 0.719 0.741
MSRC04B2S 0.5461 0.162 0.731 0.745
MSRC04B1S2 0.4985 0.136 0.709 0.651
MSRC04B3S 0.4601 0.121 0.674 0.585
MSRC04C12 0.5458 0.165 0.724 0.749

Table 5: Web Track results. The ‘average’ is just an average
of the other three columns.

Analysis for � � ���� 	 ��
����� and � �
������
�� suggested a similar function:

��������
��� � �
�

� 	������
��
(4)

and this performed better than the negative linear function used
in previous experiments.

4.3 Preliminary Experiments

To evaluate the combination of content and link features we
used a mixed set of 120 TREC 2003 Web queries ( 40 from
TD, 40 from NP and 40 from Home Page (HP)). We used the
BM25F parameters obtained optimising Prec@10 on TD and
NP. We tuned the PageRank (PR) weights� and� (keeping
� � 
) and similarly we tuned� and� for ClickDistance
(CD). URL-length (URLl) parameters were tuned for PageR-
ank and ClickDistance afterwards on the same set (we checked
the risk of over-fitting by validating on the remaining 2003
queries).

Finally, we tested several rank combination methods with-
out much success. The only interesting result we found was
to interleave the documents of two disparate runs (removing
duplicates from the bottom).

4.4 Submitted Runs and Results

Our submission runs were:

� MSRC04B1S: BM25 NP tuning + PR + URLl

� MSRC04B2S: BM25 NP tuning stem + PR + URLl

� MSRC04B1S2: BM25 NP tuning + CD + URLl

� MSRC04B3S: BM25 TD tuning + CD

� MSRC04C12: interleave MSRC04B1S and
MSRC04B2S

Our results are summarised in Table 5. Based on our train-
ing runs we expected stemming to help TD and hurt the other
two. Actually the first two lines of the table show that turn-
ing on stemming helped slightly across all tasks. Since the
differences were small, interleaving the two (MSRC04C12)
only had the effect of adding some (slightly positive) noise.
The runs with click distance were somewhat worse than the
PageRank runs, but they performed two do similar jobs.



5 Conclusions

In the HARD Track, we have succeeded in revising our rele-
vance feedback mechanisms (in particular, the rules for query
expansion) in such a way that we can benefit from user feed-
back on snippets. Other matters have been left in abeyance,
including (a) the use of active learning techniques for choos-
ing the snippets to present to the user (as we did last year), (b)
the use of negative information (words or phrases specified by
the user as negative indicators of relevance), and (c) passage
retrieval.

In the Web Track we did not find new forms of evidence or
new ways of dealing with mixed query streams. Instead we
concentrated on dealing well with the different text fields in
BM25 and adding static information using appropriate func-
tions. It appears that there was still room for gains in these
areas, and our final results were very satisfactory.
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