
A Semantics for Web Services Authentication

Karthikeyan Bhargavan Cédric Fournet
Andrew D. Gordon

February 2004

Technical Report
MSR–TR–2003–83

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

A shortened version of this paper appears in the proceedings of the 31st Annual
ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages,
Venice, January 14–16, 2004.





A Semantics for Web Services Authentication

Karthikeyan Bhargavan Cédric Fournet Andrew D. Gordon

February 2004

Abstract

We consider the problem of specifying and verifying cryptographic secu-
rity protocols for XML web services. The security specification WS-Security
describes a range of XML security tokens, such as username tokens, public-
key certificates, and digital signatures, amounting to a flexible vocabulary
for expressing protocols. To describe the syntax of these tokens, we extend
the usual XML data model with symbolic representations of cryptographic
values. We use predicates on this data model to describe the semantics of
security tokens and of sample protocols distributed with the Microsoft WSE
implementation of WS-Security. By embedding our data model within Abadi
and Fournet’s applied pi calculus, we formulate and prove security properties
with respect to the standard Dolev-Yao threat model. Moreover, we infor-
mally discuss issues not addressed by the formal model. To the best of our
knowledge, this is the first approach to the specification and verification of
security protocols based on a faithful account of the XML wire format.
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1 Motivations and Outline

Over the past few years, a growing list of specifications has been defining aspects
of XML web services. Security is a serious concern and is addressed, in particular,
by the recent WS-Security specification [3, 15]. This specification provides an
XML vocabulary for designing cryptographic protocols, is widely implemented,
and is undergoing standardization at OASIS [31] under the name Soap Message
Security. Still, it provides no formal basis for stating security goals or reasoning
about correctness. The trouble is, new cryptographic protocols are often flawed,
XML or no XML.

Meanwhile, there has been a sustained and successful effort to develop for-
malisms for expressing and verifying cryptographic protocols ([6, 10, 11, 21, 24,
26, 34, 38] etc). Formal methods can verify various security properties against a
standard threat model based on an opponent able to monitor and manipulate mes-
sages sent over the network. Such verifications are typically of abstract versions of
protocols, expressed using fixed, high-level, ad hoc message formats, rather than
the standard XML syntax for ordered trees with pointers.

This paper brings these developments together. We introduce a language-based
model for XML security protocols, and we establish process calculus techniques for
verifying authentication properties for a wide class of WS-Security protocols.

1.1 Background: Web Services Security

Web services [40] are a distributed systems technology based on network endpoints
exchanging SOAP [7] envelopes—XML documents with a mandatory Body element
containing a request, response, or fault element, together with an optional Header
element containing routing or security information. SOAP allows for network inter-
mediaries—such as routers or firewalls—to process an envelope, by adding or modi-
fying headers. Examples of web services include Internet-based services for ordering
goods or invoking search engines, and intranet-based services for linking enterprise
applications.

A common technique for securing SOAP exchanges is to rely on a lower-level
secure tunnel between the endpoints, typically an SSL connection. This works well
in many situations, but has the usual disadvantages of transport-level security: the
secrecy or integrity of messages can be guaranteed while in the tunnel, but not sub-
sequently in files or databases, and they may not match the security requirements
of the application. Pragmatically, client authentication is often performed by the
application rather than by SSL. Besides, SSL does not fit SOAP’s message-based
architecture: intermediaries cannot see the contents of the tunnel, and so cannot
route or filter messages.

To better support end-to-end security [35], WS-Security defines how to sign
or encrypt SOAP messages without relying on a secure transport. A central—
but informal—abstraction is the security token, which covers data making security
claims, such as user identifiers, cryptographic keys, or certificates. WS-Security
provides a precise syntax for multiple token formats, such as XML username to-
kens and XML-encoded binary tokens conveying X.509 public-key certificates or
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symmetric keys. It also specifies syntax for applying encryption and signature to
selected elements of SOAP messages. Like many traditional protocol specifications,
WS-Security details message formats—such as the names of XML tags—rather than
security goals and their enforcement, thereby focusing on interoperability rather
than security. Although it gives a syntax for a broad range of protocols, WS-Secu-
rity also emphasizes flexibility, and does not define any particular protocol. As a
result, for each given WS-Security compliant protocol, security goals still have to
be carefully specified and validated.

1.2 Background: Security Protocol Verification

This paper addresses authentication properties of XML-based security protocols
against a standard threat model: an opponent able to read, replay, redirect, and
transform messages, but who cannot simply guess secrets. Needham and Schroeder
describe such an opponent in their pioneering work on cryptographic protocols [32].
The first formalization was by Dolev and Yao [17]. A great many formal methods
have been deployed to verify protocols against this threat model, with particular
progress in the past few years.

This paper uses Abadi and Fournet’s applied pi calculus [1, 20] as the underly-
ing specification language for protocols, and relies on proof techniques from concur-
rency theory. In this approach, the opponent is simply an arbitrary context within
the calculus; the scoping rules of the pi calculus ensure that the opponent cannot
learn names representing secrets such as the passwords of protocol participants.

We formalize authentication properties using standard correspondence asser-
tions [41], as embedded within the pi calculus by Gordon and Jeffrey [21]. These
assertions are based on two kinds of events, which can be thought of as logfile
entries by protocol participants. A begin-event marks the initiation of a run of
a protocol, while an end-event marks the commitment that a run has completed.
Events record data identifying the run, such as the names of the client and server,
message identifier, and payload. A protocol is safe if in every run, every end-event
corresponds to a previous begin-event with the same event record. Moreover, a
protocol is robustly safe if it is safe in the presence of an arbitrary opponent pro-
cess. Robust safety establishes message authentication, and rules out a range of
attacks.

1.3 This Paper

We tackle the problem of formal reasoning about XML-encoded cryptographic pro-
tocols. The interest and novelty in this problem arises not from the XML syntax
itself, but from the need to model low-level detail, in particular, the flexibility and
hierarchical structure of XML signatures [19], designed to tolerate changes to the
headers of a SOAP message over its lifetime.

We base our approach on three formalisms: a symbolic syntax for XML with
cryptography and a predicate language for defining acceptable messages—both
defined in Section 2—and a specialized version of the applied pi calculus. We
explain the purpose of each of these in turn.
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First, to represent XML messages with embedded cryptography, we enrich the
standard XML data model with an abstract syntax for embedded byte arrays and
cryptographic functions. Formally, we define a many-sorted algebra with sorts for
the usual constructs of XML—strings, attributes, and so on—plus a new sort of
symbolic byte arrays, in the style of Dolev and Yao, to represent cryptographic
materials embedded in XML.

Second, to define the semantics of security tokens and validity conditions on
messages, we introduce a Prolog-like language of predicates on XML data. By in-
sisting on fidelity to the low-level XML format, we are confronted with the difficulty
of defining rather intricate conditions of message acceptability, and hence we need
some language of predicates on XML. It may be possible to extend some standard
type system or query language for XML (such as DTDs, XML Schema, or XPath)
to express conditions on cryptographic values. Instead, for the sake of simplicity
and being self-contained, we rely on a fairly standard Horn-clause logic.

Third, to describe complete protocols, we embed these messages and predicates
within the applied pi calculus. We state and prove protocol properties against a
large class of contexts representing attackers. Applied pi is parameterized in general
by an arbitrary equational theory of terms, which we specialize to our data model
for XML with cryptography. We obtain a calculus expressive enough to implement
our predicates, and to describe complex protocol configurations.

In Section 3, given these notations, we formalize the security goals and message
formats of a series of sample protocols. These protocols illustrate a range of WS-
Security concepts including message identifiers, password digests, username tokens,
X.509 public-key certificates, XML signatures based on both password-derived keys
and certificates, and processing by SOAP intermediaries as well as end-points. For
each protocol, we give predicates describing acceptable messages, and state authen-
tication goals using the usual message-sequence notation. WS-Security itself defines
a formal syntax for messages, but gives only an informal account of the security
checks performed by compliant implementations, as each token is processed in the
SOAP protocol stack. Through formalizing the series of protocols, we accumulate
a collection of re-usable predicates reflecting the semantics of these tokens. Hence,
we obtain a first formal semantics for a significant fragment of WS-Security.

In Section 4, we formalize the message-sequence notation within the applied pi
calculus so as to verify our authentication goals. We explain the structure of the
proof of three of the sample protocols from Section 3. The proofs are compositional,
and rely on identifying a “trusted computing base” embodying the essential checks
underlying the protocol.

In Section 5, we conclude, and discuss related and future work.
Appendix A is a brief introduction to the applied pi calculus. Appendix B con-

tains additional proofs. Appendix C lists the namespaces for all XML element and
attribute names used in the paper. Appendix D provides sample SOAP messages
obtained experimentally for the protocols of Section 3. A portion of this report is
published as a conference paper [5].
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1.4 Contributions

In summary, we make three main contributions:

(1) A new data model and predicate language for describing XML-level crypto-
graphic protocols.

Fidelity to the detailed messaging format enables us to address its subtleties,
such as the interpretation of compound signatures.

(2) A collection of predicates defining a semantics for the security tokens of WS-
Security and related specifications.

We cover only a substantial fragment of WS-Security, but our semantics does
establish the feasibility of applying our formal developments to a large class
of protocols.

(3) Proofs for a series of concrete protocols drawn from the WSE 1.0 distribution.

At an abstract level, the protocols we consider are quite simple. Still, we have
encountered vulnerabilities to XML rewriting attacks in implementations of
these conceptually simple protocols. So it is worth establishing correctness
at this level, and indeed the formal Dolev-Yao properties are non-trivial.

2 Symbolic Cryptography in XML

The core of our data model—or abstract syntax—for XML trees is adapted from
Siméon and Wadler’s grammar for XML [37].

XML Data Model: Standard Core

Tag ::= anyLegalXmlName element or attribute name
str :string ::= any legal XML string XML string
a :att ::= Tag ="str" Tag-attribute
as :atts ::= a as | ε attribute sequence
i : item ::= Elem | str item
is : items ::= i is | ε item sequence
Elem ::= <Tag as>is</Tag> Tag-element

Our data model represents valid, parsed XML. It resembles the XML infoset rec-
ommendation [12] but with some differences. For the sake of clarity, we completely
suppress information about XML namespaces, and the document <?xml ...> di-
rective. As a minor technical convenience, we model an element’s attributes as an
ordered sequence rather than a set. (This also reflects the capability of an attacker
to observe ordering information.)

Our syntax is intentionally close to the standard XML wire format, but for
brevity we rely on three notational conventions. First, although formally an ele-
ment’s attributes as and body is are recursively defined lists, we typically use a
standard tuple notation for fixed-length sequences. Second, instead of writing an
element <Envelope></Envelope>, say, in full, we drop the tag from the closing
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bracket, and simply write <Envelope></>. Third, when writing an element that
spans several lines, we rely on indentation (as in Haskell or Python) to delimit the
body, and so omit the closing bracket. So, by convention,

<Envelope>
<Header></>
<Body></>

is short for <Envelope><Header></Header><Body></Body></Envelope>.

Conventions for Sequences, for Closing and Indenting Elements:

a1 . . . am
4= a1 (. . . (am ε)) :atts for m ≥ 0; similarly for items.

<Tag as>is</> 4= <Tag as>is</Tag>
<Tag as>

i1...
im

 4= <Tag as>i1 · · · im</>

Formally, our data model is a many-sorted algebra, based on the sorts string,
att, atts, item, items, plus a sort bytes for binary data. We embed this algebra
within the applied pi calculus as described in Section 4. The complete algebra is
given by the “XML Data Model” table above plus two more below.

We need the following general definitions. We let T , U , V range over terms
of arbitrary sort in the algebra, and write T : string, for example, to mean that
T belongs to the sort string. Throughout we assume that terms, predicates, and
equations are well-sorted, but for the sake of brevity keep the details implicit.
In addition to the syntax defined in this section, terms include sorted variables,
x, y, z, . . . , and so on. We let fv(T ) be the set of variables occurring in a term T .
We say a term T is closed if and only if fv(T ) = ∅. Otherwise, we say the term is
open—an open term represents a closed term with some undetermined subterms,
represented by the variables. We let Ṽ range over vectors V1, . . . , Vm of terms, and
similarly x̃ ranges over vectors x1, . . . , xm of variables. We often treat such vectors
as sets. We let σ range over parallel substitutions {x̃ = Ṽ } of the terms Ṽ for the
variables x̃, and we define dom({x̃ = Ṽ }) 4= {x̃}. We say that a substitution σ is
closed if and only if σ(x) is a closed term for each x ∈ dom(σ).

Next, we supplement the core data model with a symbolic representation of
cryptography and related operations. We introduce a sort bytes representing byte
arrays, and extend string with Base64-encoded arrays (base64(x)). We assume there
is an infinite set of atomic, abstract names, ranged over by s. Each name is either
of sort bytes or string. We use these names to represent arbitrary, unstructured
cryptographic materials such as passwords and keys. We let fn(T ) be the set of
names occurring in a term T .
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XML Data Model: Byte Arrays, Symbolic Cryptography

x :bytes ::= byte array (not itself XML)
s abstract name (key, nonce)
concat(x1, x2 :bytes) array concatenation
c14n(i : item) canonical bytes of an item
utf8(str :string) UTF8 representation of strings
sha1(x :bytes) cryptographic digest
p-sha1(pwd :string, salt :bytes) key from salted password
hmac-sha1(key, x :bytes) keyed hash
pk(kpriv :bytes) map from private to public key
rsa-sha1(x, kpriv :bytes) public key signature
x509(sr :bytes, u :string, a :string, kpub :bytes) X.509 certificate

str :string ::= XML string
s abstract name (password)
base64(x :bytes) Base64-encoding of byte array
principal(pwd :string) map from password to principal

While the cryptographic functions presented here are all present in the WS-
Security specification, the exact choice of primitives is a little arbitrary; we include
enough operations here for the protocols of Section 3. The term concat(x1, x2) rep-
resents the concatenation of the two arrays x1 and x2. The term c14n(i) represents
the array obtained by canonicalizing the XML represented by i, according to some
standard algorithm [8, 9]. (In fact, for our purposes, c14n is simply a way of sym-
bolically treating an XML item as a byte array; our c14n does not sort attribute
lists, for example.) The term utf8(str) represents the UTF8 encoding of the XML
string str. The term sha1(x) represents the one-way SHA1 hash of the x array. The
term p-sha1(pwd,salt) represents a key obtained by hashing the pwd password and
the salt array [16]. The term hmac-sha1(key, x) represents a keyed hash of the x
array using the key array as the key [25]. The term pk(kpriv ) represents the pub-
lic key associated with a private signing key kpriv . The term rsa-sha1(x, kpriv ) is a
public-key signature of x under the private key kpriv [23]. The term x509(sr, u, a, k)
represents a basic X.509 public-key certificate, where sr is the private signing key
of the certifier and u, a, k are the signed user name, algorithm, and key for a given
principal. (Such binary certificates can be embedded as XML items; they are used
here to carry public keys for the asymmetric signing algorithm rsa-sha1.) Finally,
the term principal(pwd) is used to represent a database of user names associated
with secrets, such as passwords, and is explained in Section 3.2.

Our threat model is that SOAP messages may be intercepted, decomposed,
modified, assembled, and replayed by the attacker [17, 32]. The following selector
functions and inverses symbolically represent the ability of the attacker to decom-
pose messages. It is deliberate that there are no inverses for the three hash functions
(sha1, p-sha1, and hmac-sha1), and for the public-key (pk) and user name (principal)
maps; the attacker cannot reverse these one-way functions.
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XML Data Model: Selectors and Inverses

x :bytes ::= byte array
fst(x :bytes) left part of concat
snd(x :bytes) right part of concat
i-base64(str :string) inverse of base64
x509-key(cert :bytes) public key in X.509 certificate
check-x509(cert , kr :bytes) X.509 certificate verification
check-rsa-sha1(x, sig , kpub :bytes) public key verification

str :string ::= XML string
Tag.parm(a :att) string param of a Tag-attribute
i-utf8(x :bytes) inverse of utf8
x509-user(cert :bytes) name in X.509 certificate
x509-alg(cert :bytes) algorithm in X.509 certificate

a :att ::= attribute
hd(as :atts) head of a sequence

as :atts ::= attributes
Tag.att(i : item) attributes of a Tag-element
tl(as :atts) tail of a sequence

i : item ::= item
hd(is : items) head of a sequence
i-c14n(x :bytes) inverse of c14n

is : items ::= items
Tag.body(i : item) body of a Tag-element
tl(is : items) tail of a sequence

Most of these selectors are straightforward inverses with single arguments. The
two exceptions are check-x509 and check-rsa-sha1. The term check-x509(cert , kr )
checks that the certificate cert is signed with a private key associated with the
public key kr , and yields kr if this succeeds. The term check-rsa-sha1(x, sig , kpub)
checks that sig is the rsa-sha1 signature of x under the private key corresponding
to the public key kpub and yields kpub if this succeeds. (Some of the inverses, such
as the functions fst and snd, would be impossible to implement in general, and we
do not rely on them to program compliant principals; they exist to represent the
possibility of the attacker correctly guessing, for example, how to divide an array
obtained by concatenation into its original two halves.)

We represent evaluation of selectors and inverses by an equivalence, U = V , the
least sort-respecting congruence induced by the following axioms.

Equivalence of Terms of the Data Model: U = V

hd(a as) = a tl(a as) = as
hd(i is) = i tl(i is) = is
Tag.att(<Tag as>is</>) = as i-base64(base64(x)) = x
Tag.body(<Tag as>is</>) = is i-utf8(utf8(str)) = str
Tag.parm(Tag="str") = str i-c14n(c14n(i)) = i
fst(concat(x1, x2)) = x1 snd(concat(x1, x2)) = x2

7



x509-user(x509(sr , u, a, k)) = u x509-alg(x509(sr , u, a, k)) = a
x509-key(x509(sr , u, a, k)) = k
check-x509(x509(sr , u, a, k), pk(sr )) = pk(sr )
check-rsa-sha1(x, rsa-sha1(x, kpriv ), pk(kpriv )) = pk(kpriv )

In the absence of additional equivalences between terms, we implicitly assume that
our cryptographic operations have no additional interactions. For instance, the
hash functions sha1, p-sha1, hmac-sha1, and rsa-sha1 are independent here. This
can be informally checked from their cryptographic specifications [18, 16, 25, 23],
or modelled as a refinement of the term equivalence, as in [1].

We end this section by defining a logical notation for predicates on XML terms.
Formally, we present a Horn logic over our many-sorted algebra, with primitive
formulas for equality and list membership, but no recursively-defined predicates.
Our notation is simple, and suffices for reasoning about security; other languages
feature more expressive pattern-matching for XML, but their semantics would be
harder to formalize.

We assume there is a fixed, finite set of predicates, ranged over by p. For
each predicate p, we assume there is a single definition p(x̃) :- Φ1 ∨ · · · ∨ Φm,
where each Φi is a formula, and m > 0. (When m > 1, we usually present each
clause p(x̃) :- Φi separately, in the style of Prolog.) Next, we define the syntax of
formulas.

Syntax of Formulas and Predicate Definitions:

Φ ::= formula
V = T term comparison
U ∈ V list membership
p(Ṽ ) predicate instance
Φ1,Φ2 conjunction

p(x̃) :- Φ1 ∨ · · · ∨ Φm definition of predicate p with m > 0

We assume that formulas are well-sorted according to the following rules: in
V = T both terms belong to the same sort; in U ∈ V either U : item and V : items
or U : att and V : atts; in p(Ṽ ) when p(x̃) :- Φ1 ∨ · · · ∨ Φm, the length and sorts
of Ṽ match the length and sorts of x̃.

Let p contribute to q if and only if an instance p(Ṽ ) occurs in one of the disjuncts
defining q. We stipulate that this relation is well-founded, to avoid recursively-
defined predicates. We let fv(Φ) be the free variables of all the terms occurring
in Φ, and in particular, fv(p(V1, . . . , Vm)) 4= fv(V1) ∪ · · · ∪ fv(Vm). In any clause
p(x̃) :- Φ, we say that each z ∈ fv(Φ) \ x̃ is a local variable. By convention, each
occurrence in a clause of the wildcard symbol is short for the only occurrence of
a fresh local variable. Local variables are existentially quantified in our semantics;
we identify clauses up to the consistent renaming of local variables.
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Semantics of Formulas: |= Φ where fv(Φ) = ∅

|= V =T
4= (V =T )

|= U ∈ V
4= (V = U1 . . . Ui U V ′)

for some U1, . . . , Ui, V ′, with i ≥ 0
|= p(Ṽ ) 4= |= Φi{x̃ = Ṽ }{z̃ = Ũ}

for some i ∈ 1..m and closed terms Ũ
where p(x̃) :- Φ1 ∨ · · · ∨ Φm and z̃ = fv(Φi) \ x̃

|= Φ1,Φ2
4= |= Φ1 and |= Φ2

For open formulas, we introduce notions of validity and logical equivalence.

Validity, Logical Equivalence of Formulas:

A formula Φ is valid when, for all substitutions σ such that Φσ is closed, |= Φσ.
Two formulas Φ, Φ′ are logically equivalent when, for all substitutions σ such that
Φσ and Φ′σ are closed, |= Φσ iff |= Φ′σ.

3 Example Protocols

This section describes some WS-Security protocols, whose goal is to authenticate
access to a basic web service. We first present a typical (unauthenticated) web
service, then successively refine it by introducing password-based digests, signa-
tures, X.509 certificates, and a firewall intermediary. The first four protocols are
taken from the samples provided with WSE 1.0 [29]; we used the actual SOAP
messages produced by this implementation to experimentally validate our model.
(Appendix D includes sample messages produced by WSE.)

3.1 An (Unauthenticated) Web Service

We consider a typical e-commerce website application where customers can browse
and purchase items [28]. The orders are stored on a database server, and can be
retrieved and viewed on later visits. For security, customers are required to login,
with username and password, before placing and retrieving orders. In addition to
the standard website interface, the server provides a SOAP web service GetOrder
that a customer may invoke to retrieve their order in XML format, to save it as a
receipt, for instance. Our aim is to provide the same level of security for this web
service as the website login.

A call to GetOrder consists of a SOAP request and a SOAP response. We
introduce predicates to describe these messages. As a first example, a valid SOAP
message is an XML Envelope, containing a Header and a Body. The predicate
hasBody(e, b) below means b is the body of envelope e (the wildcard matches
anything):
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hasBody(e : item, b : item) :-
e = <Envelope><Header> </>b</>,
b = <Body > </>.

The SOAP request for GetOrder is an envelope, where the body encodes the
parameters of the call. The resulting SOAP response has a body containing the
order, in XML:

isGetOrder(b : item,OrderId : string) :-
b = <Body >

<GetOrder>
<orderId>OrderId</>

isGetOrderResponse(b : item,OrderId : string, u : string) :-
b = <Body >

<GetOrderResponse>
<orderId>OrderId</>
<date> </>
<userId>u</>

We suppose there is a single server, identified by the URL S, hosting the
GetOrder web service, identified by the URI W, and multiple client computers
that may connect to S on behalf of users. Here is a protocol for a client computer,
identified by its IP address I, to request information about order number OrderId
from the web service W on server S, on behalf of a human user u.

Message 1: I → S,W e
where hasBody(e, b), isGetOrder(b,OrderId)

Message 2: S → I e′

where hasBody(e′, b′),
and isGetOrderResponse(b′,OrderId, u′)

• Message 1 is an HTTP POST request to the URL S, with an HTTP header
SOAPAction: W, and with the SOAP envelope e as its content. The predi-
cates hasBody(e, b) and isGetOrder(b,OrderId) specify the behaviour of both
client and server: that is, a client will only send Message 1, and a server will
only accept it, if the message e is a suitably formatted request for some order
OrderId. We implicitly specify that if the server receives a message that does
not satisfy these predicates, it will reject the message.

• Message 2 is the HTTP response, containing the SOAP envelope e′. The
predicates hasBody(e′, b′) and isGetOrderResponse(b′,OrderId, u′) constrain
the server to send a reply that concerns the order OrderId requested in Mes-
sage 1. In this first protocol, the user u whose client computer sends the
request need not be the same as the user u′ who is associated with the order.

It is not a goal here to fully specify the correct behaviour of either client or
server. We are only concerned about security properties, and authentication in
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particular, and suppress other information. For example, we suppress the rest
of the response, which includes details such as the credit card type, number and
expiration date, billing and shipping addresses, and the sequence of line items in
the order.

Our predicates express constraints on messages sent and received by compliant
implementations of our protocols. On the sender side, they express post-conditions
for every outgoing message. (The fact that these conditions do not fully determine
the envelope yields functional flexibility.) On the receiver side, they express pre-
conditions that must be checked before incoming messages are processed. (They
do not specify a particular order for the checks, but still provide enough details
to review an implementation.) In the presence of an active attacker, it is essential
that the receiver dynamically check these conditions, even if the sender enforces
them.

Our first protocol offers no protection against active attacks, since any well-
formed envelope is accepted by the server. Next, we consider more effective checks.

3.2 Password Digest

Username tokens with a cryptographic digest provide a first, basic mechanism for
authenticating web service requests. Such tokens include a username identity u,
together with a digest of a password and a fresh timestamp. We assume that
each password pwdu is a shared, unguessable secret between u and S, so that
only u (or S, in principle) can generate a valid digest—this hypothesis excludes
dictionary attacks, for instance. To justify this assumption, passwords need to be
strong cryptographic secrets; one might also modify the protocol to encrypt the
digest of a weak password, but we do not pursue this alternative. Moreover, as in
other applications of the applied pi calculus, we abstractly relate the password and
the user using the special one-way function principal from passwords to users: we
let u stand for principal(pwdu).

To model this protocol, we develop predicates for describing WS-Security head-
ers and embedded username tokens. Our predicate definitions are not specific to
this protocol, and can be re-used for any protocol relying on these tokens. First, we
define a predicate to extract the security tokens from some security header of the
envelope: the predicate hasSecurityHeader(e, toks) means that toks is a sequence of
security tokens attached to message e. The first formula in the predicate body ex-
tracts the list of headers (headers : items) from the envelope. The second formula,
header ∈ headers, requires that header be some member of the header list. The
third formula requires that header be a security header, and extracts the security
tokens from it.

hasSecurityHeader(e : item, toks : items) :-
e = <Envelope><Header>headers</> </>,
header ∈ headers,
header = <Security>toks</>.

The WS-Security specification allows envelopes to contain multiple <Security>
elements, possibly containing SOAP role attributes, provided each <Security>
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element in an envelope is targeted at a distinct endpoint or intermediary. For the
sake of simplicity, hasSecurityHeader ignores <Security> elements containing this
attribute, and does not check for duplicate <Security> elements.

With username tokens, the unique identifier of a message is a pair (n : bytes, t :
string) where n is a nonce—some byte array—and t is a timestamp represented
as a string. The predicate isDigestUserToken(tok, u, pwd, n, t) means that tok is a
username token for user u with password pwd, identifier (n, t), and a valid digest.

isDigestUserToken(tok : item, u, pwd : string, n : bytes, t : string) :-
tok = <UsernameToken >

<Username>u</>
<Password Type="PasswordDigest">base64(d)</>
<Nonce>base64(n)</>
<Created>t</>,

u = principal(pwd),
d = sha1(concat(n, concat(utf8(t), utf8(pwd)))).

Finally, a top-level authentication predicate, hasUserTokenDigest, gathers all
the elements checked on envelopes received by the server; hasUserTokenDigest(e, u,
pwd, n, t, b) means that the envelope e with body b contains a valid username token
for u, pwd, n, t.

hasUserTokenDigest(e : item, u, pwd : string,
n : bytes, t : string, b : item) :-

hasSecurityHeader(e, toks),
utok ∈ toks,
isDigestUserToken(utok, u, pwd, n, t),
hasBody(e, b).

The following protocol description includes both SOAP messages and additional
begin- and end-events, in the style of Woo and Lam [41]. We introduce these events
to express the authentication guarantee obtained by the server from running this
protocol. (The correspondence between begin- and end-events is sometimes referred
to as agreement between running and commit signals, respectively [27].)

Event 1: I logs <Begin>u n t</>
Message 1: I → S,W e

where hasUserTokenDigest(e, u, pwd, n, t, b),
and isGetOrder(b,OrderId)

Event 2: S logs <End>u n t</>
Message 2: S → I e′

where hasBody(e′, b′),
and isGetOrderResponse(b′,OrderId, u)

We interpret events in the abstract log as follows: before issuing a request, the
initiator logs its intent as an entry <Begin>u n t</> that contains the user name u
and the message identifier. Conversely, after checking an envelope, the server logs
<End>u n t</> to manifest that it accepts a request with these parameters. In any
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case, the attacker cannot log entries. Ideally, begin- and end-events should be in
direct correspondence, but this is clearly not the case if the attacker can delete,
reorder, or replay u’s messages. Instead, we have the following correspondence
property:

Claim 1 In the presence of an active Dolev-Yao attacker, if <End>u n t</> is
logged by S, then <Begin>u n t</> has been logged by I.

This is a fairly weak authentication property, which can be read as “if S accepts
a request from u, then u recently sent some request.” The two requests are not
necessarily the same: for instance, an active attacker can intercept the envelope,
modify its body, and pass it to the server. In many settings, it may be suitable
to have a stronger correspondence between u and S’s actions, for example between
entries <Begin>u S W n t OrderId</> and <End>u S W n t OrderId</>.

Although the password digest is optional in WS-Security username tokens, our
claim would clearly not hold if the server accepted tokens without checking the
digest, since the attacker could then forge a message with any identifier (n, t)
irrespective of the user’s requests.

In itself, our protocol does not eliminate replays. (Technically, our correspon-
dence assertion is non-injective.) However, since the identifier is authenticated, the
application can safely use it to filter messages with duplicate or expired username
tokens.

3.3 Password-Based Signature

In order to achieve more precise authentication properties under the same assump-
tions—a shared password between u and S—one can use an XML digital signature
on selected elements of the envelope [19]. In addition to the username token, we
embed a signature token that signs (for instance) the envelope body, with a signing
key derived from the password and the username token.

A hash-based signature of items x1, . . . , xm using a key k, may be roughly
pictured as follows.

<Signature>
<SignedInfo>
<CanonicalizationMethod Algorithm=" . . .normalization scheme . . . "></>
<SignatureMethod Algorithm=" . . . keyed hash function . . . "></>
<Reference> . . .hash of x1 . . . </>
. . .
<Reference> . . .hash of xm . . . </>

<SignatureValue>
. . .hash of SignedInfo element with key k . . .

See Section 4.3 for a full example of a signed envelope. Next, we define the ad-
ditional predicates needed for our modified protocol, including predicates defining
the various parts of a signature.
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• isUserTokenKey(tok, u, pwd, n, t, k) means that tok is a username token for
user u with password pwd, unique identifier (n, t), and derived key k. The
key derivation uses a p-sha1 keyed hash salted with the message identifier.

• isSigVal(sv, si, k, a) means that sv is the digital signature computed on the
item si with key k using algorithm a (which for password-based signatures is
hmac-sha1).

• ref(t, r) means that the item r is a reference containing the digest of item t.
(We use the three wildcards to match reference attributes and Transforms
and DigestMethod elements, which are included in references for flexibility,
but are irrelevant for security in our setting.)

• isSigInfo(si, a, x1, . . . , xm) means that the signed information si, for signature
algorithm a, contains a list of references of which the first m are for the items
x1, . . . , xm. After these references, si may contain any number of references
to other items (represented in the predicate by an ). This flexibility in the
predicate enables the client to sign additional items even if not required by
the server (to conform to a uniform send policy, for example).

• isSignature(sig, a, k, x1, . . . , xm) means that the signature sig signs x1, . . . , xm

with algorithm a and verification key k.

• hasUserSignedBody(e, u, pwd, n, t, b) is the top-level predicate. It means that
the envelope e contains a username token for u, pwd, n, t, and that the body
b of e is signed by the key derived from the token.

The message exchange is much as in Section 3.2, with two differences: each log
entry now contains u n t OrderId instead of just u n t; we use the top-level predicate
hasUserSignedBody(e, u, pwd, n, t, b) instead of hasUserTokenDigest(e, u, pwd, n, t, b).

Event 1: I logs <Begin>u n t OrderId</>
Message 1: I → S,W e

where hasUserSignedBody(e, u, pwd, n, t, b),
and isGetOrder(b,OrderId)

Event 2: S logs <End>u n t OrderId</>
Message 2: S → I e′

where hasBody(e′, b′),
and isGetOrderResponse(b′,OrderId, u)

We obtain a similar, but stronger authentication property:

Claim 2 In the presence of an active Dolev-Yao attacker, if <End>u n t OrderId</>
is logged by S, then <Begin>u n t OrderId</> has been logged by I.

This claim can be read as “if S accepts a request from u, then u recently sent
this request.” Although only b is signed, the username u and the identifier (n, t)
are also authenticated by the signature check. As before, we can rely on (n, t) for
replay protection. Since the identifier is now bound to the message, the server can
safely use it to filter duplicate or expired messages.
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isUserTokenKey(tok : item, u, pwd : string,
n : bytes, t : string, k : bytes) :-

tok = <UsernameToken >
<Username>u</>

<Nonce>base64(n)</>
<Created>t</>,

u = principal(pwd),
k = p-sha1(pwd, concat(n, utf8(t))).

isSigVal(sv : bytes, si : item, k : bytes, a : string) :-
a = hmac-sha1,
sv = hmac-sha1(k, c14n(si)).

ref(t : item, r : item) :-
r = <Reference >

<DigestValue>base64(sha1(c14n(t)))</>.

(for each m ≥ 1)
isSigInfo(si : item, a : string, x1, . . . , xm : item) :-

si = <SignedInfo>
<SignatureMethod Algorithm="a"></>

r1 . . . rm ,
ref(x1, r1), . . . , ref(xm, rm).

isSignature(sig : item, a : string, k : bytes, x1, . . . , xm : item) :-
sig = <Signature>si <SignatureValue>base64(sv)</> </>,
isSigInfo(si, a, x1, . . . , xm),
isSigVal(sv, si, k, a).

hasUserSignedBody(e : item, u : string, pwd : string,
n : bytes, t : string, b : item) :-

hasBody(e, b),
hasSecurityHeader(e, toks),
utok ∈ toks,
isUserTokenKey(utok, u, pwd, n, t, k),
sig ∈ toks,
isSignature(sig, hmac-sha1, k, b).
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We make two observations concerning these predicates. First, isUserTokenKey
does not check the presence or validity of the optional username token digest. In
fact, checking the password digest would not provide any additional authentica-
tion guarantee here. Conversely, its (potential) occurrence in the envelope slightly
complicates our proofs in Section 4. Arguably, the initiator should not include
both a digest and a signature, since this may facilitate a dictionary attack on the
password, unless it does not know which evidence will be considered by the server.

Second, although each reference r typically provides a pointer to the digested
element, either as a fragment URI or as an XPath expression, we do not rely on
this information in the ref predicate. Instead, we check that the actual item we are
interested in—the body b—is targeted by the reference. In general, this approach is
preferable, since it leaves the resolution of pointers outside the trusted computing
base. Otherwise, one should also carefully check that these pointers are well-defined
and unambiguous.

Our specification captures the flexibility of WS-Security signatures. The predi-
cates for key derivation (isUserTokenKey) are independent from those interpreting
the signature. So, we can compose isSignature with some other keying material,
such as an X.509 certificate. Similarly, we can support additional algorithms for
computing the actual signature by adding alternatives to the predicate isSigVal—
see Section 3.4.

Furthermore, isSignature allows additional elements of the message to be signed.
Signing the username, nonce, or timestamp elements is not necessary with this
particular signing-key derivation, but is harmless, and becomes necessary with
other kinds of keys (see Section 3.5). In case there are several actions on the same
server, or if the same password is shared with two different (honest) servers, then
the path header (S,W) should also be signed (as in the next section). Otherwise,
the attacker might redirect an envelope from one web service to another.

3.4 X.509 Signature

The next protocol does not depend on password-based authentication. Instead, it
uses public-key signatures based on X.509 certificates. We assume that the user u
has a public/private key pair and keeps the private key secret. We also assume
that u and S agree on the public key kr of some X.509 certification authority, and
that this authority issued only one certificate for u, with u’s public key.

In contrast with password-based signatures, X.509 signature tokens cannot use
fragments of the username token as message identifier. Instead, they can sign the
globally unique identifier included in the path header of our SOAP messages, as
defined in WS-Routing [33]. This is reflected by the following additional predicates:

• isX509Token(tok, kr, u, a, k) means that tok is a binary token that contains
a certificate x509(sr, u, a, k) with certifier’s public key kr = pk(sr).

• isSigVal(sv, si, k, a) is extended with a clause that checks signatures using
the rsa-sha1 algorithm.

• hasPathHeader(e, ac, to, id, ea, et, ei) means that envelope e has a path header
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with action ac, destination to, and message identifier id in elements ea, et,
and ei, respectively.

• hasX509SignedBody(e, kr, u, ac, to, id, b, ea, et, ei) is the top-level predicate. It
means that the envelope e has an X.509 token for u certified by kr whose
public key signs the body b and a path header ea, et, ei containing ac, to, id.

isX509Token(tok : item, kr : bytes, u : string, a : string, k : bytes) :-
tok = <BinarySecurityToken >base64(xcert)</>,
check-x509(xcert, kr) = kr,
u = x509-user(xcert),
a = x509-alg(xcert),
k = x509-key(xcert).

isSigVal(sv : bytes, si : item, k : bytes, a : string) :-
a = rsa-sha1, check-rsa-sha1(c14n(si), sv, k) = k.

hasPathHeader(e : item, ac, to, id : string, ea, et, ei : item) :-
e = <Envelope><Header>headers</> </>,
header ∈ headers,
header = <path >ea et ei</>,
ea = <action >ac</>,
et = <to >to</>,
ei = <id >id</>.

hasX509SignedBody(e : item, kr : bytes, u, ac, to, id : string,
b, ea, et, ei : item) :-

hasBody(e, b),
hasPathHeader(e, ac, to, id, ea, et, ei),
hasSecurityHeader(e, toks),
xtok ∈ toks,
isX509Token(xtok, kr, u, rsa-sha1, k),
sig ∈ toks,
isSignature(sig, rsa-sha1, k, b, ea, et, ei).

The message exchange for the X.509 signature protocol is almost the same as the
one in Section 3.3, with two differences. First, the contents of the log entries
is now u W S id OrderId (instead of u n t OrderId). Second, we use the top-
level predicate hasX509SignedBody(e, kr, u,W, S, id, b, ea, et, ei) instead of hasUser-
SignedBody(e, u, pwd, n, t, b). The predicate checks ac = W and to = S in the path
header by unification.

Event 1: I logs <Begin>u W S id OrderId</>
Message 1: I → S,W e

where hasX509SignedBody(e, kr, u,W, S, id, b, ea, et, ei),
and isGetOrder(b,OrderId)
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Event 2: S logs <End>u W S id OrderId</>
Message 2: S → I e′

where hasBody(e′, b′),
and isGetOrderResponse(b′,OrderId, u)

We now obtain the authentication property:

Claim 3 In the presence of an active Dolev-Yao attacker, if <End>u W S id
OrderId</> is logged by S, then <Begin>u W S id OrderId</> has been logged
by I.

This claim can be read as “if S accepts a request from u, then u, at some point,
sent this request to S.” So by signing the path header, we obtain an additional au-
thenticity guarantee as regards u’s intended target (S,W), and thus prevent some
redirection attacks. One can easily implement replay protection using the authen-
ticated message identifier. This supposes that clients do generate globally unique
identifiers (although this is not actually required to obtain our correspondence
property). Alternatively, one may use a custom unique identifier in the envelope
body.

3.5 Firewall-Based Authentication

By specifying the structure of security tokens, rather than their use, WS-Security
encourages a flexible approach to web service security. For instance, a server may
naturally accept both password-based and X.509-based signatures for authentica-
tion, leaving that choice to the client. This flexibility yields useful compositional
properties in our formal developments. For instance, a web service that runs both
protocols is formally equivalent to two web services in parallel, one for each au-
thentication mechanism.

In this section, we illustrate this flexibility with a different composite architec-
ture that chains WS-Security authentication schemes along a WS-Routing path.
In addition to a server S and a client I acting on behalf of u, we consider an in-
termediate SOAP-level firewall F . The firewall holds the password database, has
the X.509 certificate and the corresponding private key for certificate user f , and is
responsible for authenticating access to S (and possibly other servers). The client I
sends a GetOrder request with a password-based signature (for u) to S via F . The
path header indicates to F that the message is intended for S. The firewall F
checks the password-based signature, adds a new firewall header indicating that
it has authenticated u, signs the message using f ’s X.509 certificate, and forwards
the message to S. The server S expects an X.509 signature from a particular fire-
wall with certificate user name f . S checks the X.509 signature and certificate, and
thus it authenticates the original sender u without knowledge of u’s password.

Next, we define (predicates on) the message forwarded by the firewall. To
indicate to the server that it has checked the credentials of the user, the firewall
adds a new firewall header containing the username token, but with the password
digest deleted. It then embeds an X.509 signature that includes this header as well.
The predicates for this message are:
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• isFirewallHeader(h, u, n, t) means that the element h is a firewall header with
the username token u, n, t.

• hasFWHeader(e, h, u, n, t) means that the envelope e has a firewall header h
with u, n, t.

• hasX509SignedBodyFw(e, kr, f, u, n, t, b) is the top-level predicate checked by
the server. It means that the envelope e has a firewall header with u, n, t,
a body b, and that the firewall header and the body are signed with a valid
certificate for f issued by kr.

isFirewallHeader(h : item, u : string, n : bytes, t : string) :-
h = <firewall >utok</>,
utok = <UsernameToken>

<Username>u</>
<Nonce>base64(n)</>
<Created>t</>.

hasFWHeader(e, h : item, u : string, n : bytes, t : string) :-
e = <Envelope ><Header>headers</> </>,
h ∈ headers,
isFirewallheader(h, u, n, t).

hasX509SignedBodyFw(e : item, kr : bytes, f, u : string,
n : bytes, t : string, b : item) :-

hasBody(e, b),
hasFWHeader(e, h, u, n, t),
hasSecurityHeader(e, toks),
xtok ∈ toks,
isX509Token(xtok, kr, f, rsa-sha1, p),
sig ∈ toks,
isSignature(sig, rsa-sha1, p, b, h).

The protocol involves three messages, as follows:

Event 1: I logs <Begin>u n t OrderId</>
Message 1: I → F,W e

where hasUserSignedBody(e, u, pwd, n, t, b)
Message 2: F → S,W e′

where hasX509SignedBodyFw(e′, kr, f, u, n, t, b)
and isGetOrder(b,OrderId)

Event 2: S logs <End>u n t OrderId</>
Message 3: S → I e′′

where hasBody(e′′, b′)
and isGetOrderResponse(b′,OrderId, u)
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In terms of the SOAP specification, the two envelopes e and e′ represent two
stages in the lifetime of the same message: it is sent by the client endpoint, updated
by the firewall intermediary, and received by the server endpoint.

Claim 4 In the presence of an active Dolev-Yao attacker, if <End>u n t OrderId</>
is logged by S, then <Begin>u n t OrderId</> has been logged by I.

Thus, we obtain the same end-to-end authenticity guarantee as with the password-
based signature protocol of Section 3.3, but for a different implementation that
does not require S to know u’s password. We prove this claim by composing the
correspondence property for the password-based signature in Message 1 with that
for the X.509 signature in Message 2.

4 A Pi Calculus Semantics

In order to formalize and validate the claims of Section 3, we specify the behaviour
of the participants (and in particular their implementation of predicates) as pro-
cesses in the applied pi calculus. We refer to Appendix A for a brief overview of the
calculus and its main notations, and to [1] for its semantics. Here, we use the sorts,
terms, and equations described in Section 2, with coercion functions from strings
to items, and with additional sorts for communication channels [30]. (However, in
our model, channels do not appear in terms of other sorts, nor in messages sent
on channels.) We always assume that terms, formulas, processes, and contexts are
well-sorted, but usually keep sort information implicit.

This section divides into the following parts. Section 4.1 describes our com-
putational interpretation of formulas as certain nondeterministic processes in the
applied pi calculus. Section 4.2 introduces formal notions of robust safety—that
embedded correspondence assertions hold in spite of the presence of an attacker—
and functional adequacy—that a protocol may run to successful completion in the
absence of an attacker. Section 4.3 uses these definitions to state results about the
password-based signature protocol of Section 3.3. Theorem 1 asserts that a process
formalizing this protocol is robustly safe—Claim 2 is a corollary. Moreover, The-
orem 2 asserts the formalization is functionally adequate. Section 4.4 breaks the
proof of Theorem 1 into two halves: first, the definition and proof of correctness of
a simpler, core protocol; second, the proof that the correctness of the core protocol
implies Theorem 1. Section 4.5 describes how to generalize our results to configura-
tions with multiple servers and users. Sections 4.6 and 4.7 state and prove similar
robust safety properties for the protocols of Sections 3.4 (with X.509 signatures)
and 3.5 (with an intermediate firewall), respectively; we obtain Claims 3 and 4 as
corollaries. We do not include a proof of Claim 1, concerning the weak protocol of
Section 3.2 that uses password-digests. We conjecture that a proof could be ob-
tained by adapting and simplifying the proof of Theorem 1, concerning the stronger
protocol that uses password-based signatures (and still supports password-digests).
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4.1 Interpretation of Formulas

We describe a (partial) implementation of our logic in the applied pi calculus. We
inductively define processes of the form filter Φ 7→ ỹ in P , where the variables ỹ
are bound in P and get assigned to terms making the formula Φ true. When the
formula is an equality V = T we assume that one of the terms is known, and that
the other can be treated as a pattern, matching variables to known subterms in
the known term. In the following formal definitions, we always assume that V is
the known term, and that T is the pattern, but in our example predicates we allow
either of the terms to be the pattern. For a pattern to be implementable, there
must be an inverse term for each bound variable, able to compute the value of the
variable from the known term.

Patterns:

The equality V = T binds variables ỹ with pattern T , written V =T 7→ ỹ, when
(1) ỹ ⊆ fv(T )\ fv(V ), and (2) T has inverse terms S̃, with fv(S̃) ⊆ {x}, fn(S̃) = ∅,
and, for all terms U, W̃ , if U = T{ỹ = W̃}, then W̃ = S̃{x = U}.

For instance, the pattern base64(y) has inverse S
4= i-base64(x); for all V and W ,

if V = base64(W ) then W = S{x = V } = i-base64(base64(W )). On the other hand,
the pattern sha1(y) has no inverse, and therefore would not satisfy point (2).

The following table is the partial inductive definition of filter Φ 7→ ỹ in P .
If such a process is defined by the following rules, we say that the formula Φ is
implementable with bound variables ỹ. When filter Φ 7→ ỹ in P is defined and
closed, we intend that it seeks closed terms Ṽ such that |= Φ{ỹ = Ṽ }, and acts as
P{ỹ = Ṽ }. Lemma 1 makes this precise.

Formula Implementation: filter Φ 7→ ỹ in P when ỹ ⊆ fv(Φ)

filter V =T 7→ ỹ in P
4=

let ỹ = S̃{x = V } in if V = T then P

when V = T 7→ ỹ with inverse terms S̃
filter x ∈ V 7→ x in P

4=
νs, c.(c(x).P | s〈V 〉 | !s(z).filter z =h t 7→ h, t in (c〈h〉 | s〈t〉))
when x 6∈ fv(V ) and with {s, c} ∩ fn(P ) = ∅

filter p(Ṽ ) 7→ ỹ in P
4=

νs.(s〈ε〉 |
∏

i∈1..m s( ).filter Φi{x̃ = Ṽ } 7→ ỹ, z̃i in P )
when p(x̃) :- Φ1 ∨ · · · ∨ Φm, s /∈ fn(P )
and, ∀i ∈ 1..m,fv(Φi) = x̃ ] z̃i and (fv(Ṽ ) ∪ fv(P )) ∩ z̃i = ∅

filter Φ1,Φ2 7→ ỹ in P
4=

filter Φ1 7→ (ỹ ∩ fv(Φ1)) in (filter Φ2 7→ (ỹ \ fv(Φ1)) in P )

When V = T 7→ ỹ, with inverse terms S̃, the implementation filter V =T 7→
ỹ in P binds the variables ỹ of the pattern T to components of the term V , and
verifies that hence the pattern matches the term. If so, the match succeeds, and P
runs. Otherwise, the match fails, and the implementation deadlocks.
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When x 6∈ fv(V ), the implementation filter x ∈ V 7→ x in P outputs V on a
fresh channel s, and runs the process !s(z).filter z =h t 7→ h, t in (c〈h〉 | s〈t〉) which
binds h = V1 and t = V2 . . . Vm ε, provided V = V1 V2 . . . Vm ε with m ≥ 1, then
outputs h on c, and t on the fresh channel s. The effect of this replication is to
output each of the terms V1, . . . , Vm on the fresh channel c. The process c(x).P is
the only listener on c; so the outcome is P{x = Vi} for one i ∈ 1..m. If, in fact, V
is the empty list, the implementation deadlocks.

When p(x̃) :- Φ1∨· · ·∨Φm, the implementation filter p(Ṽ ) 7→ ỹ in P generates
a separate process s( ).filter Φi{x̃ = Ṽ } 7→ ỹ, z̃i in P for each clause i ∈ 1..m,
where z̃i are the local variables for clause i. We make an internal choice of which
to run by arranging all to listen on the fresh channel s, on which only a single
message is sent. We are assuming that ỹ ⊆ fv(Ṽ ), which with the side-condition
fv(Φi) = x̃ ] z̃i, yields that fv(Φi{x̃ = Ṽ }) = fv(Ṽ ) ] z̃i for each i. Therefore, the
formula implementation filter Φi{x̃ = Ṽ } 7→ ỹ, z̃i in P satisfies the well-formedness
condition ỹ, z̃i ⊆ fv(Φi{x̃ = Ṽ }). Moreover, the side-condition fv(P ) ∩ z̃i = ∅
guarantees there is no confusion between the local variables z̃i and any variables
in P .

The implementation filter Φ1,Φ2 7→ ỹ in P works by evaluating Φ1 then Φ2

before running P .
As an example, we show an implementation of hasBody(e, b):

filter hasBody(e, b) 7→ b in [-]
= νs.(s〈ε〉 | s( ).

filter e = <Envelope><Header>y1</>b</> 7→ y1, b in
filter b = <Body y2>y3</> 7→ y2, y3 in [-])

= νs.(s〈ε〉 | s( ).
let y1 : items = Header.body(hd(Envelope.body(e))) in
let b : item = hd(tl(Envelope.body(e))) in
if e = <Envelope><Header>y1</> b ε</> then

let y2 : atts = Body.att(b) in
let y3 : items = Body.body(b) in
if b = <Body y2>y3</> then [-])

To state the correctness of the embedding of our logic within the applied pi
calculus, we appeal to the following notion of internal choice. We write →∗ for a
series of reduction steps and ∼ for strong bisimilarity, the strong form of observa-
tional equivalence [1]. For any set of processes X, we co-inductively define the set
of processes

⊕
X that are internal choices of X:

Internal Choice:
⊕

X.

A process Q is an internal choice on X, written Q ∈
⊕

X, if and only if (1) if P ∈ X
then Q →∗∼ P ; (2) if Q → Q′, then either Q′ ∼ P with P ∈ X or Q′ ∈

⊕
Y with

Y ⊆ X; and (3) Q does not communicate on free channel names.
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Lemma 1 If filter Φ 7→ ỹ in P is defined and closed then:

filter Φ 7→ ỹ in P ∈
⊕
{P{ỹ = Ṽ } | fv(Ṽ ) = ∅ ∧ |= Φ{ỹ = Ṽ }}

The proof appears in Appendix B.

4.2 Safety Properties, Functional Properties

To formalize the authenticity properties claimed in Section 3, we mark the progress
of the client and server processes with begin- and end-events, represented as mes-
sage outputs on the channels begin and end, respectively. Hence, our authenticity
properties become non-injective correspondence assertions [41] between messages.
We write ≈ for (weak) observational congruence in applied pi. Further, to capture
the occurrence of events, we define a derived notion of observation of messages on
free channels:

Event Occurrence: A .a〈V 〉

A outputs the term V on channel a, written A .a〈V 〉, when A ≈ a〈V 〉 | A′.

Much as in Gordon and Jeffrey’s formulation of correspondence assertions [21],
we define safety and robust safety: a process is safe if every end-event has a match-
ing begin-event, and is robustly safe if it is safe in the presence of any opponent.

Safety and Robust Safety:

A is safe if and only if, whenever A →∗ B, B . end〈V 〉 implies B . begin〈V 〉.
A is robustly safe if and only if, for all evaluation contexts E[-] where the channels
begin and end do not occur, E[A] is safe.

Intuitively, E[-] represents any active attacker (in the applied pi calculus) that
controls both the network and the client application behaviour, A is the initial
configuration of the protocol being considered, and B represents any reachable
state of the protocol, after interleaving any number of sessions.

In addition to security properties such as robust safety, one should check that
the protocol works as intended and may indeed succeed, at least in the absence
of an attacker. The following definition captures this intent for a process A that
begins the protocol for V :

Functional Adequacy:

A is functionally adequate for V when A →∗ B with B . end〈V 〉 for some B.

The next lemma states that our main security properties can be established
using the theory of observational equivalence in the applied pi calculus.

Lemma 2 Suppose A ≈ B. If A is robustly safe then so is B. Moreover, if A is
functionally adequate for V then so is B.
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Proof For robust safety, assume E[B] →∗ B′ . end〈V 〉 for some evaluation con-
text E[-] that does not contain begin or end. We have E[A] ≈ E[B] (by context-
closure of ≈), E[A] →∗ A′ with A′ ≈ B′ (by weak simulation), A′ . end〈V 〉 (since ≈
preserves . end〈V 〉), A′ . begin〈V 〉 (by robust safety of A), and thus B′ . begin〈V 〉
(since ≈ preserves . begin〈V 〉).

For functional adequacy, assume A →∗ A′ . end〈V 〉. From A ≈ B we get
B →∗ B′ with A′ ≈ B′ and thus B′ . end〈V 〉. 2

Moreover, logical equivalence, when lifted to processes, also preserves robust
safety.

Logical Equivalence of Processes:

Two processes are logically equivalent when they differ only in their choices of
implementable, logically-equivalent formulas.

Lemma 3 Logical equivalence preserves robust safety.

The proof appears in Appendix B.3.

4.3 Stating Password-Based Authentication

We are now ready to formulate and prove Claim 2 of Section 3.3 for envelopes
with password-based signatures, with or without a password digest. For the sake
of simplicity, we focus on protocol configurations Q with a single user u, with
initiator process Iu and a single server Su that share a secret password with that
user, represented as a restricted name spwd. The two parts of the protocol also
share a communication channel, http. Since http is not restricted, an environment
that encloses Q can also read, modify, and write any SOAP message.

Protocol Configurations: Q (parameterized by Envelope)

Q 4= νspwd.({u = principal(spwd)} | Iu | Su)
Iu

4= !initu(n, t, b).(begin〈u n t b〉 | http〈Envelope〉)
Su

4= !http(e).filter hasUserSignedBody(e, u′, spwd, n, t, b)
7→ u′, n, t, b in end〈u′ n t b〉

The initiator, Iu, repeatedly receives high-level requests on a control channel initu.
Using that control channel, the environment can thus initiate any number of re-
quests on behalf of u, for any terms N,TS , B. These requests are deemed genuine:
they are echoed on channel begin. The process Iu is also parameterized by a term
Envelope that determines the actual SOAP envelopes constructed and sent by the
initiator.

The server, Su, repeatedly receives low-level envelopes on channel http, filters
them using the top-level predicate defined in Section 3.3 (one easily checks that
this predicate is implementable) and finally sends a message on channel end for
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each accepted envelope. (More generally, we would represent a server that accepts
requests from users u1, . . . , um as a parallel composition

∏
i∈1..m Sui

.)
The scope restriction on spwd models our secrecy assumption on the password,

essentially supposing that it is a strong secret shared between the initiator and the
server and used only in this kind of envelope.

The active substitution {u = principal(spwd)} binds the variable u to the ex-
pression principal(spwd), and exports u (but not spwd) to the environment.

Crucially, we do not want our robust safety result to depend on every detail of
the envelope. Instead, we express minimal requirements as follows:

Safe Envelopes:

A safe envelope is a term of the form Envelope = Tϕ, for any terms T and SI
such that spwd 6∈ fn(T, SI) and isSigInfo(SI, hmac-sha1, b) is valid, with the active
substitution ϕ defined by:

ϕ
4= {d = sha1(concat(n, concat(utf8(t), utf8(spwd)))),

sv = hmac-sha1(p-sha1(spwd, concat(n, utf8(t))), c14n(SI))}

To elaborate, as regards safety properties, Envelope may be any XML term, as long
as the password occurs at most in the digest and signature values. Similarly, most
of the subterms in the signature information are irrelevant for safety, even if they
happen to be signed in SI.

Theorem 1 For any safe envelope, the configuration Q is robustly safe.

From this theorem and the definition of isGetOrder(b, orderId), we easily derive the
more specific claim of Section 3.3. We devote Section 4.4 to the proof of Theorem 1.

For functional adequacy, the structure of the envelope is more constrained. For
example, T and SI can be instantiated as follows:

T
4= <Envelope>

<Header>
<Security>
<UsernameToken Id="utoken">
<Username>u</>
<Password Type="PasswordDigest">

base64(d)
<Nonce>base64(n)</>
<Created>t</>

<Signature>
SI
<SignatureValue>base64(sv)</>
<KeyInfo>
<SecurityTokenReference>
<Reference URI="#utoken"></>

b
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SI
4= <SignedInfo>

<CanonicalizationMethod Algorithm="c14n"></>
<SignatureMethod Algorithm="hmac-sha1"></>
<Reference URI="#body">
<Transforms>
<Transform Algorithm="c14n"></>

<DigestMethod Algorithm="sha1"></>
<DigestValue>base64(sha1(c14n(b)))</>

Theorem 2 The envelope Tϕ with T and SI defined above is safe and, for any
ground terms N : bytes, TS : string, B : item with B = <Body Id="body"> </>,
the configuration initu〈N,TS , B〉 | Q with that envelope is functionally adequate
for the term u N TS B.

Proof We easily check that Tϕ is a safe envelope and that

|= hasUserSignedBody(Tϕ, principal(spwd), spwd, N,TS , B)

Then we apply Lemma 1. We obtain

init〈N,TS , B〉 | Q →→ (→∗∼) begin〈u N TS B〉 | end〈u N TS B〉 | Q

with two communication steps (on initu and http) followed by the reduction steps
and equivalence of condition (1) of internal choice (in some evaluation context). 2

Conversely, by Theorem 1, if we have both initu〈N,TS , B〉 | Q →∗ A and also
A . end〈u′ N ′ T ′ B′〉, then A . begin〈u′ N ′ T ′ B′〉 and, since a single message is
sent on begin, we obtain that u′, N ′, T ′, B′ = u, N,TS , B.

4.4 Proving Password-Based Authentication

We now present a proof of Theorem 1. An intuition behind the proof is that the
security property relies only on a few elements in the envelope. For instance, the
signature bytes are sufficient for authentication, whereas the other elements in the
envelope only provide the server with (untrusted) hints to verify the signature.
Hence, to establish robust safety, we rely on a stronger, more specific lemma about
a core protocol that explicitly deals only with these bytes.

The proof is in two stages. First, we show how the password-based signature
protocol can be decomposed into a “core protocol” that deals with authentication
and an XML wrapper. The XML wrapper has no access to the password, and need
not be trusted: formally, it becomes part of the hostile environment. We show
that it is enough to prove robust safety for the core protocol (Lemma 5). In the
second stage, we prove that the core protocol itself is robustly safe (Lemma 9) by
exhibiting an invariant on its reachable states (Lemma 8).

We decompose

hasUserSignedBody(e, u, pwd, n, t, b) 7→ u, n, t, b
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into two implementable formulas

hasUserSignatureEvidence(e, u, n, t, b, sv, si) 7→ u, n, t, b, sv, si,
checkEvidence(sv, si, u, pwd, n, t, b) 7→ ∅

hasUserSignatureEvidence parses the envelope and extracts the bits that are needed
to verify the signature; it has no access to the password. All the checks related to
authentication are contained in checkEvidence. These predicates are defined by:

checkEvidence(sv : bytes, si : item, u, pwd : string, n : bytes,
t : string, x1, . . . , xm : item) :-

isSigInfo(si, hmac-sha1, x1, . . . , xm),
u = principal(pwd),
k = p-sha1(pwd, concat(n, utf8(t))),
isSigVal(sv, si, k, hmac-sha1).

isUserToken(tok : item, u, n : bytes, t : string) :-
tok = <UsernameToken >

<Username>u</>
<Nonce>base64(n)</>
<Created>t</>.

hasUserSignatureEvidence(e : item, u : string, n : bytes, t : string,
b : item, sv : bytes, si : item) :-

hasBody(e, b),
hasSecurityHeader(e, toks),
utok ∈ toks,
isUserToken(utok, u, n, t),
sig ∈ toks,
sig = <Signature >si <SignatureValue>base64(sv)</> </>.

We verify the correctness of this decomposition in terms of logical equivalence:

Lemma 4 The two formulas

hasUserSignedBody(e, u, pwd, n, t, b) and
hasUserSignatureEvidence(e, u, n, t, b, sv, si), checkEvidence(sv, si, u, pwd, n, t, b)

are logically equivalent.

Proof The two formulas are equal up to a permutation of conjunctive clauses
with disjoint variables. 2

Using this decomposition, we define the core protocol configuration Q◦, a coun-
terpart of Q for the simpler predicate checkEvidence that binds no variables, and
for replicated processes I◦u and S◦u that communicate with the environment on
channels c and s, respectively, instead of channel http.
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Core Protocol Configurations: Q◦ (parameterized by SI )

Q◦[-] 4= νspwd.({u = principal(spwd)} | I◦u | S◦u | [-])
I◦u

4= !initu(n, t, b).(begin〈u n t b〉 | c〈d, sv, SI, u, n, t, b〉ϕ)
S◦u

4= !s(sv, si, u′, n, t, b).filter checkEvidence
(sv, si, u′, spwd, n, t, b) 7→ ∅ in end〈u′ n t b〉

We write Q◦ for Q◦[0] (the initial state of the core protocol).
Lemma 5 shows that this core protocol is logically equivalent, under an evalu-

ation context, to the original protocol. This implies that if Q◦ is robustly safe, so
is Q.

Lemma 5 (XML/Core) For any safe envelope, there exists an evaluation con-
text EQ[-] where the names begin, end do not occur and a process Q• logically
equivalent to Q such that Q• ≈ EQ[Q◦].

Proof For a given safe envelope, Tϕ, with SI replaced by si, we let Q• be Q up
to the logical equivalence of Lemma 4 and let EQ[-] be the evaluation context

EQ[-] 4= νc, s.


[-] |
!c(d, sv, si, u, n, t, b).http〈Tϕ〉 |
!http(e). filter hasUserSignatureEvidence(e, u′, n, t, b, sv, si)

7→ u′, n, t, b, sv, si in s〈sv, si, u′, n, t, b〉


for some c, s 6∈ fn(T ). EQ[Q◦] differs from Q• in two ways:

(1) Instead of Iu, there is an extra communication on channel c after computing
d and si, but before sending messages on begin and http.

(2) Instead of Su, there is an extra communication on channel s after checking
hasUserSignatureEvidence but before checking predicate checkEvidence.

Since c and s are both restricted channels used only either for asynchronous outputs
or as a single replicated input, these extra communication steps do not affect ≈.2

To prove robust safety for the core protocol, we first define the valid states of the
core protocol in an evaluation context. Valid states are our correctness invariant.
They describe protocol states reachable from Q◦ after unfolding n sessions, in which
no secrets have been leaked and only messages sent by the client have been accepted
by the server.

Valid States for the Core Protocol:

(1) ϕi is adapted from ϕ in the definition of safe envelopes with variables
di, svi, ni, ti, bi and term SIi instead of d, sv, n, t, b and SI.
(2) A session state is a process of the form Ci = begin〈u ni ti bi〉 | ϕi | Ji where Ji is
any parallel composition of processes from {end〈u ni ti bi〉}∪

⊕
{end〈u ni ti bi〉}∪⊕

{}. (Ci has free variables u, ni, ti, bi and defined variables di, svi.)
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(3) An internal state is a parallel composition of session states C =
∏

i<m Ci, for
some m ≥ 0.
(4) A valid state is a closed process of the form A = E[Q◦[C]] where E[-] is an
evaluation context where begin and end do not occur and C is an internal state.

For a given internal state C, let σC be the (ordinary) substitution obtained by
composing {u = principal(spwd)} and each ϕi for i < m. By definition, the frame
obtained from Q◦[C], which represents the attacker’s knowledge about spwd, is
ϕC = νspwd.σC . We consider the effect of σC on the predicate checkEvidence in
Lemma 7, to follow. First, we develop some basic properties of our equational
theory on terms.

Our equational theory is defined as the term-rewriting system obtained from
the (oriented) rewrite rules of Section 2. We give some basic definitions and results
for this system.

Redex, Normal Form, Selector:

A term T is a redex for the (oriented) rewrite rule V = W when T is V σ for some
substitution σ. Then, Wσ is the result of the rewriting.
A term T is in normal form when it contains no redex for any rule; it is a normal
form of V when V = T .
A function symbol f is a selector when there is a rewrite rule of the form f(Ṽ ) = W .

Lemma 6

(1) Every term has a unique normal form.

(2) Two terms are equal if and only if their normal forms are identical.

(3) Suppose f is one of the function symbols sha1, hmac-sha1, p-sha1, or principal.
If terms U and f(Ṽ ) are in normal form, and f(Ṽ ) does not occur as a subterm
of U , then U{x = f(Ṽ )} is also in normal form.

(4) If f(Ũ) = g(Ṽ ), then either f or g is a selector, or f = g and Ũ = Ṽ .

(5) If f(Ũ) = g(Ṽ ), where Ũ , Ṽ are normal, then either

(a) f = g and (Ũ = Ṽ ), or

(b) f(Ṽ ) is a redex, or

(c) g(W̃ ) is a redex.

Proof Let U 7→ V be the reduction relation obtained by orienting our equations
on terms from left to right, and closing under contexts. By standard rewriting
techniques [4], our equational theory is the reflexive, transitive, symmetric closure
of U 7→ V . Whenever U 7→ V then V has fewer function symbols than U , so 7→ is
terminating. Our term rewriting system has no critical pairs; each selector symbol
appears only as the outermost symbol in a rule, and no two rules directly overlap.
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Given that the reduction relation is terminating and has no critical pairs, it follows
that it is confluent. Since 7→ is terminating and confluent, it follows that (1) every
term has a unique normal form, and (2) two terms are equal if and only if their
normal forms are identical.

For (3), suppose f(Ṽ ) is not a subterm of U , that both are normal, and that
f ∈ {sha1, hmac-sha1, p-sha1, principal}. Then substituting the term f(Ṽ ) for x in U
cannot create any redexes, since f does not occur in any rewrite rule, and moreover,
since f(Ṽ ) does not already occur in U , we cannot complete a redex for either of
the selectors check-x509 and check-rsa-sha1 guarded by an implicit term equality.
Hence, U{x = f(Ṽ )} is in normal form.

For (4), suppose f(Ũ) = g(Ṽ ) and that neither f nor g is a selector. The normal
forms of f(Ũ) and g(Ṽ ) must take the form f(Ũ ′) and g(Ṽ ′), since neither f nor g is
a selector. These two normal forms must be identical, so it follows that f = g and
Ũ ′ = Ṽ ′, and hence that Ũ = Ṽ .

For (5), suppose f(Ũ) = g(Ṽ ) where Ũ and Ṽ are normal. If either f(Ũ) or g(Ṽ )
is a redex we are done. If neither is a redex, they are two equal normal forms and
therefore f = g and (Ṽ = W̃ ). 2

The next lemma states that if a message is received in a valid state of the
protocol, and it satisfies the predicate checkEvidence, then it must have been sent
by the client.

Lemma 7 (checkEvidence is safe) Let C be an internal state with m ≥ 0 ses-
sions. Let σ′ be a substitution that ranges over open terms where the name spwd

does not appear such that σ
4= σ′ | σC is closed. If

|= checkEvidence(sv, si, u′, spwd, n, t, b)σ

then there exists i < n such that (u′, sv, si, n, t, b = u, svi, SIi, ni, ti, bi)σ.

Proof Assume |= checkEvidence(sv, si, u′, spwd, n, t, b)σ, and let σ◦C be such that
σ ≡ σ′ | σ◦C and σ◦C ranges over closed terms in normal forms. (Hence, dom(σ◦C) =
dom(σC) = {u} ∪ {svj , dj |j < m} and, for all x ∈ dom(σC), xσ◦C = xσ.)

By definition, |= checkEvidence(sv, si, u′, spwd, n, t, b)σ implies there exists σ′′

with dom(σ′′) = {k, c, r1, uri, talg, dalg, rest} such that:

|= (u′ = principal(spwd))σσ′′ (1)
|= (k = p-sha1(spwd, concat(n, utf8(t))))σσ′′ (2)
|= (sv = hmac-sha1(k, c14n(si)))σσ′′ (3)
|= (si = <SignedInfo>

c <SignatureMethod Algorithm="hmac-sha1"></>
r1 rest)σσ′′

(4)

|= (r1 = <Reference uri>
talg dalg
<DigestValue>base64(sha1(c14n(b)))</>)σσ′′

(5)
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In (1), we use the definition of σC to introduce u and obtain (u′ = u)σ.
Using (2) to eliminate k in (3), we obtain

sv σ = hmac-sha1(p-sha1(spwd, concat(n σ, utf8(t σ))), c14n(si σ)) (6)

Let T = sv σ′ in normal form. We have sv σ = Tσ◦C and, by Lemma 6(3) and
definition of σ◦C , Tσ◦C is also in normal form. By plain structural matching on
normal forms, we obtain four cases for T :

• T = x for some x ∈ dom(σ◦C) such that xσ◦C = hmac-sha1( , ), where
stands for any subterm. By definition of σ◦C , this implies x = svi for some
i < k, and thus (sv = svi)σ.

• T = hmac-sha1(x, ) for some x ∈ dom(σ◦C) such that xσ◦C = p-sha1( , ).
This is excluded by definition of σ◦C .

• T = hmac-sha1(p-sha1(x, ), ) for some x ∈ dom(σ◦C) such that xσ◦C = spwd.
This is excluded by definition of σ◦C .

• T = hmac-sha1(p-sha1(spwd, ), ).
This is excluded by hypothesis on σ′: since T = sv σ′, we have spwd 6∈ fn(T ).

Using the definition of svi in σC , equation (6) becomes

hmac-sha1(p-sha1(spwd, concat(ni, utf8(ti))), c14n(SIi σ))
= hmac-sha1(p-sha1(spwd, concat(nσ, utf8(tσ))), c14n(si σ))

and thus Lemma 6(4) yields (si, n, t = SIi, ni, ti)σ. Similarly, using equations (4)
and (5) to eliminate si then r1 in (si = SIi)σ, we obtain an equation of the form:

(V {x̃ = b, uri, talg, dalg, rest} = V {x̃ = bi, urii, talgi, dalgi, resti})σ

for a term V built only from constructors, we obtain (b = bi)σ via Lemma 6(4). 2

Using this lemma, we can show that all reachable configurations of the core
protocol are valid states.

Lemma 8 (Invariant Lemma) If A is a valid state and A → T then T ∼ A′ for
some valid state A′.

Proof Our lemma is stated for a particular definition of Q◦; however, its proof
relies on the process structure of Q◦, and is almost parametric in the definitions
of ϕ, checkEvidence, and the message content on initu, c, s, begin, end (as long as
Lemma 7 validates these definitions).

Let A = E[Q◦[C]] be a valid core protocol state, with internal state C =∏
i<k Ci. We perform a case analysis on the reduction step A → A′. By definition

of reduction in applied pi, this step is either a communication or a term comparison.
For communication, we must have A ≡ E′[a〈x̃〉.P | a(x̃).Q] and A′ ≡ E′[P | Q] for
some channel name a, variables x̃, processes P and Q, and evaluation context E′[-].
By definition of A and structural equivalence, this implies one of the following cases:
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(1) Both the send and receive occur in Q◦[C]: we have A′ ≡ E[F [P | Q]] with
Q◦[C] ≡ F [a〈x̃〉.P | a(x̃).Q]. By definition of core configurations, the chan-
nels used for communications in evaluation context in Q◦[C] are begin, end—
only used for sending—and initu, s—only used for receiving—plus channel
names appearing in internal choices.

By property (3) of internal choices, a is thus a local channel in an inter-
nal choice P in some parallel composition Ji within C. For some C ′ and
process P ′, we have, for some internal state P :

C ≡ C ′ | P P → P ′ A′ ≡ E[Q◦[C ′ | P ′]]

By definition of Ji, we have P ∈
⊕
{end〈u ni ti bi〉} ∪

⊕
{}. By property (2)

of internal choices, we have either P ′ ∼ end〈u ni ti bi〉 (and we let P ′′ =
end〈u ni ti bi〉) or P ′ ∈

⊕
{end〈u ni ti bi〉} ∪

⊕
{} (and we let P ′′ = P ′). In

both subcases, C ′ | P ′′ is also an internal state, and we have A′ ≡ E[Q◦[C ′ |
P ′]] ∼ E[Q◦[C ′ | P ′′]], which is a valid state.

(2) Q◦[C] sends a message on a free channel: we have Q◦[C] ≡ F [a〈x̃〉.P ] where
a is free in F [-] and E[Q◦[C]] = E′[a(x̃).P | Q◦[C]]. By definition of core
configurations, a ∈ {begin, end}, so this case is excluded by hypothesis on E[-].

(3) Q◦[C] receives a message on channel a ∈ fn(Q◦[C]). Using structural equiv-
alence, we can assume that the message output occurs in parallel with [-]
in E[-], and conveys a tuple of any variables that do not occur in Q◦[C]. By
definition of core configurations, we have either a = initu using the replicated
input in I◦u (case 3a) or a = s using the replicated input in S◦u (case 3b):

(a) We have a valid state A such that:

A ≡ E′[initu〈uk, nk, tk, bk〉.P | Q◦[C]]
Q = begin〈u nk tk bk〉 | c〈dk, svk, SIk, u, nk, tk, bk〉ϕk

A′ ≡ E′[P | Q◦[C | Q]]

Let Jk = 0 and Ck = begin〈u nk tk bk〉 | ϕk | Jk. By construction,
C | Ck is an internal state with an additional session at index k. Let

F [-] 4= νdk, svk.(c〈dk, svk, SIk, u, nk, tk, bk〉 | [-])

Using structural equivalences, we obtain Q ≡ F [Ck], Q◦[C | Q] ≡
F [Q◦[C | Ck]], and finally A′ ≡ E′[P | F [Q◦[C | Ck]]], which is a
valid state.

(b) We have a valid state A such that:

A ≡ E′[s〈sv, si, u′, n, t, b〉.P | Q◦[C]]
Q = filter checkEvidence(sv, si, u′, spwd, n, t, b) 7→ ∅ in end〈u′ n t b〉
A′ ≡ E′[P | Q◦[C | Q]]
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We first use structural equivalence to close the process Q: we have
A′ ≡ E′′[σ′ | Q◦[C | Q]] valid state, for some evaluation context E′′[-]
that does not contain any active substitution, and thus A′ ≡ E′′[σ′ |
Q◦[C | Qσ]] for some σ ≡ σ′ | σC .
Applying Lemma 1, we obtain

Qσ ∈
⊕

{end〈u′ n t b〉σ | |= checkEvidence(sv, si, u′, spwd, n, t, b)σ}

Applying Lemma 7, either there exists i < n such that (u′, sv, si, n, t, b =
u, svi, SIi, ni, ti, bi)σ, and then Qσ ∈

⊕
{end〈u ni ti bi〉σ}, or the pred-

icate is never satisfied, and Qσ ∈
⊕
{}.

In the first subcase (the message may be accepted), we let C ′ = C | Q,
check that C ′ is an internal state obtained from C by using J ′i = Ji | Q
instead of Ji, and conclude with A′ ≡ E′′[σ′ | Q◦[C | Qσ]], which is a
valid state.
In the second subcase (checkEvidence fails), let Q′ ∈

⊕
{} with Qσ ∼ Q′

and spwd 6∈ fn(Q′) (obtained for instance by substituting a fresh name
for spwd in Q). We have A′ ∼ E′′[σ′ | Q′ | Q◦[C]], which is a valid state
with the same internal state.

(4) The communication entirely occurs in E[-]: we have a valid state A such that:

A ≡ E′[A1 | Q◦[C]] A1 | σC → A′
1 | σC A′ ≡ E′[A′

1 | Q◦[C]]

Moreover, spwd 6∈ A1 by hypothesis on E′, so we can pick A′′
1 such that

A′
1 | σC ≡ A′′

1 | σC and spwd 6∈ A′′
1 . We conclude with A′ ≡ E′[A′′

1 | Q◦[C]]
valid state.

Next, we consider comparison steps. Two cases are enabled, depending on the
location of the conditional:

• The test occurs in Q◦[C], necessarily in one of the internal choices: this is
another instance of case 1.

• The test occurs in E[-]: this is another instance of case 4. 2

As a corollary, we can show robust safety for the core protocol.

Lemma 9 (Core Robust Safety) Q◦ is robustly safe.

Proof We first show that, if A .a〈V 〉 and a is used only for asynchronous outputs
in A, then A →∗ a〈V 〉 | A′′ ≈ A for some A′′. By definition, A .a〈V 〉 means
A ≈ a〈V 〉 | A′ for some A′. Let C = t〈〉 | a(x).if x = V then t() for some fresh
name t. We have C | a〈V 〉 | A′ →3 A′ and thus, by context closure and simulation
for ≈, C | A →∗ A′′ ≈ A′ for some A′′. By definition of C and case analysis on
reductions, we obtain A →∗ a〈V 〉 | A′′. By context closure for a〈V 〉, A′′ ≈ A′

implies a〈V 〉 | A′′ ≈ A.
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Assume E[Q◦] →∗ A . end〈V 〉 for some context E[-] where begin and end do
not occur. Using the remark above, we have E[Q◦] →∗ A →∗ B ≈ A for some
B = end〈V 〉 | A′′. By Lemma 8 and induction on the number of reduction steps,
there exists a valid state B′ ∼ B. In particular, B′ contains a message end〈V 〉. By
definition of valid states, this message may occur only within some session state Ii

that also contains begin〈V 〉. Thus, B′ . begin〈V 〉 and, since B′ ≈ B ≈ A, we obtain
A . begin〈V 〉. 2

Theorem 1 follows as a corollary. More generally, we could derive robust safety
for configurations that may use several kinds of safe envelopes.

Restatement of Theorem 1 For any safe envelope, the configuration Q is
robustly safe.

Proof By Lemma 9, Q◦ is robustly safe (RS). By Lemma 5, Q• ≈ EQ[Q◦] and,
by hypothesis on EQ, EQ[Q◦] is RS. By Lemma 2, Q• is RS. Finally, Q• is logically
equivalent to Q, and thus, by Lemma 3, Q is RS. 2

4.5 Extended Configurations

In the proofs above, we focused on a simple situation with a single user and a single
server dedicated to that user. Next, we illustrate how this basic result can be easily
extended to configurations with multiple users and servers.

We first state a lemma to compose robust safety properties.

Lemma 10

(1) If A is robustly safe and E[-] is an evaluation context where begin and end do
not occur, then E[A] is robustly safe.

(2) Let A be a process where begin and end do not occur. If νc.A{a, b = begin, end}
and νa.A{b, c = begin, end} are robustly safe, then νb.A{a, c = begin, end} is
robustly safe.

Proof

(1) By definition and composition of evaluation contexts.

(2) Assume E[νb.A{a, c = begin, end}] →∗ B . end〈V 〉, and begin, end, a, b, c do
not occur in E[-] or V (up to a renaming of a, b, c in A). We also have
E[A] →∗ B′ . c〈V 〉 with B ≡ νb.B′{a, c = begin, end}. Using the second,
then the first hypothesis, we also have B′ . b〈V 〉 and B′ . a〈V 〉, and finally
B . begin〈V 〉. 2

Theorem 3 Let U be a set of variables and Envelope be a family of safe envelopes
indexed by U . The configuration QU

4=
∏

u∈U Q is robustly safe.
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Proof Assume E[QU ] →∗ B . end〈V 〉 for some evaluation context E[-] that does
not contain begin, end. Let {beginu, endu | u ∈ U} be distinct channel names that
do not occur in E[-]. We define renamings ρu

4= {beginu, endu = begin, end} and
ρ
4=

∏
u∈U ρu, and let Q′ be the configuration

∏
u∈U (Qρ−1

u ). By definition, QU is
obtained from Q′ by identifying event channels for all users, and we have QU = Q′ρ.

Event channels appear in QU only for sending messages, and do not appear
in E[-], hence every reduction step in E[QU ] →∗ B commutes with our renamings.
We obtain E[Q′] →∗ B′ . endu〈V 〉 for some u ∈ U and B′ such that B = B′ρ, and
finally E[Q′ρu] →∗ B′ρu . end〈V 〉.

By Theorem 1 and Lemma 10(1), the configuration E[Q′ρu] is robustly safe,
hence B′ρu . end〈V 〉 implies B′ρu . begin〈V 〉 and, since B = B′ρ, B . begin〈V 〉. 2

To see that this indeed allows us to consider systems with multiple users, using
structural equivalence, we have QU ≡ ν(su)u∈U .(I | S) where I

4=
∏

u∈U ({u =
principal(su)} | Iu) implements a parallel composition of initiators for the users
in U (all using distinct passwords) and S

4=
∏

u∈U Su implements a server that
accepts requests from any of these users (with an internal choice of u ∈ U as
each envelope is received). Similarly, we could extend our result to initiators using
multiple safe envelope formats for a given user.

In our configurations so far, whenever the server accepts a message, it only sends
an end-event. The next lemma extends robust safety in case the server performs
some additional processing on accepted messages. (This lemma can be used as a
preliminary step before chaining sub-protocols using Lemma 10; see also Section 4.7
for an application.)

Lemma 11 The configuration Q′ obtained from Q by substituting Q[end〈u′ n t b〉 |
accept〈u′, n, t, b〉] for Q[end〈u′ n t b〉] is robustly safe.

Proof Using robust safety for Q (Theorem 1), whenever a message is sent on
end, we have u = u′ and the values n, t, b are those received from the environment
on initu. By mapping reductions E[Q′] →∗ A to those of E′[Q] where E′ is E[-]
plus messages on accept, we easily establish that E[Q′] is also safe. 2

4.6 Stating and Proving X.509-Based Authentication

For expressing X.509 configurations, we model the certifier as a process AI that
exports its own public key kr plus a collection of certificates for the pairs of users and
public keys (V,K) ∈ I, signed with the certifying private key, sr. The configuration
also includes client and server processes for a particular user u, with public key ku.

X.509 Signing Protocol Configurations: Q (parameterized by Envelope, I)

Q 4= AI | Ku | Su

AI
4= νsr.

(
{kr = pk(sr)} |

∏
(V,K)∈I{xV = x509(sr, V, rsa-sha1,K)}

)
Ku

4= νsu.({u = principal(su)} | {ku = pk(su)} | Iu)
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Iu
4= !initu(b, ea, et, ei).(begin〈u b ea et ei〉 | http〈Envelope〉)

Su
4= !http(e).

filter hasX509SignedBody(e, kr, u,W, S, id, b, ea, et, ei) 7→ id, b, ea, et, ei in
end〈u b ea et ei〉

As in Section 4, the configuration Q illustrates a simple protocol configuration.
Its definition can easily be adapted to deal with more general configurations. We
make the following assumptions on the contents of certificates and envelopes:

Safe Collections of Certificates: I
I is a finite set of pairs of terms such that, whenever (V,K) ∈ I, either (V,K) =
(u, ku), or fv(V,K) = ∅ and sr 6∈ fn(V,K).

These conditions guarantee that there is a unique certificate for u and ku, and
that the certifying key is used exclusively for signing these certificates.

Safe Envelopes with X.509 Signing:

A safe envelope is a term of the form Envelope = Tϕ for any terms T and SI such
that sr, su 6∈ fn(T ) ∪ fn(SI) and isSigInfo(SI, rsa-sha1, b, ea, et, ei) is valid, with
the active substitution ϕ defined by:

ϕ
4= {sv = rsa-sha1(c14n(SI), su)}

The structure of the proof is similar to the one detailed in Section 4.4. We first
decompose hasX509SignedBody(e, kr, u, ac, to, id, b, ea, et, ei) 7→ id, b, ea, et, ei into
the conjunction

hasX509SignatureEvidence(e, id, x, sv, si, b, ea, et, ei) 7→ id, x, sv, si, b, ea, et, ei,
checkX509Evidence(kr, u, ac, to, id, x, sv, si, b, ea, et, ei) 7→ ∅

Here, checkX509Evidence contains all the cryptographic tests to check the certifi-
cate and the signature:

checkX509Evidence(kr : bytes, u, ac, to, id : string, x, sv : bytes, si, b, ea, et, ei : item) :-
isX509Cert(x, kr, u, rsa-sha1, k),
isSigVal(sv, si, k, rsa-sha1),
isSigInfo(si, rsa-sha1, b, ea, et, ei),
ea = <action >ac</>,
et = <to >to</>,
ei = <id >id</>.

isX509Cert(x, kr : bytes, u, a : string, k : bytes) :-
check-x509(x, kr) = kr,
u = x509-user(x),
a = x509-alg(x),
k = x509-key(x).

Next, we define core protocol configurations and their valid states.
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X.509 Signing Core Protocol Configurations: Q◦ (parameterized by SI , I)

Q◦[-] 4= AI | K◦
u | S◦u | [-]

K◦
u

4= νsu.({u = principal(su)} | {ku = pk(su)} | I◦u)
I◦u

4= !initu(b, ea, et, ei).(begin〈u b ea et ei〉 |
c〈id.Body(ei), xu, sv, SI, b, ea, et, ei〉)

S◦u
4= !s(id, x, sv, si, b, ea, et, ei).

filter checkX509Evidence(kr, u,W, S, id, x, sv, si, b, ea, et, ei) 7→ ∅ in
end〈u b ea et ei〉

Valid States for the X.509 Signing Protocol:

(1) ϕi is adapted from ϕ in the definition of safe envelopes with variables
svi, bi, eai, eti, eii and term SIi instead of sv, b, ea, et, ei and SI.

(2) A session state is a process of the form Ci = begin〈u bi eai eti eii〉 | ϕi | Ji

where Ji is any parallel composition of processes from {end〈u bi eai eti eii〉}∪⊕
{end〈u bi eai eti eii〉} ∪

⊕
{}. (Ci has free variables bi, eai, eti, eii and

defined variable svi.)

(3) An internal state is a parallel composition of session states C =
∏

i<m Ci, for
some m ≥ 0.

(4) A valid state is a closed process of the form A = E[Q◦[C]] where E[-] is an
evaluation context where begin and end do not occur and C is an internal
state.

For a given internal state C, let σ1
C be the (ordinary) substitution obtained by

composing {kr = pk(sr)} and each {xV = x509(sr, V, rsa-sha1,K)} for (V,K) ∈
I; let σ2

C be obtained by composing {u = principal(su)}, {ku = pk(su)} and each ϕi

for i < m. Let σC = σ1
C | σ2

C . By definition, the frame obtained from Q◦[C], which
represents the attacker’s knowledge about su, is ϕC = νsr.σ

1
C | νsu.σ2

C .
We prove the safety of checkX509Evidence in two steps: first we show that the

certificate scheme is safe, Lemma 13, and then we show that the signature scheme
is safe, Lemma 14. Both proofs are reminiscent of the proof of Lemma 7. The first
lemma in our development states some facts about our equational theory.

Lemma 12 (Normal Forms with Certificates)

(1) Let σ be a substitution ranging over two forms of terms: either pk(sr), or
x509(sr, V1, V2, V3) with sr 6∈ fn(V1, V2, V3) and dom(σ)∩(fv(V1, V2, V3)) = ∅.

For each U in normal form with sr 6∈ fn(U), there exists U ′ with sr 6∈ fn(U ′),
U ′σ = Uσ, and U ′σ in normal form.

(2) Let σ be a substitution ranging over two forms of terms: either pk(su), or
rsa-sha1(V, su) with su 6∈ fn(V ).
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For each U in normal form with su 6∈ fn(U), there exists U ′ with su 6∈ fn(U ′),
U ′σ = Uσ, and U ′σ in normal form.

Proof We prove the two parts in a similar fashion. As before, we write U 7→ V
for the reduction relation obtained by orienting our equations on terms from left
to right, and closing under contexts.

(1) Suppose Uσ reduces by a sequence of rewrite steps to V . We write 7→ for a
rewrite step; so, Uσ 7→n V . We prove, by induction on the number of rewrite
steps n, that V is of the form U ′σ such that sr 6∈ fn(U ′). As a corollary, if V
is the normal form of Uσ, then there exists U ′ in normal form, sr 6∈ fn(U ′),
such that U ′σ is V .

Base case: Uσ is V , so, let U ′ be U .

Inductive hypothesis: Uσ 7→k Ukσ, sr 6∈ fn(Uk), and Ukσ 7→ V . Then, Ukσ
is C[Lτ ] and V is C[Rτ ] where L 7→ R is a rewrite rule. So, Uk is C ′[L′],
such that C is C ′σ and L′σ is Lτ . If L′ matches L (L′ is Lµ), then the redex
occurs in Uk itself and V is Uk+1σ, where Uk 7→ Uk+1; so, let U ′ be Uk+1.
Otherwise, L′σ matches L but L′ does not. By case analysis on rewrite rules
(L →R R), we find all such L′:

• L′ is x509-user(x) and σ(x) is x509(sr, V1, V2, V3), sr 6∈ fn(V1, V2, V3), x 6∈
fv(V1, V2, V3). Then C[L′σ] 7→ C[V1], that is C ′σ[V1], that is (C ′[V1])σ
(since x 6∈ fv(V1). So, let U ′ be C ′[V1].

• L′ is x509-alg(x) and σ(x) is x509(sr, V1, V2, V3), sr 6∈ fn(V1, V2, V3),
x 6∈ fv(V1, V2, V3). Same as previous case, with V2 instead of V1. So, let
U ′ be C ′[V2].

• L′ is x509-key(x) and σ(x) is x509(sr, V1, V2, V3), sr 6∈ fn(V1, V2, V3),
x 6∈ fv(V1, V2, V3). Same as previous case, with V3 instead of V2. So, let
U ′ be C ′[V3].

• L′ is check-x509( , y), σ(y) is pk(sr). Then C[L′σ] 7→ C[pk(sr)], that is
(C ′[y])σ. So, let U ′ be C ′[y].

• L′ is check-rsa-sha1( , , y), σ(y) is pk(sr). Then C[L′σ] 7→ C[pk(sr)],
that is (C ′[y])σ. So, let U ′ be C ′[y].

• In all other cases, if L′σ matches L, so does L′.

(2) Suppose Uσ 7→n V . Again, we prove, by induction on the number of rewrite
steps n, that V is of the form U ′σ such that su 6∈ fn(U ′). As a corollary, if V
is the normal form of Uσ, then there exists U ′ in normal form, su 6∈ fn(U ′),
such that U ′σ is V .

Base case: Uσ is V , so, let U ′ be U .

Inductive hypothesis: Uσ 7→k Ukσ, su 6∈ fn(Uk), and Ukσ 7→ V . Then, Ukσ
is C[Lτ ] and V is C[Rτ ] where L 7→ R is a rewrite rule. So, Uk is C ′[L′],
such that C is C ′σ and L′σ is Lτ . If L′ matches L (L′ is Lµ), then the redex
occurs in Uk itself and V is Uk+1σ, where Uk 7→ Uk+1; so, let U ′ be Uk+1.
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Otherwise, L′σ matches L but L′ does not. By case analysis on rewrite rules
(L →R R), we find all such L′:

• L′ is check-x509( , y), σ(y) is pk(su). Then C[L′σ] 7→ C[pk(su)], that is
(C ′[y])σ. So, let U ′ be C ′[y].

• L′ is check-rsa-sha1( , , y), σ(y) is pk(su). Then C[L′σ] 7→ C[pk(su)],
that is (C ′[y])σ. So, let U ′ be C ′[y].

• In all other cases, if L′σ matches L, so does L′. 2

Lemma 13 (isX509Cert is safe) Let C be an internal state with m ≥ 0 ses-
sions. Let σ′ be a substitution that ranges over open terms where the name sr does
not appear such that σ

4= σ′ | σ1
C is closed. Let I be a safe collection of certificates.

If
|= isX509Cert(x, kr, w, rsa-sha1, k)σ

then there exists (V,K) ∈ I such that (x,w, k = xv, V, K)σ.

Proof Assume |= isX509Cert(x, kr, w, rsa-sha1, k)σ and let σ◦C be such that σ =
σ′ | σ◦C and σ◦C ranges over closed terms in normal forms. Hence, dom(σ◦C) =
dom(σ1

C) = {kr} ∪ {xV | (V,K) ∈ I} and, for all x ∈ dom(σC), xσ◦C = xσ1
C .

From the definition of isX509Cert, and rewriting for kr, we get:

|= (check-x509(x, pk(sr)) = pk(sr))σ (7)
|= (w = x509-user(x))σ (8)
|= (k = x509-key(x))σ (9)

Let N be the normal form of xσ. From (7), we get check-x509(N, pk(sr)) =
pk(sr), with both terms in normal form. Using Lemma 6(5), cases (a) and (c)
can be eliminated, since check-x509 6= pk and pk is a constructor. So only case
(b) applies: check-x509(N, pk(sr)) is a redex, and must match the (only) rule for
check-x509: N = x509(sr, u

′, a′, k′), that is xσ = x509(sr, u
′, a′, k′).

Let T = xσ′ in normal form; so, sr 6∈ fn(T ) and xσ = T σ◦C . From the assump-
tions on I, we have that the range of σ◦C consists of pk(sr) and terms of the form
x509(sr, V1, V2, V3), such that sr 6∈ fn(V1, V2, V3) and dom(σ◦C)∩ fv(V1, V2, V3) = ∅.
Using Lemma 12(1) and the definition of σ◦C , there exists T ′ in normal form, such
that T ′ does not contain sr, T ′ σ◦C = T σ◦C , and T ′ σ◦C is also in normal form.

So, T ′ σ◦C = xσ = x509(sr, u
′, a′, k′), and by plain structural matching on

normal forms, we obtain three cases for T :

• T = y for some y ∈ dom(σ◦C) such that y σ◦C = x509(sr, , , ), where
stands for any subterm.
By definition of σ◦C , this implies y = xV for some (V,K) ∈ I, and thus
(x = xV )σ.

• T = x509(y, ) for some y ∈ dom(σ◦C) such that y σ◦C = sr.
This is excluded by definition of σ◦C .
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• T = x509(sr, ).
This is excluded by hypothesis on σ′: since T = xσ′, we have sr 6∈ fn(T ).

So (x = xV )σ, for (V,K) ∈ I. Using (8), 9, and the definition of xV in σ◦C , we
obtain (w, k = V,K)σ. 2

Lemma 14 (checkX509Evidence is safe) Let C be an internal state with m ≥
0 sessions. Let σ′ be a substitution that ranges over open terms where the names
sr, su do not appear such that σ

4= σ′ | σ1
C | σ2

C is closed. Let I be a safe collection
of certificates. If

|= checkX509Evidence(kr, u,W, S, x, sv, si, b, ea, et, ei)σ

then there exists i < n such that (sv, si, b, ea, et, ei = svi, SIi, bi, eai, eti, eii)σ.

Proof Assume |= checkX509Evidence(kr, u,W, S, x, sv, si, b, ea, et, ei)σ and let
σ◦C be such that σ = σ′ | σ1

C | σ◦C and σ◦C ranges over closed terms in normal forms.
Then, by definition of |=, there exists σ′′ with dom(σ′′) = {k, auri, turi} such

that:

|= isX509Cert(x, kr, u, rsa-sha1, k)σσ′′ (10)
|= (sv = rsa-sha1(k, c14n(si)))σσ′′ (11)
|= isSigInfo(si, rsa-sha1, b, ea, et, ei)σσ′′ (12)
|= (ea = <action auri>S</>)σσ′′ (13)
|= (et = <to turi>W</>)σσ′′ (14)

Using Lemma 13 and (10), we get (x, u, k = xV , V, K)σσ′′ for some (V,K) ∈ I.
Using the assumption on I, we get (K = ku)σ.

In (11), using the definition of ku in σ2
C , and normalizing both sides of the

equation, we get check-rsa-sha1(c14n(si′), sv′, pk(su)) = pk(su), where si′, sv′ are
normal forms of si σ, sv σ. Using Lemma 6(5), cases (a) and (c) can be elim-
inated, since check-rsa-sha1 6= pk and pk is a constructor. So from case (b),
check-rsa-sha1(c14n(si′), sv′, pk(su)) must match the (only) rule for check-rsa-sha1:
sv′ = rsa-sha1(c14n(si′), su), that is sv σ = rsa-sha1(c14n(si′), su).

Let T = sv σ′ σ1
C in normal form; so, su 6∈ fn(T ) and sv σ = T σ◦C .

Using Lemma 12(2) and the definition of σ◦C , T σ◦C = T ′ σ◦C , for T ′ and T ′ σ◦C in
normal form. So, T ′ σ◦C = rsa-sha1(c14n(si′), su), with both terms in normal form,
and by plain structural matching on normal forms, we obtain three cases for T :

• T = y for some y ∈ dom(σ◦C) such that y σ◦C = rsa-sha1( , su), where stands
for any subterm.
By definition of σ◦C , this implies y = svi for some i < n, and thus (sv = svi)σ.

• T = rsa-sha1( , y) for some y ∈ dom(σ◦C) such that y σ◦C = su.
This is excluded by definition of σ◦C .

• T = rsa-sha1( , su).
This is excluded by hypothesis on σ′: since T = xσ′, we have su 6∈ fn(T ).
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Using the definition of svi in σC , equation (6) becomes

rsa-sha1(c14n(si σ), su) = rsa-sha1(c14n(SIi σ), su)

and thus Lemma 6(4) yields (si = SIi)σ.
Similarly, expanding the definition of isSigInfo in (12) and in SIi, we obtain an

equation of the form:

(W{x = b}{y = ea}{z = et}{w = ei} = W{x = bi}{y = eai}{z = eti}{w = eii})σ

for a term W built only from constructors, and obtain (b, ea, et, ei = bi, eai, eti, eii)σ
from Lemma 6(4). 2

Theorem 4 For any safe Envelope and any safe collection of certificates I, the
configuration Q is robustly safe.

Proof The proof has the same structure as in Section 4.4. We rely here on a
different definition of ϕi and checkEvidence, whose correctness is established in
Lemma 14. We easily establish the counterpart of Lemma 4

We check that the proofs of Lemmas 8, 9, 5 and the main proof of Theorem 1
apply unchanged to our modified definitions. 2

4.7 Stating and Proving Firewall-Based Authentication

For the firewall-based protocol, we define the full protocol configurations as follows.

Firewall Protocol Configurations: Q (param. by Envelopeu,Envelopef , I)

Q 4= AI | νinitf .
(
νsu.

(
{u = principal(su)} | Iu | Sf

u

)
| Ku

f

)
| Sf

AI
4= νsr.

(
{kr = pk(sr)} |

∏
(V,K)∈I{xV = x509(sr, V, rsa-sha1,K)}

)
Iu

4= !initu(n, t, b).(begin〈u n t b〉 | httpu〈Envelopeu〉)
Sf

u
4= !httpu(e). filter hasUserSignedBody(e, u, su, n, t, b) 7→ n, t, b in

endu〈u n t b〉 | initf 〈u, n, t, b〉
Ku

f
4= νsf .({f = principal(sf )} | {kf = pk(sf )} | If )

If
4= !initf (u, n, t, b).(beginf 〈u n t b〉 | httpf 〈Envelopef 〉)

Sf
4= !httpf (e). filter hasX509SignedBodyFw(e, kr, f, u′, n, t, b) 7→ u′, n, t, b in

end〈u′ n t b〉

This configuration is obtained by merging those of Sections 4.3 and 4.6: up to
indexing, Iu and Su

f are the same as for password-based signature (Section 4.3).
AI is defined as in Section 4.6; Ku

f and Iu
f are similar to Ku and Iu in that section:

the main difference is that the originator (u) received on initf is used instead of the
immediate sender (f). Sf is similar to Su in Section 4.6: they differ mostly in the
content of the signature. We adapt the definition of safe X.509-signed envelopes
accordingly:
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Safe Envelopes with X.509 Signing (Adapted for Firewall):

A safe envelope is a term of the form Envelopef = Tϕ for some terms T , SI,
and FW such that sr, sf 6∈ fn(T ) ∪ fn(SI), isSigInfo(SI, rsa-sha1, b, FW ) and
isFirewallHeader(FW,u, n, t) are valid, with the active substitution ϕ defined by:

ϕ
4= {sv = rsa-sha1(c14n(SI), su)}

We also adapt the definition of safe collections of certificates to guarantee a unique
certificate for (f, kf ) instead of (u, ku).

Lemma 15 For any safe envelope and any safe collection of certificates I, the
adapted X.509 protocol configuration: Q′ 4= AI | Ku

f {beginf = begin} | Sf is
robustly safe.

Proof The proof is almost identical to the main proof of Section 4.6; we use
variables u, n, t, b instead of b, ea, et, ei to represent arbitrary terms received on
initf then signed. The main difference is in showing that if

• |= isSigInfo(SI, rsa-sha1, b1, FW1)σ, |= isFirewallHeader(FW1, u1, n1, t1),

• |= isSigInfo(SI, rsa-sha1, b2, FW2)σ, |= isFirewallHeader(FW2, u2, n2, t2),

then (b1, u1, n1, t1 = b2, u2, n2, t2)σ 2

Lemma 16 Let ρ be the event renaming {begin, endu, beginf , end = beginu, begin,
end, endf}. The configuration Qρ is robustly safe.

Proof Let Q◦ be Q with initf 〈u, n, t, b〉 replaced by the messages beginf 〈u n t b〉 |
httpf 〈Envelopef 〉 in Sf

u . Since messages sent on initf are exclusively received by If ,
we obtain Q◦ ≈ Q using a standard observational equivalence in the pi calculus.

We remark that Q◦ρ ≡ C[end〈u, n, t, b〉 | begin〈u, n, t, b〉] for some context C[-]
where the channels begin and end do not occur, and easily establish that any con-
figuration with this structural property is robustly safe. 2

Theorem 5 For any safe envelopes (Envelopeu,Envelopef ) for password-based sign-
ing and adapted X.509 signing, respectively, and for any certificates safe collection
of certificates I, the configuration νendu, beginf .Q is robustly safe.

Proof Relying on Lemma 10, we compose Lemma 11 with the renaming {accept =
initf} in evaluation context, Lemma 16, and Lemma 15 in evaluation context. 2

5 Conclusions and Future Work

In this paper, we introduced a framework for reasoning about the security of SOAP
protocols and their cryptographic implementations in terms of WS-Security tokens.
We illustrated our framework using a series of simple authentication protocols.
Surprisingly, perhaps, these XML-based protocols can be studied at the same (syn-
tactic) level of abstraction:
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• formally, using a faithful, predicate-based implementation in the applied pi
calculus with proofs of correspondence properties against a Dolev-Yao adver-
sary;

• experimentally, using sample programs and SOAP traces on top of the WSE
toolkit [29].

This should provide a principled basis for testing compliant implementations, and
also reduce the risk of attacks in concrete refinements of correct, abstract protocols.

As can be expected, this also complicates the formal model, with for example
a large syntax and equational theory for terms in the applied pi calculus. How-
ever, our experience suggests that a modular definition of predicates, together with
standard compositional techniques in the pi calculus, should enable a good reuse
of the proof effort for numerous WS-Security protocols.

Our choice of authentication protocols stresses that small variations in WS-
Security envelope formats may lead to much weaker correspondence properties.
Each service should therefore clearly prescribe (and enforce) the intended prop-
erty. Specifically, a prudent practice in the selection of XML signatures is to request
that all potentially relevant headers be jointly authenticated—not just the message
identifier or its body. In the case authentication relies on username tokens, this
strongly suggests the use of a signature instead of a digest. Moreover, XML signa-
tures have a complex structure, which should be used with caution. Specifically,
authentication should not rely on signed elements whose interpretation depends on
an unsigned context.

5.1 Related Work

There have been many formal studies of remote procedure call (RPC) security
mechanisms. The earliest we are aware of is the formalization within the BAN
logic [10] of Secure RPC [36] in the Andrew distributed computing environment.
More recently, process calculi [2] have been used to formalize the secure implemen-
tation of programming abstractions such as communication channels and network
objects [39].

We are aware of very little prior formal work on XML security protocols. Gor-
don and Pucella [22] implement and verify attribute-driven SOAP-level security
protocols, but do not use the WS-Security syntax. Their representation of SOAP
messages abstracts many details of the XML wire format, and hence would be blind
to any errors in the detailed structure of names or signatures. Damiani et al. [13]
describe an access control model for SOAP messages, but rely on a secure transport
rather than WS-Security; a subsequent paper [14] discusses connections between
SOAP security and authorization languages such as SAML and XACML.

5.2 Future Work

Our approach to authenticity properties should extend to complementary security
properties, such as secrecy and anonymity. Similarly, we should be able to deal
with more complex protocols (with series of related messages) and configurations
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(with more principals and roles). Our predicate structure is quite modular, with
predicates being re-used in different protocols. Hence, we are hopeful that the
method will scale up. Moreover, our semantics appears to be suitable for automa-
tion, and we are investigating how to automate the proofs using Blanchet’s recent
logic-based tool for applied pi [6].

At this stage, we are exploring the range of WS-Security protocols, rather than
attempting its thorough description. Our fragment of WS-Security omits certain
features and options such as encryption, Kerberos tokens, and XPath transforms,
but we see no fundamental barrier to modelling all of the specification.

Finally, although all the protocols are implemented using WSE, our goal has not
been to verify the WSE implementation itself. There is an informal gap between our
formal model and the actual implementation: we have not mechanically checked
that our predicates correspond correctly to the checks made by WSE. Still, we are
investigating ways of verifying at least parts of the implementation by relating it
to our semantics.

Acknowledgements We thank Tony Hoare, Riccardo Pucella, and anonymous
reviewers for their comments.
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A The Applied Pi Calculus (Overview)

The applied pi calculus is a simple, general extension of the pi calculus with value
passing, primitive function symbols, and equations between terms. Abadi and
Fournet [1], introduce this calculus, develop semantics and proof techniques, and
apply those techniques in reasoning about some security protocols. This appendix
gives only a brief overview derived from [20].

In the applied pi calculus, the constructs of the classic pi calculus can be used to
represent concurrent systems that communicate on channels, and function symbols
can be used to represent cryptographic operations and other operations on data.
Large classes of important attacks can also be expressed in the applied pi calculus,
as contexts. These include the typical attacks for which a symbolic, mostly “black-
box” view of cryptography suffices (but not for example some lower-level attacks
that depend on timing behaviour or dictionary attacks). Some of the properties of
the protocol can be nicely captured in the form of equivalences between processes.
Moreover, some of the properties are sensitive to the equations satisfied by the
cryptographic functions upon which the protocol relies. The applied pi calculus is
well-suited for expressing those equivalences and those equations.

Abstractly, a signature Σ consists of a finite set of function symbols, such as
concat and sha1, each with an integer arity. Given a signature Σ, an infinite set of
names, and an infinite set of variables, the set of terms is defined by the grammar:

Grammar for Terms:

T,U, V, SI,Envelope ::= terms
begin, end, http, init, c, s name (for communication channels)
spwd, sr, su name (for cryptographic secrets)
b, e, n, x, y, t, u variable
f(T1, . . . , Tl) function application

where f ranges over the function symbols of Σ and l matches the arity of f . We
use metavariables v and w to range over both names and variables.

The grammar for processes is similar to the one in the pi calculus, except that
messages can contain terms (rather than only names) and that names need not be
just channel names:

Grammar for Processes:

P,Q,R ::= processes (or plain processes)
0 null process
P | Q parallel composition
!P replication
νs.P name restriction (“new”)
if U = V then P else Q conditional
v(x).P message input
v〈T 〉.P message output
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The null process 0 does nothing; P | Q is the parallel composition of P and Q; the
replication !P behaves as an infinite number of copies of P running in parallel. The
process νs.P makes a new name s then behaves as P . The conditional construct
if U = V then P else Q is standard, but we should stress that U = V represents
equality in the equational theory, rather than strict syntactic identity. We abbre-
viate it if U = V then P when Q is 0. Finally, the input process v(x).P is ready
to input from channel v, then to run P with the actual message replaced for the
formal parameter x, while the output process v〈T 〉.P is ready to output message T
on channel v, then to run P . In both of these, we may omit P when it is 0. When
(Pi)i∈I is a finite set of of processes indexed by I = 1..m, we write

∏
i∈I Pi as an

abbreviation for P1 | . . . | Pm (with
∏

i∈∅ Pi = 0).
Further, we extend processes with active substitutions:

Grammar for Extended Processes:

A,B,C, I,K, S ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νs.A variable restriction
{x = T} active substitution

We write {x = T} for the substitution that replaces the variable x with the
term T . The substitution {x = T} typically appears when the term T has been
sent to the environment, but the environment may not have the atomic names
that appear in T ; the variable x is just a way to refer to T in this situation. The
substitution {x = T} is active in the sense that it “floats” and applies to any
process that comes into contact with it. In order to control this contact, we may
add a variable restriction: νx.({x = T} | P ) corresponds exactly to let x = T in P .
Although the substitution {x = T} concerns only one variable, we can build bigger
substitutions by parallel composition. We always assume that our substitutions
are cycle-free. We also assume that, in an extended process, there is at most
one substitution for each variable, and there is exactly one when the variable is
restricted.

A frame is an extended process built up from active substitutions by paral-
lel composition and restriction. Informally, frames represent the static knowledge
gathered by the environment after communications with an extended process. An
evaluation context E[-] is an extended process with a hole in the place of an ex-
tended process. As usual, names and variables have scopes, which are delimited by
restrictions and by inputs. When X is any expression, fv(X) and fn(X) are the
sets of free variables and free names of X, respectively.

We rely on a sort system for terms and extended processes [1, Section 2]. We
always assume that terms and extended processes are well-sorted and that substi-
tutions and context applications preserve sorts.

Given a signature Σ, we equip it with an equational theory (that is, with an
equivalence relation on terms with certain closure properties). We write simply
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U = V to mean the terms U and V are related by the equational theory associated
with Σ.

Structural equivalences, written A ≡ B, relate extended processes that are equal
by any capture-avoiding rearrangements of parallel compositions, restrictions, and
active substitutions, and by equational rewriting of any terms in processes.

Reductions, written A → B, represent steps of computation (in particular,
internal message transmissions and branching on conditionals). Reductions are
closed by structural equivalence, hence by equational rewriting on terms.

Observational equivalences, written A ≈ B, relate extended processes that can-
not be distinguished by any evaluation context in the applied pi calculus, with
any combination of messaging and term comparisons. (We let ≈ be the largest
weak bisimulation on extended processes for reductions that preserves all potential
observation of input or output on free names and that is closed by application of
evaluation contexts [1].) Strong equivalence, written A ∼ B, is a finer, auxiliary
equivalence similarly defined by considering strong bisimulation and immediate ob-
servations. The applied pi calculus has a useful, general theory of observational
equivalence, parameterized by Σ and its equational theory [1].

B Additional Proofs

We gather here proofs and additional lemmas that deal with internal choices, for-
mula implementations, and logical equivalence in applied pi. These developments
are not specific to the protocols considered in the paper.

B.1 Properties of Internal Choice

We begin by elaborating the co-inductive definition of internal choice given in the
body of the paper. Let a binary relation S between processes and sets of processes
be a choice-relation if and only if P S X implies (1) if Q ∈ X then P →∗∼ Q;
(2) if P → P ′, then either (a) P ′ ∼ Q for some Q ∈ X or (b) P ′ S X ′ for some
X ′ ⊆ X; and (3) P does not communicate on free channel names.

Let S⊕ be the union of all choice-relations. In effect, Section 4.1 takes
⊕

X
to be the greatest choice-relation. By standard, simple arguments, the union of
all choice-relations is in fact the greatest choice-relation. Hence, we have that
P ∈

⊕
X if and only if P S⊕ X.

Next, we present some useful lemmas concerning internal choice.

Lemma 17 If P ∼ Q and Q ∈
⊕

X then P ∈
⊕

X.

Proof This follows easily by definition of bisimilarity, ∼, and internal choice.2

In our implementations, it is convenient to identify reduction steps that are
deterministic, such as term comparisons; we introduce the relation →d for these
reduction steps. For the next lemma, we only need to assume that → and →d

commute, that is, P →d Q and P → P ′ implies either P ′ = Q or the existence of
Q′ with P ′ →d Q′ and Q → Q′.
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Lemma 18 If P →d Q and Q ∈
⊕

X then P ∈
⊕

X.

Proof This follows easily by definition of P →d Q and internal choice. 2

Lemma 19 If Pi ∈
⊕

Xi for all i ∈ I then
⊕
{Pi | i ∈ I} ⊆

⊕ ⋃
{Xi | i ∈ I}.

Proof Assume Pi ∈
⊕

Xi for all i ∈ I.
Let P S X just if P ∈

⊕
{Pj | j ∈ J} and X =

⋃
{Xj | j ∈ J} for some J ⊆ I.

The lemma follows if the relation S ∪ S⊕ is a choice-relation, for then we have
that S ⊆ S⊕, and therefore that P S⊕

⋃
{Xi | i ∈ I} for all P ∈

⊕
{Pi | i ∈ I},

that is,
⊕
{Pi | i ∈ I} ⊆

⊕ ⋃
{Xi | i ∈ I}.

To see that S∪S⊕ is a choice-relation it suffices to consider any P ∈
⊕
{Pj | j ∈

J} and X =
⋃
{Xj | j ∈ J} for some J ⊆ I, and to establish the three conditions

in the definition of a choice-relation.

(1) Consider any Q ∈ X so that Q ∈ Xj for some j ∈ J . By assumption,
Pj ∈

⊕
Xj , and therefore Pj →∗∼ Q. Since P ∈

⊕
{Pj | j ∈ J}, we have

P →∗∼ Pj , and therefore, by bisimilarity, P →∗∼ Q.

(2) Suppose P → P ′. Since P ∈
⊕
{Pj | j ∈ J}, either (a) P ′ ∼ Pj for some j ∈ J

or (b) P ′ ∈
⊕
{Pj | j ∈ J ′} for some J ′ ⊆ J . In case (a), P ′ ∼ Pj ∈

⊕
Xj

so P ′ ∈
⊕

Xj by Lemma 17, and hence we have case (b), P ′ S⊕ Xj with
Xj ⊆ X. In case (b), we have case (b), P ′ S

⋃
{Xj | j ∈ J ′} ⊆ X since

J ′ ⊆ J ⊆ I.

(3) From P ∈
⊕
{Pj | j ∈ J} it follows that P does not communicate on free

channel names.

Hence, S ∪ S⊕ is a choice-relation, and the lemma follows. 2

B.2 Properties of Formula Implementation

We state some basic facts concerning the implementation of a predicate Φ, with
bound variables ỹ, as a process filter Φ 7→ ỹ in P . The following may be proved
by inductions on the definitions of the filters.

Lemma 20

(1) fv(filter Φ 7→ ỹ in P ) ⊆ (fv(Φ) ∪ fv(P )) \ {ỹ}.

(2) fn(filter Φ 7→ ỹ in P ) ⊆ fn(Φ) ∪ fn(P ).

(3) (filter Φ 7→ ỹ in Q)σ = filter Φσ 7→ ỹ in Qσ when ỹ do not occur in σ.

Next, the main property of formula implementation to be proved here is Lemma 1.

Restatement of Lemma 1 If filter Φ 7→ ỹ in P is defined and closed then:

filter Φ 7→ ỹ in P ∈
⊕
{P{ỹ = Ṽ } | fv(Ṽ ) = ∅ ∧ |= Φ{ỹ = Ṽ }}
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Proof The proof is by induction on the definition of filter Φ 7→ ỹ in P . Since
filter Φ 7→ ỹ in P is defined and closed, Lemma 20 implies we may assume that
fv(P ) ⊆ ỹ and that fv(Φ) = ỹ. We proceed by cases on the structure of Φ.

• In case Φ = (V = T ), we are to show Q ∈
⊕

X, where

Q = let ỹ = S̃{x = V } in if V = T then P

X =
⊕
{P{ỹ = Ṽ } | fv(Ṽ ) = ∅ ∧ (V = T ){ỹ = Ṽ }}

when fv(T ) = ỹ, fv(V ) = ∅, fv(P ) ⊆ ỹ, and V = T 7→ ỹ with inverse terms S̃.

We consider two cases: either there are Ṽ such that T{ỹ = Ṽ } = V , or
not. In the first case, by clause (2) of the definition of V = T 7→ ỹ, we have
Ṽ = S̃{x = V }, and therefore the vector Ṽ is unique. We have:

Q = if V = T{ỹ = S̃{x = V }} then P{ỹ = S̃{x = V }}
= if V = T{ỹ = Ṽ } then P{ỹ = Ṽ }
→d P{ỹ = Ṽ }

X = {P{ỹ = Ṽ } | fv(Ṽ ) = ∅ ∧ T{ỹ = Ṽ } = V }
= {P{ỹ = Ṽ }}

In the second case, when there are no Ṽ such that T{ỹ = Ṽ } = V , we have:

Q →∗
d if V = T{ỹ = S̃{x = V }} then P{ỹ = S̃{x = V }} ∼ 0

X = ∅

Using Lemmas 17 and 18, we can establish Q ∈
⊕

X in both cases.

• In case Φ = (x ∈ V ) and ỹ = {x}, we are to show Q ∈
⊕

X where

Q = filter x ∈ V 7→ x in P

X = {P{x = U} | (V = U1 . . . Ui U V ′) for some U1, . . . , Ui, U , V ′, i ≥ 0}

when fv(V ) = ∅ and fv(P ) ⊆ {x}. Now, by appeal to Lemma 6, the normal
form of the closed term V must take the form V = V1 . . . Vm W where m ≥ 0
and V1, . . . , Vm, W are closed, normal terms, and W 6= W1 W2 for any W1,
W2. We calculate as follows, where R = s(z).filter z =h t 7→ h, t in (c〈h〉 | s〈t〉).

Q = filter x ∈ V1 · · ·Vm W 7→ x in P

= νs, c.(c(x).P | s〈V1 · · ·Vm W 〉 | !R)
→2n

d νs, c.(c(x).P | c〈V1〉 | . . . | c〈Vm〉 | s〈W 〉 | !R)
→2

d∼ νc.(c(x).P | c〈V1〉 | . . . | c〈Vm〉)
∈

⊕
{P{x = Vi} | i ∈ 1..m}

=
⊕

X

By Lemmas 17 and 18, Q ∈
⊕

X follows.
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• In case Φ = p(W̃ ), we are to show Q ∈
⊕ ⋃

{Xi | i ∈ 1..m} where

Q = νs.(s〈ε〉 |
∏

i∈1..m s( ).filter Φi{x̃ = W̃} 7→ ỹ, z̃i in P )

Xi = {P{ỹ = Ṽ } | fv(Ũ , Ṽ ) = ∅ ∧ |= Φi{x̃ = W̃}{z̃i = Ũ}{ỹ = Ṽ }}

when fv(W̃ ) = ỹ, fv(P ) ⊆ ỹ, and p(x̃) :- Φ1 ∨ · · · ∨Φm and, for all i ∈ 1..m,
fv(Φi) = x̃ ] z̃i and (fv(W̃ ) ∪ fv(P )) ∩ z̃i = ∅. By examining the m possible
transitions of Q, we clearly have Q ∈

⊕
{Pi | i ∈ 1..m}, where:

Pi = filter Φi{x̃ = W̃} 7→ ỹ, z̃i in P

By induction hypothesis, for each i ∈ 1..m, Pi ∈
⊕

Xi. Hence,
⊕
{Pi | i ∈

1..m} ⊆
⊕ ⋃

{Xi | i ∈ 1..m}, by Lemma 19, and hence Q ∈
⊕ ⋃

{Xi | i ∈
1..m}.

• In case Φ = Φ1,Φ2, we are to show Q ∈
⊕

X where

Q = filter Φ1 7→ ỹ1 in (filter Φ2 7→ ỹ2 in P )

X = {P{ỹ1, ỹ2 = Ṽ1, Ṽ2} |
|= Φ1{ỹ1 = Ṽ1} ∧ |= Φ2{ỹ1, ỹ2 = Ṽ1, Ṽ2} ∧ fv(Ṽ1, Ṽ2) = ∅}

when fv(P ) ⊆ ỹ, fv(Φ1,Φ2) = ỹ, ỹ1 = ỹ∩ fv(Φ1), and ỹ2 = ỹ \ fv(Φ1), so that
ỹ = ỹ1 ] ỹ2. By induction hypothesis, Q ∈

⊕
{PṼ1

| Ṽ1 ∈ I} where:

PṼ1
= filter Φ2{ỹ1 = Ṽ1} 7→ ỹ2 in (P{ỹ1 = Ṽ1})

I = {Ṽ1 | fv(Ṽ1) = ∅ ∧ |= Φ1{ỹ1 = Ṽ1}}

By induction hypothesis, PṼ1
∈

⊕
XṼ1

, for each Ṽ1 ∈ I, where:

XṼ1
= {P{ỹ1, ỹ2 = Ṽ1, Ṽ2} | Ṽ2 ∈ JṼ1

}

JṼ1
= {Ṽ2 | fv(Ṽ2) = ∅ ∧ |= Φ2{ỹ1, ỹ2 = Ṽ1, Ṽ2}}

Hence, with Lemma 19, we have:

Q ∈
⊕
{PṼ1

| Ṽ1 ∈ I}

⊆
⊕ ⋃

{XṼ1
| Ṽ1 ∈ I}

=
⊕
{P{ỹ1, ỹ2 = Ṽ1, Ṽ2} | Ṽ1 ∈ I, Ṽ2 ∈ JṼ1

}
=

⊕
X

This completes all the cases of the induction. 2

50



B.3 Properties of Logical Equivalence

We extend our definition of occurrence from events to sets of events as follows: we
write A .L when L = {a〈V 〉 | A .a〈V 〉}. We can formulate robust safety (and
other safety properties) using these observable sets: A is robustly safe if and only
if, whenever E[A] →∗ . L, E[-] does not bind the channels of L, and end〈V 〉 ∈ L,
then also begin〈V 〉 ∈ L.

For a given set of processes X, the processes in
⊕

X are not necessarily obser-
vationally equivalent (as they may commit to different subsets of X). Still, we can
substitute Q for P with P,Q ∈

⊕
X without changing global set observations:

Lemma 21 Internal choice implementations do not affect observations A →∗ . L.

Proof In this proof, we say that two processes are related when they differ only
on their implementation of internal choices: A and B are related when A = F [S̃],
B = F [S̃′] for some m-ary context F [-] and there exists Xi with Si, S

′
i ∈

⊕
Xi for

each i ∈ 1..m. (More general forms with nested internal choices are handled by
transitivity.)

For any reduction step A → A′, one of the following holds:

(1) A ≡ E[S] for some X and S ∈
⊕

X, and

(a) A′ ∼ E[P ] for some P ∈ X (completion step); or

(b) A′ ≡ E[S′] for some Y ⊆ X and S′ ∈
⊕

Y (internal step).

(2) A → A′ does not depend on internal choice implementations (external step).

Internal and completion steps for different internal choices commute with one an-
other, and internal steps commute with any external steps. Besides, condition (3)
on internal choices implies that internal choices (and thus internal steps) never
directly affect observations A .L.

Assume A and B are related. For any given L, we show that, if there exists A′

such that A →∗ A′ . L, then there exists B′ such that B →∗ B′ . L, by induction
on the number of completion steps in A →∗ A′.

Base case (no completion step): by reordering reductions A →∗ A′, we obtain
some A1 with external steps A →∗ A1 and internal steps A1 →∗ A′. There
exist external steps B →∗ B1 in direct correspondence with A →∗ A1 for
some B1 related to A1. Finally, A′ . L implies A1 . L, and we can conclude
using B →∗ B1 . L.

Inductive case: by reordering reductions A →∗ A′, we obtain

A →∗≡ EA[SA] →∗→ EA[P ′] →∗≡ A′

where EA[-] is an evaluation context, X is a set of processes, and SA ∈
⊕

X,
P ∈ X, and P ′ ∼ P are processes with external steps A →∗ EA[SA], internal
steps and a first completion step SA →∗→ P ′, and any steps EA[P ′] →∗≡ A′.
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By definition of external step, we also have external steps B →∗ EB [SB ] such
that EA[SA] and EB [SB ] are related, for some SB ∈

⊕
X and evaluation

context EB [-].

By condition (1) on internal choice SB , there exist P ′′ ∼ P with reductions
SB →∗ P ′′, and thus EB [SB ] →∗ EB [P ′′] with EB [P ′′] ∼ EB [P ′]. The
processes EB [P ′] and EA[P ′] are related, hence, by induction hypothesis,
EA[P ′] →∗ A′ . L implies EB [P ′] →∗ . L and finally B →∗ . L. 2

Next, we show that one can replace a formula by another (implementable)
equivalent one without affecting set observations. This is useful to decompose
message processing, as detailed in Section 4.4.

Lemma 22 If A and B are logically equivalent and A →∗ . L, then also B →∗ . L.

Proof This is Lemma 21 applied to the internal choices obtained by Lemma 1.2

Given the definition of robust safety, Lemma 3 now follows as a corollary.

Restatement of Lemma 3 Logical equivalence preserves robust safety.

C Namespaces

Element Namespaces:

Begin this paper

Body http://schemas.xmlsoap.org/soap/envelope/
CanonicalizationMethod http://www.w3.org/2000/09/xmldsig#
Created http://schemas.xmlsoap.org/ws/2002/07/utility
DigestMethod http://www.w3.org/2000/09/xmldsig#
DigestValue http://www.w3.org/2000/09/xmldsig#
End this paper

Envelope http://schemas.xmlsoap.org/soap/envelope/
Expires http://schemas.xmlsoap.org/ws/2002/07/utility
Header http://schemas.xmlsoap.org/soap/envelope/
KeyInfo http://www.w3.org/2000/09/xmldsig#
Nonce http://schemas.xmlsoap.org/ws/2002/07/secext
Password http://schemas.xmlsoap.org/ws/2002/07/secext
Reference http://www.w3.org/2000/09/xmldsig#
SecurityTokenReference http://schemas.xmlsoap.org/ws/2002/07/secext
SignatureMethod http://www.w3.org/2000/09/xmldsig#
SignatureValue http://www.w3.org/2000/09/xmldsig#
SignedInfo http://www.w3.org/2000/09/xmldsig#
Timestamp http://schemas.xmlsoap.org/ws/2002/07/utility
Transforms http://www.w3.org/2000/09/xmldsig#
Transform http://www.w3.org/2000/09/xmldsig#
URI http://www.w3.org/2000/09/xmldsig#
UsernameToken http://schemas.xmlsoap.org/ws/2002/07/secext
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Username http://schemas.xmlsoap.org/ws/2002/07/secext
action http://schemas.xmlsoap.org/rp
firewall this paper

id http://schemas.xmlsoap.org/rp
path http://schemas.xmlsoap.org/rp
to http://schemas.xmlsoap.org/rp

Attribute Namespaces:

Algorithm http://www.w3.org/2000/09/xmldsig#
Id http://schemas.xmlsoap.org/ws/2002/07/utility
mustUnderstand http://schemas.xmlsoap.org/soap/envelope/
Type http://schemas.xmlsoap.org/ws/2002/07/secext

D Sample Soap Messages

We include SOAP messages captured during actual runs of the protocols described
in Sections 3.2, 3.3, and 3.4 using WSE 1.0 [29]. The first message shows the
request and response messages for the unauthenticated web service; the second
message illustrates username tokens with password digests; while the others illus-
trate signatures. We have indented the messages for clarity.

D.1 Unauthenticated Web Sevice

Request Message

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<wsrp:path soap:actor="http://schemas.xmlsoap.org/soap/actor/next"

soap:mustUnderstand="1"

xmlns:wsrp="http://schemas.xmlsoap.org/rp">

<wsrp:action>http://msrc-688197/webservices/GetOrder</wsrp:action>

<wsrp:to>http://localhost/MSPetshop/WebServices.asmx</wsrp:to>

<wsrp:id>uuid:c2f12dbe-62dd-4bb5-ae39-6e94e41b27d6</wsrp:id>

</wsrp:path>

<wsu:Timestamp xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">

<wsu:Created>2003-02-13T17:44:05Z</wsu:Created>

<wsu:Expires>2003-02-13T17:49:05Z</wsu:Expires>

</wsu:Timestamp>

</soap:Header>

<soap:Body>

<GetOrder xmlns="http://msrc-688197/webservices/">

<orderId>1</orderId>

</GetOrder>
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</soap:Body>

</soap:Envelope>

Response Message

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<wsu:Timestamp xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">

<wsu:Created>2003-02-13T17:44:32Z</wsu:Created>

<wsu:Expires>2003-02-13T17:49:32Z</wsu:Expires>

</wsu:Timestamp>

</soap:Header>

<soap:Body>

<GetOrderResponse xmlns="http://msrc-688197/webservices/">

<GetOrderResult>

<orderId>1</orderId>

<date>2003-02-13T15:08:12.2330000-00:00</date>

<userId>DotNet</userId>

<cardType>Visa</cardType>

<cardNumber>9999 9999 9999 9999</cardNumber>

<cardExpiration>01/2002</cardExpiration>

<billingAddress>

<firstName>ABC</firstName>

<lastName>XYX</lastName>

<address1>901 San Antonio Road</address1>

<address2>MS UCUP02-206</address2>

<city>Palo Alto</city>

<state>California</state>

<zip>94303</zip>

<country>USA</country>

</billingAddress>

<shippingAddress>

<firstName>ABC</firstName>

<lastName>XYX</lastName>

<address1>901 San Antonio Road</address1>

<address2>MS UCUP02-206</address2>

<city>Palo Alto</city>

<state>California</state>

<zip>94303</zip>

<country>USA</country>

</shippingAddress>

<lineItems>

<item>

<id>EST-2 </id>

<line>1</line>

<quantity>1</quantity>

<price>16.5</price>

</item>
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</lineItems>

</GetOrderResult>

</GetOrderResponse>

</soap:Body>

</soap:Envelope>

D.2 Password Digest

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<wsse:Security

soap:mustUnderstand="1"

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext">

<wsse:UsernameToken

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

wsu:Id="SecurityToken-8d8ad486-4db2-41b3-a78b-35985b1e83bf">

<wsse:Username>DotNet</wsse:Username>

<wsse:Password

Type="wsse:PasswordDigest"

>sp7MxkRDIW7vda0/5abw40wzByM=</wsse:Password>

<wsse:Nonce>5yRhP7n9f53yvis5B9m4cA==</wsse:Nonce>

<wsu:Created>2003-04-16T15:40:13Z</wsu:Created>

</wsse:UsernameToken>

</wsse:Security>

</soap:Header>

<soap:Body>

<GetOrder xmlns="http://tempuri.org/">

<orderId>1</orderId>

</GetOrder>

</soap:Body>

</soap:Envelope>

D.3 Password-based Signature

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<wsse:Security

soap:mustUnderstand="1"

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext">

<wsse:UsernameToken

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

wsu:Id="SecurityToken-5942b215-fe80-4e6c-9547-c3ee5023974a">

<wsse:Username>DotNet</wsse:Username>

<wsse:Password

Type="wsse:PasswordDigest"
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>1OhGjpImnOkwH2bP5wgPsO535Cg=</wsse:Password>

<wsse:Nonce>/MN387Y8ZQEhbkUeERqmEA==</wsse:Nonce>

<wsu:Created>2003-04-16T15:40:46Z</wsu:Created>

</wsse:UsernameToken>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

<SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1" />

<Reference URI="#Id-40db2c1e-781c-4dba-b4ba-ab933989c275">

<Transforms>

<Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</Transforms>

<DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>WHaqWVi124JJzfDOI0WJ0FLodcI=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>fzVrKRrsLTfSyLdW4a3TP5w8SiE=</SignatureValue>

<KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference

URI="#SecurityToken-5942b215-fe80-4e6c-9547-c3ee5023974a" />

</wsse:SecurityTokenReference>

</KeyInfo>

</Signature>

</wsse:Security>

</soap:Header>

<soap:Body wsu:Id="Id-40db2c1e-781c-4dba-b4ba-ab933989c275"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">

<GetOrder xmlns="http://tempuri.org/">

<orderId>1</orderId>

</GetOrder>

</soap:Body>

</soap:Envelope>

D.4 X.509 Signature

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<wsrp:path soap:actor="http://schemas.xmlsoap.org/soap/actor/next"

soap:mustUnderstand="1"

xmlns:wsrp="http://schemas.xmlsoap.org/rp">

<wsrp:action wsu:Id="Id-0b823d56-6677-49a5-b414-c7b3e60599f8"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

>http://msrc-688197/webservices/GetOrder</wsrp:action>
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<wsrp:to wsu:Id="Id-19f43ec9-fc7d-4c70-82df-3f008731fa44"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

>http://localhost/MSPetshop/WebServices.asmx</wsrp:to>

<wsrp:id wsu:Id="Id-33af1237-0a2b-467f-b30c-9ed92d5ec678"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

>uuid:4e459eec-841c-4c86-9f21-67228c4165b2</wsrp:id>

</wsrp:path>

<wsse:Security soap:mustUnderstand="1"

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext">

<wsse:BinarySecurityToken

ValueType="wsse:X509v3"

EncodingType="wsse:Base64Binary"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

wsu:Id="SecurityToken-323b80ff-5a7e-4df4-ab71-918ade86decd"

>MIIHTjCCBjagAwIBAgIKbCnd3gAAAAiNNjANBg...</wsse:BinarySecurityToken>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

<SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<Reference URI="#Id-bcf3bbe8-fd96-4483-97d3-2dfb220bd8b1">

<Transforms>

<Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>vwMT/J77QuAehktMqF+FiOuuyvc=</DigestValue>

</Reference>

<Reference URI="#Id-0b823d56-6677-49a5-b414-c7b3e60599f8">

<Transforms>

<Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>vl9nyklaH25kKH4cRNYsrb0Ygg4=</DigestValue>

</Reference>

<Reference URI="#Id-19f43ec9-fc7d-4c70-82df-3f008731fa44">

<Transforms>

<Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>JI+t02Q3FPDzWaizhiFV1EDU9H8=</DigestValue>

</Reference>

<Reference URI="#Id-33af1237-0a2b-467f-b30c-9ed92d5ec678">

<Transforms>

<Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>bzImlmlAjr55yh3YceedFbwY8S4=</DigestValue>

</Reference>

</SignedInfo>
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<SignatureValue>tW1VsomxSeaVCLQ5xCwjRLxA73...=</SignatureValue>

<KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference

URI="#SecurityToken-323b80ff-5a7e-4df4-ab71-918ade86decd" />

</wsse:SecurityTokenReference>

</KeyInfo>

</Signature>

</wsse:Security>

</soap:Header>

<soap:Body wsu:Id="Id-bcf3bbe8-fd96-4483-97d3-2dfb220bd8b1"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">

<GetOrder xmlns="http://msrc-688197/webservices/">

<orderId>1</orderId>

</GetOrder>

</soap:Body>

</soap:Envelope>

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communi-
cation. In 28th ACM Symposium on Principles of Programming Languages
(POPL’01), pages 104–115, 2001.

[2] M. Abadi, C. Fournet, and G. Gonthier. Authentication primitives and their
compilation. In 27th ACM Symposium on Principles of Programming Lan-
guages (POPL’00), pages 302–315, 2000.

[3] B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker, C. Kaler,
J. Klein, B. LaMacchia, P. Leach, J. Manferdelli, H. Maruyama, A. Nadalin,
N. Nagaratnam, H. Prafullchandra, J. Shewchuk, and D. Simon. Web
services security (WS-Security), version 1.0. At http://msdn.microsoft.
com/library/en-us/dnglobspec/html/ws-security.asp. Draft submitted
to OASIS Web Services Security TC, April 2002.

[4] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univer-
sity Press, 1998.

[5] K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics for web services
authentication. In 31st ACM Symposium on Principles of Programming Lan-
guages (POPL’04), pages 198–209, 2004.

[6] B. Blanchet. From secrecy to authenticity in security protocols. In Proceedings
of the 9th International Static Analysis Symposium (SAS’02), volume 2477 of
LNCS, pages 342–359. Springer, 2002.

[7] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen,
S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1, 2000.
W3C Note, at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

58

http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-security.asp
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-security.asp
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/


[8] J. Boyer. Canonical XML, 2001. W3C Recommendation, at http://www.w3.
org/TR/2001/REC-xml-c14n-20010315/.

[9] J. Boyer, D. E. Eastlake, and J. Reagle. Exclusive XML Canonical-
ization, 2002. W3C Recommendation, at http://www.w3.org/TR/2002/
REC-xml-exc-c14n-20020718/.

[10] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proceed-
ings of the Royal Society of London A, 426:233–271, 1989.

[11] E. Cohen. TAPS: A first-order verifier for cryptographic protocols. In 13th
IEEE Computer Security Foundations Workshop, pages 144–158. IEEE Com-
puter Society Press, 2000.

[12] J. Cowan and R. Tobin. XML Information Set, 2001. W3C Recommendation,
at http://www.w3.org/TR/2001/REC-xml-infoset-20011024/.

[13] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati.
Securing SOAP e-services. International Journal of Information Security,
1(2):100–115, 2002.

[14] E. Damiani, S. De Capitani di Vimercati, and P. Samarati. Towards securing
XML web services. In ACM Workshop on XML Security 2002, pages 90–96,
2003.

[15] G. Della-Libera, P. Hallam-Baker, M. Hondo, C. K. (Editor), H. Maruyama,
A. Nadalin, N. Nagaratnam, H. Prafullchandra, J. Shewchuk, K. Tamura,
and H. Wilson. Web services security addendum version 1.0. At
http://msdn.microsoft.com/library/en-us/dnglobspec/html/
ws-security-addendum.asp, August 2002.

[16] T. Dierks and C. Allen. The TLS protocol: Version 1.0, 1999. RFC 2246.

[17] D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans-
actions on Information Theory, IT–29(2):198–208, 1983.

[18] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1), 2001. RFC
3174.

[19] D. Eastlake, J. Reagle, D. Solo, M. Bartel, J. Boyer, B. Fox, B. LaMacchia,
and E. Simon. XML-Signature Syntax and Processing, 2002. W3C Recommen-
dation, at http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

[20] C. Fournet and M. Abadi. Hiding names: Private authentication in the applied
pi calculus. In M. Okada, B. Pierce, A. Scedrov, H. Tokuda, and A. Yonezawa,
editors, Software Security – Theories and Systems. Mext-NSF-JSPS Interna-
tional Symposium, Tokyo, Nov. 2002 (ISSS’02), volume 2609 of LNCS, pages
317–338. Springer, 2003.

[21] A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols.
Journal of Computer Security, 11(4):451–521, 2003.

59

http://www.w3.org/TR/2001/REC-xml-c14n-20010315/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-security-addendum.asp
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-security-addendum.asp
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/


[22] A. D. Gordon and R. Pucella. Validating a web service security abstraction
by typing. In ACM Workshop on XML Security 2002, pages 18–29, 2003.

[23] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) #1:
RSA Cryptography Specifications Version 2.1, 2003. RFC 3447.

[24] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic
protocol analysis. Journal of Cryptology, 7(2):79–130, 1994.

[25] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message
authentication, 1997. RFC 2104.

[26] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol us-
ing CSP and FDR. In Tools and Algorithms for the Construction and Analysis
of Systems, volume 1055 of LNCS, pages 147–166. Springer, 1996.

[27] G. Lowe. A hierarchy of authentication specifications. In Proceedings of 10th
IEEE Computer Security Foundations Workshop, 1997, pages 31–44. IEEE
Computer Society Press, 1997.

[28] Microsoft Corporation. Microsoft .NET Pet Shop, 2002. At http://www.
gotdotnet.com/team/compare/petshop.aspx.

[29] Microsoft Corporation. Web Services Enhancements for Microsoft .NET,
Dec. 2002. At http://msdn.microsoft.com/webservices/building/wse/
default.aspx.

[30] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

[31] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo. Web Services Secu-
rity: SOAP Message Security, Aug. 2003. At http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wss.

[32] R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, 1978.

[33] H. F. Nielsen and S. Thatte. Web services routing protocol (WS-
Routing). At http://msdn.microsoft.com/library/en-us/dnglobspec/
html/ws-routing.asp, October 2001.

[34] L. Paulson. The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security, 6:85–128, 1998.

[35] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Transactions in Computer Systems, 2(4):277–288, November
1984.

[36] M. Satyanarayanan. Integrating security in a large distributed system. ACM
Trans. Comput. Syst., 7(3):247–280, 1989.

60

http://www.gotdotnet.com/team/compare/petshop.aspx
http://www.gotdotnet.com/team/compare/petshop.aspx
http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp
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