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Abstract

In this paper, we provide new complexity results for alguoris that learn discrete-variable Bayesian
networks from data. Our results apply whenever the learaliggrithm uses a scoring criterion that
favors the simplest structure for which the model is ableefresent the generative distribution ex-
actly. Our results therefore hold whenever the learningritlym uses a consistent scoring criterion
and is applied to a sufficiently large dataset. We show tleattifi/ing high-scoring structures is NP-
hard, even when any combination of one or more of the follgwiald: the generative distribution
is perfect with respect to some DAG containing hidden vaeissowe are given an independence
oracle; we are given an inference oracle; we are given amneton oracle; we restrict potential
solutions to structures in which each node has at kpstrents, for alk > 3.

Our proof relies on a new technical result that we estabhisthé appendices. In particular,
we provide a method for constructing the local distribusiam a Bayesian network such that the
resulting joint distribution is provably perfect with resg to the structure of the network.
Keywords: learning Bayesian networks, search complexity, largeptauiata, NP-Hard

1. Introduction

Researchers in the machine-learning community have generally acceptedthwat restrictive
assumptions, learning Bayesian networks from data is NP-hard, asdaquuently a large amount of
work in this community has been dedicated to heuristic-search techniquestifyid@od models.
A number of discouraging complexity results have emerged over the lagefews that indicate that
this belief is well founded. Chickering (1996) shows that for a genamdl widely used class of
Bayesian scoring criteria, identifying the highest-scoring structure &omll-sample data is hard,
even when each node has at most two parents. Dasgupta (1999) thiabvitss hard to find the
polytree with highest maximum-likelihood score. Although we can identify thedsghcoring
tree structure using a polynomial number of calls to the scoring criterionk N&891) shows that
identifying the bespath structure—that is, a tree in which each node has degree at most two—
is hard. Bouckaert (1995) shows that for domains containing only pivarables, finding the
parameter-minimal structure that is consistent with an independence orhalejsve discuss this
result in more detail below. Finally, Srebro (2001) shows that it is harchtbMarkov networks
with bounded tree width that maximize the maximum-likelihood score.

In this paper, we are interested in the large-sample version of the leamuiblgm considered
by Chickering (1996). The approach used by Chickering (1996)doae a known NP-complete
problem to the problem of learning is to construct a complicated prior netihatkdefines the
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Bayesian score, and then create a dataset consisting of a single. resithdugh the result is
discouraging, the proof technique leaves open the hope that, in scewdigoe the network scores
are more “well behaved”, learning is much easier.

As the number of records in the observed data grows large, most scaterga will agree on the
same partial ranking of model structures; in particular, @mysistenscoring criterion will—in the
limit of large data—favor a structure that allows the model to represent therggve distribution
over a structure that does not, and when comparing two structures taalbmw the model to
represent the generative distribution, will favor the structure thattesisufewer model parameters.
Almost all scoring criteria used in practice are consistent, including (1Baygsian criterion that
does not rule out model structures apriori, (2) the minimum-descriptiortHemgerion, and (3) the
Bayesian-information criterion.

In this paper, we consider the scenario when a learning algorithm is usiogséstent scoring
criterion with a large dataset. We assume that the learning algorithm hasaticess to the gener-
ative distribution itself; the resulting learning problem is to identify the simplesGiat allows
the resulting Bayesian network to represent the generative distributimlexThere are a number
of algorithms that have been developed for this large-sample learning problee SGS algorithm
(Spirtes, Glymour and Scheines, 2000), the GES algorithm (Meek, I&8ickering, 2002), and
the KES algorithm (Nielsen, Kika and Pia, 2003) all identify the optimal DAG if there exists
a solution in which all independence and dependence relationships impligdtostructure hold
in the generative distribution (that is, the generative distributiddA& perfectwith respect to the
observable variables). Unfortunately, none of these algorithms runlyngmial time in the worst
case.

With some restrictive assumptions, however, we can accomplish large-saping effi-
ciently. If (1) the generative distribution is DAG perfect with respect todhservable variables
and (2) we know that there exists a solution in which each node has atkpasénts (for some
constank), then we can apply the SGS algorithm to identify the best network structa@aty-
nomial number of independence tests. In particular, because we knoaltiek, we can limit the
worst-case number of independence tests used by the algorithm. Alteinafiyl) the generative
distribution is DAG perfect with respect someDAG that might contain vertices corresponding to
hidden variables, and (2) we are given a total ordering over the Veasidghnat is consistent with the
best structure, then we can find the best DAG using a polynomial numleailefto the scoring
criterion by applying a version of the GES algorithm that greedily adds amddéletes the parents
of each node.

Unfortunately, the assumptions needed for these special-case effigietivns are not likely to
hold in most real-world scenarios. In this paper, we show that in genevilheut the assumption
that the generative distribution is DAG perfect with respect to the oblErvand without the
assumption that we are given a total ordering—Ilarge-sample learning laNP-\We demonstrate
that learning is NP-hard even when (1) the generative distribution isqiesith respect to a DAG
(which contains hidden variables), (2) we are given an independeacke, (3) we are given given
an inference oracle, and/or (4) we are given an information oraclesho that these results also
apply to the problem of identifying high-scoring structures in which eacleiias at modt parents,
for all k > 3.

A secondary contribution of this paper is a general result about Bayestworks: in the
appendices of this paper, we identify two properties of the local distribuitica8ayesian network
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that are sufficient to guarantee that all independence and depenf@detsimplied by the structure
also hold in the joint distribution. Our NP-hard proof relies on this result.

As an extension of our main result, we consider the case in which we @& givindependence
oracle, and we show in Theorem 15 that the resulting learning problemnem®&-hard. This
theorem extends the independence-oracle result of BouckaeB)({88 number of ways. Perhaps
most important, we place no restriction on the number of states for the (djscagi@bles in the
domain, which proves the conjecture in Bouckaert (1995) that learnithgaw independence oracle
in non-binary domains is NP-hard. Another extension we make has to do sgtimgptions about
the generative distribution. In the elegant reduction proof of Boutk&@95), the constructed inde-
pendence oracle is consistent with a particular generative distributiois thattperfect with respect
to any DAG. Although this distribution has properties that yield a much simplerctagh than our
own, the results of this paper apply under the common assumption in the méedinig literature
that the generative distribution is, in fact, perfect with respect to some. BAGhermore, the DAG
we use in the reduction, which contains hidden variables, has a spaeeddacy structure: each
node has at most two parents. Finally, our result extends the Bou¢k@8g) oracle-learning result
to scenarios where we want to identify sparse (i.e., parent-count limitedglratrdctures that are
consistent with an oracle.

2. Background

In this section, we provide background material relevant to the rest opaper. We denote a
variable by an upper case token (eA,B;,Y) and a state or value of that variable by the same
token in lower case (e.gg, by, y). We denote sets with bold-face capitalized tokens (& @) and
corresponding sets of values by bold-face lower case tokensdghy. Finally, we use calligraphic
tokens (e.g.8, G) to denote Bayesian networks and graphs.

In this paper, we concentrate on Bayesian networks for a set of lesigb= {Xi,...,Xn},
where eachX; € X has a finite number of states. Bayesian networfor a set of variablex
is a pair(g,eg) that defines a joint probability distribution ov&. G = (V,E) is an acyclic
directed graph—obAG for short—consisting of (1) nodes in one-to-one correspondence with
the variablesX, and (2) directed edgds that connect the nodeﬁ.g is a set of parameter values
that specify the conditional probability distributions that collectively defimgdimt distribution.

We assume that each conditional probability distribution is a full table. Thiarisach variable
there is a separate (unconstrained) multinomial distribution given everydfistinfiguration of the
parent values. For a variabie with r; statesy; — 1 parameters are both necessary and sufficient to
specify an arbitrary multinomial distribution ovif. Thus, assuming that there ajadistinct parent
configurations forX;, the conditional distribution foX; will contain (r — 1) - g, parameter values.
We also assume that the number of states for each variable is some coretaateth not depend
on the number of variables in the domain.

Learning a Bayesian network from data requires both identifying the neidettureG and
identifying the corresponding set of model parameter vaﬂl{gsziven a fixed structure, however,
it is straightforward to estimate the parameter values. As a result, resaaritte groblem of
learning Bayesian networks from data is focused on methods for idewti€yie or more “good”
DAG structures from data.

All independence constraints that necessarily hold in the joint distributijresented by any
Bayesian network with structurg can be identified by the by théseparationcriterion of Pearl
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(1988) applied to tag. In particular, two nodeX andY are said to be d-separated in a DAG
given a set of node® if and only if there is ndD-active pathin G betweenX andY; anO-active
path is a simple path for which each nadalong the path either (1) has converging arrows and
or a descendant & is in O or (2) does not have converging arrows ahi not inO. By simple,
we mean that the path never passes through the same node twice. If tveoamed®t d-separated
given some set, we say that they d@reonnectedjiven that set. We us¥_ | gY|Z to denote the
assertion that DAG7 imposes the constraint—via d-separation—that for all vaiuesthe setZ,
Xis independent of givenZ = z. For a probability distributiorp(-), we useX_LL,Y|Z to denote
the assertion that for all valueof the sefZ, X is independent of givenZ = zin p.

We say that a distributiomp(X) is Markov with respect to a DAGG if X_LL gY]Z implies

XL pY|Z. Similarly, we say thap(X) is faithful with respect tag if XL pY|Z impliesX_LL gY|Z.
If pis both Markov and faithful with respect 1§, we say thap is perfectwith respect tog. Note
that if p is faithful with respect tag, thenX /L gY|Z implies thatthere existsomex, y andz such

thatp(x,y|z) # p(x|z) p(y|z); there may be other values for which equality holds. We saygéj
is DAG perfecif there exists a DAGG such thatp(X) is perfect with respect tg.

We say that a DAGG includesa distributionp(X)—and thatp(X) is included byG—if the
distribution can be represented by some Bayesian network with strugtuBzcause we are only
considering Bayesian networks that have complete tables as conditiomddutisns, G includes
p(X) if and only if p(X) is Markov with respect taz. We say that two DAGS; and G’ are
equivalentf the two sets of distributions included hy and G’ are the same. Due to the complete-
table assumption, an equivalent definition is tlijaand G’ are equivalent if they impose the same
independence constraints (via d-separation). For any GA®e say an edg¥ — Y iscoveredn G
if X andY have identical parents, with the exception thas not a parent of itself. The significance
of covered edges is evident from the following result:

Lemma 1 (Chickering, 1995) Let G be any DAG, and let;’ be the result of reversing the edge
X =Y inG. ThenG' is a DAG that is equivalent tg if and only if X— Y is covered ing.

As described above, when a Bayesian network has complete tables nbemof parameters
is completely determined by its DAG and the number of states for each variable oothain.
To simplify presentation, we assume that the number of states for the var@bdsmonding to
each vertex in a DAG is available implicitly, and therefore we can define the euaflparameters
associated with a DAG without reference to the corresponding state cdarparticular, we say
that a DAG supportsa number of parametefswhen all Bayesian networks with that structure
(defined over a particular domain) cont&iparameters. The following result follows immediately
from Lemma 1 for Bayesian networks with complete tables:

Lemma 2 (Chickering, 1995) If G and G’ are equivalent, then they support the same number of
parameters.

We say that DAGH includesDAG ¢ if every distribution included byg is also included by
H. As above, an alternative but equivalent definition—due to the assumgitioomplete-table
Bayesian networks—is tha includesg if every independence constraint implied B¢ is also
implied by G. Note that we are using “includes” to describe the relationship betweerGaddé a
particular distribution, as well as a relationship between two DAGs.
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Theorem 3 (Chickering, 2002) If A includes G, then there exists a sequence of single edge
additions and covered edge reversalgjrsuch that (1) after each addition and reversglremains

a DAG, (2) after each addition and reversat, includesg, and (3) after all additions and reversals,
G=H.

The “converse” of Theorem 3 will also prove useful.

Lemma 4 If F can be transformed intg; by a series of single edge additions and covered edge
reversals, such that after each addition and reversalemains a DAG, thei; includes .

Proof: Follows immediately from Lemma 1 and from the fact that the DAG that results &aualiing
a single edge t¢f necessarily include$ . O

3. Main Results

In this section, we provide the main results of this paper. We first definesttisidn problems that
we use to prove that learning is NP-hard. As discussed in Section 1, in thefilaige data, all
consistent scoring criteria rank network structures that include thegemedistribution over those
that do not, and among those structures that include the generative distrjlibe criteria rank
according to the number of parameters supported—with simpler structwedsing better scores.
Thus, a natural decision problem corresponding to large-sample lgasrtime following:

LEARN

INSTANCE: Set of variableX = {X,...,Xa}, probability distributionp(X), and constant param-
eter boundl.

QUESTION: Does there exist a DAG that includeand supports< d parameters?

It is easy to see that if there exists an efficient algorithm for learning the dpBaygesian-
network structure from large-sample data, we can use that algorithm ®ISBARN: simply learn
the best structure and evaluate the number of parameters it supportdioBing that LEARN
is NP-hard, we therefore immediately conclude that the optimization probleigenfifying the
optimal DAG is hard as well. We show that LEARN is NP-hard using a reduétn a restricted
version of the NP-complete problem FEEDBACK ARC SET. The gener&BACK ARC SET
problem is stated by Garey and Johnson (1979) as follows:

FEEDBACK ARC SET

INSTANCE: Directed graplg = (V,A), positive integek < |A|.

QUESTION: Is there a subsat C A with |A’| < k such tha#\’ contains at least one arc from every
directed cycle inG?

Gauvril (1977) shows that FEEDBACK ARC SET remains NP-complete faratiéd graphs in
which no vertex has a total in-degree and out-degree more than threeef&eo this restricted
version as DEGREE-BOUNDED FEEDBACK ARC SET, DBFASfor short.

The remainder of this section is organized as follows. In Section 3.1, vegibes polynomial-
time reduction from instances of DBFAS to instances of LEARN. In Sectionv@e2describe the
main result of the appendices upon which Section 3.3 relies; in Section 3f&owe that there is
a solution to an instance of DBFAS if and only if there is a solution to the instancEARN that
results from the reduction, and therefore we establish that LEARN isaé-tn Section 3.4, we
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extend our main result to the case when the learning algorithm has acces#ots\oracles, and
to the case when there is an upper bound on the number of parentsHanagein the solution to
LEARN.

For the remainder of this paper we assume—without loss of generality—thay ingtance of
DBFAS, no vertex has in-degree or out-degree of zero; if such a egits, none of its incident
edges can participate in a cycle, and we can remove that node from gtewgitaout changing the
solution.

3.1 A Reduction from DBFAS to LEARN

In this section, we show how to reduce an arbitrary instance of DBFAS iciorasponding instance

of LEARN. To help distinguish between elements in the instance of DBFAS Emdeats in the
instance of LEARN, we will subscript the corresponding symbols WitandL, respectively. In
particular, we us&, = (Vp,Ap) andkp to denote the graph and arc-set bound, respectively, from
the instance of DBFAS; from this instance, we create an instance of LEAdRMNIisting of a set of
variablesX| , a probability distributiorp_ (X ), and a parameter bour.

For eachV; € Vp in the instance of DBFAS, we create a corresponding nine-state disargte v
ableV; for X,.. For each ar¢/; — Vj € Ap in the instance of DBFAS, we create seven discrete
variables forX,: Aj,Bij,Cij, Dij, Eij, Fj,Gijj. VariablesAjj, Dij andG;jj have nine states, variables
Bij, Eij andF;j have two states, and varially has three states. There are no other variables in
X, for the instance of LEARN. The probability distributign (X, ) for the instance of LEARN is
specified using a Bayesian netwo(nk{L,e}[L). The model is defined over the variablesXa,
along with, for each ar®; — Vj € Ap from the instance of DBFAS, a single “hidden” binary vari-
ableH;;. Let H_ denote the set of all such hidden variables. The distribytidixX, ) is defined by
summing the distributiom, (H., X ), defined by(ﬂ{L,e}[L), over all of the variables il . The

structure#( | is defined as follows. For each afc— V; € Ap in the instance of DBFAS, the DAG
contains the edges shown in Figure 1. The number of states for eaclnnbedigure is specified
in parentheses below the node.

Figure 1: Edges ir#{_ corresponding to each ax— V; € Ap from the instance of DBFAS. The
number of states for each node is given in parentheses below the node.

For an example, Figure 2a shows an instance of DBFAS, and Figuredis she resulting
structure of#/ .
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(a) (b)

Figure 2: An example of the structug, that results from the reduction from a specific instance
of DBFAS: (a) an instance of DBFAS consisting of three nodgd/» andVs and (b) the
corresponding structur®’, .

We now specify the local probability distributionsﬁi}{L. Letrx denote the number of states

of X, let Pay denote the set of parents ¥fin #, and IetNNZ(pay ) denote the number of values
in pay that arenotequal to zero. Then for each noden |, the local probability distribution for
X is defined as follows:

i if x=0 andNNZ(pay) =0
(rxl_l) B if x# 0andNNZ(pay) =0
& if x=0 andNNZ(pay) = 1
P(X =x|Pay = pay) = L8 it x/0andNNZ(pay) ~ 1 (1)
8 if x=0andNNZ(pay) =2
(rX1_1> 321 if x# 0 andNNZ(pay) = 2

Because each node i has at most two parents, the above conditions define every local distribu-
tion in GHL.

Finally, we define the constami in the instance of LEARN. Every node ig has either
exactly one or exactly two parents because, in any instance of DBFA®iéhelegree of each node
is at most three and by assumption no node has an in-degree or an ceg-dégero. Letp denote
the number of nodes i, from the instance of DBFAS that have exactly two in-coming edges;
similarly, letop = |Vp| —tp be the number of nodes that have exactly one in-coming edge. Then
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we have
d. = 186Ap| + 18kp + 16(|Ap| — kp) + 160p + 32p. (2)

We now argue that the reduction is polynomial. It is easy to see that we eaifiysiine structure
H\ and the boundl_ in polynomial time; we now argue that we can specify all of the parameter
valuese}[l_ in polynomial time as well. Because each node/fn has at most two parents, each
corresponding conditional-probability table contains a constant numbgaraineters. Thus, as
long as each parameter is represented using number of bits that is polymorthial size of the
instance of DBFAS, the parameteﬁﬁ[l_ can be written down in polynomial time. Each node has

either two, three, or nine states, and thus it follows from the specificatiof= x|Pay = pay)
in Equation 1 that each parameter is a fraction whose denominator is a piowerthat can never
exceed 1024 (i.e(9— 1) x 128). Thus, when using a straight-forward binary representatictéor
parameter values, we can represent each such value exactly usingtaemg.e., log1024) bits.
Thus we conclude that the entire reduction is polynomial.

3.2 Specifying a Perfect Distribution

In our reduction from DBFAS to LEARN in the previous section, we spetififee probability
distribution p_(X\) using the Bayesian networ(kHL,G}[L). As we shall see in Section 3.3, our

proof that LEARN is NP-hard requires that the distributigr(H, X.) is perfect with respect to
the structure# . In this section, we discuss the result from the appendices that guesdhge the
local distributions defined by Equation 1 lead to an appropriate joint distrilnutio

Our results on perfectness are closely related to work on qualitative beliebrks (QBNS),
which are studied by (e.g.) Wellman (1990) and Druzdzel and Henrid®3(19n the appendices,
we consider two properties of local probability distributions: one is relatégetpositive-influence
property of QBNs, and the other is related to the positive-product-gyrmeoperty of QBNs. For
a rigorous definition of these QBN concepts, see Druzdzel and He{Ir'8®38). Roughly speaking,
a distribution has the positive-influence property if observing higheregadf a parent node cannot
decrease the probability of observing higher values of the target nbee all other parent values
are fixed. The positive-product-synergy property dictates howgdsim the values for pair of
parents affects the probability of the target node, and is closely relatee timriction property
multivariate total positivity of order twan the mathematics community (see Karlin and Rinott,
1980). The two QBN properties imposen-strictinequality constraints. For example, if the local
distribution for a nod& has the positive-influence property, then increasing the value of oite of
parents does not necessarily increase the probabiliYy itfis instead constrained to not decrease.
The positive-product-synergy property imposes an analogoustriohisequality constraint.

In the appendices, we define strict versions of the QBN propertiessipecial class of distribu-
tions. The main result of the appendices (Lemma 17) is that for any Baysstianrk in which each
local distribution has both of our properties, the joint distribution is neciggerfect with respect
to the network structure. The following result provides a prescriptiodaistructing distributions
for which both our properties hold:

Lemma5 Let (g,eg) be a Bayesian network, lek rdenote the number of states of node X, let

Pay denote the set of parents of node Xgnlet NNZ(pay ) denote the number of non-zero elements
in the sefpay, and letax be a constant satisfying< ax < 1. If all of the local distributions irﬁg
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are defined as

0()F(<I0<"‘x> ifx=0
X =x|Pay =pay) = 3
p( [Pay = pay) - (1_G)F((pax)) otherwise, ©
where
1Nh&ﬂpax)
F(pax)::Z——é ’

then the distribution defined iy, eg) is perfect with respect tg.

The local distributions defined by Equation 1 are simply specializations oétieou3 where
Ox = 1—16 for everyX. Thus, the following corollary follows immediately from Lemma 5:

Corollary 6 The distribution p(H., X ) resulting from the reduction is perfect with respectg.

3.3 Reduction Proofs

In this section, we prove LEARN is NP-hard by demonstrating that theredkiian to the instance
of DBFAS if and only if there is a solution to the instance of LEARN that resuttsifthe reduction.

In the results that follow, we often consider sub-graphs of solutions t&RNE that correspond
only to those nodes that are “relevant” to a particular arc in the instanc8BAB. Therefore, to
simplify the discussion, we ug#/,V; } edge componerd refer to a sub-graph defined by the nodes
{V,Aj,Bij,Cij,Dij, Eij,Fj,Gij,V;}. We useedge componemithout reference to a particuld
andV; when an explicit reference is not necessary. Figure 3, which is kegteetults that follow,
shows two configurations of the edges in an edge component.

OBRC w) (
o 2 ol X o

(a) (D)

Figure 3: Two configurations of the edges in an edge component.

We first prove a preliminary result that is used in both of the main proofsisfserction. Re-
call that#_ contains an additional “hidden” nodd; within each edge component. We will be
considering active paths i\ , but are only concerned about those in which the endpoints are in
X, and for which noH;; is in the conditioning set; these active paths correspond to dependencies
that exist within the (marginalized) distributign (X, ). To simplify presentation, we define)q -
restrictedactive path to denote such an active path. In this and later results, we midrdgrate
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that one DAGY 1 includes another DAGF , by showing that for any active path ih,, there exists
a corresponding (i.e., same endpoints and same conditioning set) active fath

Lemma 7 Let p (X.) be the distribution defined for the instance of LEARN in the reduction, and
let ¥ be any DAG defined ovet; such that each edge componentfircontains the edges in either
Figure 3a or in Figure 3b. TherF includes p(Xy).

Proof: Let # be the DAG definingp, (X, ) in the reduction. We prove thak includesp, (X, )
by demonstrating that for eve,_ -restricted active path ift(|_, there exists a corresponding active
path in 7. To do this, we construct an additional modé| that includes#| —and consequently
H' can represenp (X ) exactly—such thaX-restricted active paths if’ are easily mapped to
their corresponding active paths jn

We create?(’ from # as follows. For each and j, if the edge component iff is in the
configuration shown in Figure 3a, we add the edige— H;; to # and then reverse the (now
covered) edgédi; — F;. Similarly, if the edge component iff is in the configuration shown in
Figure 3b, we add the edd®; — Hij to # and then reverse the edély — Cj;. The resulting
components i’ are shown in Figure 4a and Figure 4b, respectively. Because wed&a by

(2 @@ DuOBNO S0
@‘ 9‘330

(a) (D)

Figure 4: Edges irt{’ corresponding to the edge components in Figure 3

edge additions and covered edge reversals, we know by Lemma #/thatludes# . It is now
easy to see that ar¥ -restricted active path ift{’ has a corresponding active path4n simply
replace any segmedt — Hi; — Y in the path by the corresponding ed§e— Y from #, and the
resulting path will be active ifF. O

Theorem 8 If there is a solutiorA[, to the given instance of DBFAS withp| < kp, then there is a
solution ¥ _ to the instance of LEARN with d. parameters.

Proof: We create a solution DAGF_ as follows. For every ar¥ — V; € Ap in the DBFAS
solution, ¥ contains the edges shown in Figure 3a. For the remainingvaresV; that are not

in Ay, % contains the edges shown in Figure 3B, contains no other edges. First we argue
that 7 is acyclic. Each{V;,V;} edge component itf_ is itself acyclic, and contains a directed
path fromV; to V; if and only if the corresponding ak¢ — V; € Ap from the instance of DBFAS
is not inAp; if the corresponding arc from the instance of DBFAS iAiy, # contains neither
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a directed path fronV; to V;, nor a directed path fror; to V; that is contained within the edge
component. Therefore, for any hypothetical cyclefin, there would be a corresponding cycle
in Gp that passed entirely through arcs notifj, which is impossible assumindy is a solution
to DBFAS. From Lemma 7, we know th#t, includesp,(X.). Now we derive the number of
parameters supported Igfy_. Within each edge component, the parentsAgr B;j, Dj;, Ejj and
Gij are the same regardless of whether or not the arcAs,irit is easy to verify that for each edge
component, the local distributions for these nodes contribute a total ofdr@éneters. For each arc
Vi — V; € Ap, the corresponding nod€s andF;j contribute a total of 16- 2 = 18 parameters; for
each ard/i — V; € Ap, the node€;; andF; contribute a total of 4-12= 16 parameters. For every
nodeV; € Vp in the instance of DBFAS that has exactly two parents, the correspoxda, in
the instance of LEARN will also have two parents. Similarly, for every ngde Vp with exactly
one parent, the correspondi¥ige X, has exactly one parent. By constructionof, every parent
node for any; € X, has two states (and is equgi for somej), and therefore because each node
Vi € X has nine states, the total number of parameters used in the local distribotitimssde nodes
is 160p + 32p. Thus, we conclude that the number of parameters is exactly

186/Ap| + 18/AL| + 16(|Ap| — |Ap|) + 160p + 321p.

BecauseAp| < kp, we conclude from Equation 2 that the number of parametefs iis less than
or equal tad_, and thusF, is a valid solution to the instance of LEARNI

Theorem 9 If there is a solutionf | to the instance of LEARN with d_ parameters, then there is
a solution to the given instance of DBFAS wjift},| < kp.

Proof: Given the solutionf |, we create a new solutioff " as follows. For every paif\V,V;)
corresponding to an edd— V;j € Ap in the instance of DBFAS, if there is no directed patl¥ip
from V4 to V;, then the corresponding edge componenf it contains the edges shown in Figure
3a. Otherwise, when there is at least one directed pafh ifromV; to Vj, the corresponding edge
component inf |’ contains the edges shown in Figure 3b. By constructfori,will contain a cycle
only if #, contains a cycle, and consequently we conclude #hatis a DAG. From Lemma 7, we
know that#, " includesp (X, ).

In the next two paragraphs, we argue that does not support more parameters than gbes
Consider the DAGF? that is identical tof ./, except that for all and j, the only parent o€Cij is
Bij and the only parent df; is E;j (see Figure 5). Becausg® is a subgraph off |/, any active

Figure 5: Edges within each edge componenf8f

path in 7° must have a corresponding active pathfip, and thus we conclude th&t,’ includes
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#°. The original solutionf  also includesf ° by the following argument#° is a strict sub-graph
of #, (7° contains a subset of the edges ancHponodes), and thus any active path4? has a
corresponding -restricted active path ifif| ; because/| is perfect with respect to the distribution
pL(HL,X.) defined by(}[L,e}[L) (Corollary 6), we know that any suck, -restricted active path

in A corresponds to a dependencepjr{X, ), and thus, becausg, includesp, (X, ), there must
be a corresponding active path/n .

From Theorem 3, we know that there exists a sequence of edge addiidreoeered edge
reversals that transforms® into 7, and another sequence of edge additions and covered edge
reversals that transformg® into 7, ’. From Lemma 1 and Lemma 2, a covered edge reversal does
not change the number of parameters supported by a DAG, and thusweermgare the number
of parameters supported by the two DAGs by evaluating the increase imgi@ra that result from
the additions within each of the two transformatior&® can be transformed int@,’ by simply
adding, for each edge component, the corresponding two extra edges. ifhat is, we either (1)
add the edgekj; — Gjj andFj — Gjj, resulting in an increase of 12 parameters, or (2) add the edges
Bij — Fj andCi; — K, resulting in an increase of 10 parametersF |f supports fewer parameters
than ¥/, there must be at least o, V; } edge component for which the total parameter increase
from adding edges between nodes in that component is less than thsponng increase in
F.'. In order to reverse any edge in an edge component ffdinwe need to first cover that
edge by adding at least one other edge that is contained in that componentagy to verify
that any such “covering addition” results in an increase of at least fengders (addingi; — V|
results in this increase, and all other additions result in a larger incre@kay we conclude that
for the {\,V;} edge component, only edge additions are performed in the transformatiory?
to . Hij does not exist i, and therefore because (H, X\ ) is a DAG-perfect distribution
(Corollary 6),Cjj andF; cannot be conditionally independent given any other nodeg§_irthus,
in order for # to includep, (X.), there must be an edge betwégnpandF; in 7. We consider
two cases, corresponding to the two possible directions of the edge peByendF; in 7. If
the edge is directed &3; — F;, we know that there is a directed path betwdeandV; in F
because none of the edges frgifl can be reversed. By construction %f’, this implies that the
increase in parameters supported/py attributed to this edge component is 10. 4, F; and
Bij are d-connected given any conditioning set friimthat contain<;; (see Figure 1), and thus
we know thatF.jJLLpLBij |S for any S C X, that contain<Cjj; this implies that the edgB;; — F;
must exist inf |, else we could find a conditioning sethat contain€;i; for which F; J_L'{]_’LB”‘ IS,
which contradicts the fact thak_ includesp (X.). But adding botlCi; — Fj andBjj — Fj to
79 requires an addition adt least10 parameters, contradicting the supposition that the parameter
increase due to this edge component is smallgfjirthan in 7 ". If the edge betwee@;; andF; is
directed ad5; — Gjj, we know that# | must also contain the edgg; — Cjj, lest (using the same
logic as above) there would exist some conditioningSebntainingF; such thaCij_u_’quEij |S
but Cjj /L, Eij|S, contradicting the fact tha# | includesp (X.). Adding both of these edges,
however, requires an addition af least12 parameters; because the corresponding edge component
in 7 attributedat most12 parameters in the transformation frghp’, this again contradicts the
supposition that the parameter increase due to this edge component is sm@lletham in 7| .

Having established thaf |’ is a solution to LEARN that supports fewer parameters tfian
we now use¥ |’ to construct a solutiolp to the instance of DBFAS. For eadWV,,V;} edge
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component inF |/, if that component contains the edges shown in Figure 3a, then we inclédg in
the arcvi — V;. Ap contains no other arcs.

We now argue thad, contains at least one arc from every cycle from the instance of DBFAS.
Each arcV; — V; € Ap that isnot contained inAp has a corresponding edge componenfFigf
for which there is a directed path frow to Vj. Thus, any hypothetical cycle in the instance of
DBFAS that does not pass through an edgAjphas a corresponding directed cyclejin’, which
is impossible becausg,  is a DAG.

Finally, we argue tha[; contains at moskp arcs. Recall thabp andtp denote the number
of nodes inG that have exactly one and two in-coming edges, respectively. As in thoé pfo
Theorem 8, it is easy to verify that the number of parametemupported byF |’ is exactly

186Ap|+18/Ap |+ 16(|Ap| —|Ap|) + 160p + 32p.

Given thatd| < d, we conclude from Equation 2 thgp| < kp. O
Given the previous results, the main result of this paper now follows easily.

Theorem 10 LEARN is NP-hard.

Proof: Follows immediately from Theorem 8 and Theoreni®.
Also, due to the fact that the distribution in the reduction is obtained by margimglmt the
hidden variables in a DAG-perfect distribution, the following result is immediate

Corollary 11 LEARN remains NP-hard when we restrict the input probability distributidmetthe
marginalization of a DAG-perfect distribution.

3.4 Extensions

Many approaches to learning Bayesian networks from data use indkpesn tests or mutual-
information calculations to help guide a search algorithm. In this section, we #tai even if
such tests and calculations could be obtained in constant time, the seadotdmpremains hard.
In particular, we show that Theorem 10 holds even when the learningitalgohas access to at
least one of three oracles. Furthermore, we show that the problem mehraith when we restrict
ourselves to considering only those solutions to LEARN for which eack had at modt parents,
for all k > 3.

The first oracle we consider is an independence oracle. This oratlevakuate independence
gueries in constant time.

Definition 12 (Independence Oracle)
An independence oracfer a distribution gX) is an oracle that, in constant time, can determine
whether or not XL ,Y|Z for any X and Y irX and for anyZ C X.

The second oracle we consider can perform certain inference gueigenstant time; namely,
the inference oracle can return the joint probability of any constant-sieedf variables. This
oracle can in turn be used to compute conditional probabilities in constant tingedigision.

Definition 13 (Constrained Inference Oracle)
A constrained inference oradier a distribution gX) is an oracle that, in constant time, can com-
pute gZ = z) for anyZ C X such thafZ| < k for some constant k.
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Some learning algorithms use mutual information—or an approximation of mutual
information—from a distribution to help construct model structures. (Eoaditional mutual) in-
formationbetween variableX andY given the set of variables is defined as

Inf(X;YyZ):X%p(x,y,z) Iog%. 4)

The third oracle we consider can compute the mutual information between tiabliesin constant
time, given that there are only a constant number of variables in the coridiiset.

Definition 14 (Constrained Information Oracle)

A constrained information oracker a distribution gX) is an oracle that, in constant time, can
compute IntX;Y|Z) for any X and Y inX and for anyZ C X such thafZ| < k for some constant
k.

Theorem 15 Theorem 10 holds even when the learning algorithm has access to (1jepen-
dence oracle, (2) a constrained inference oracle, or (3) a constdiini®rmation oracle.

Proof: We establish this result by demonstrating that we can implement all three ofdtaesdes in
polynomial time using the Bayesian netwdrk , 9}[) from our reduction. Thus if LEARN can be
solved in polynomial time when we have access to any of the constant-timesyriaafeist also be
solvable in polynomial timevithoutany such oracle.

(1) holds immediately because we can test for d-separatighimpolynomial time. (3) follows
from (2) because, given that each variable has some constant nahdbates, we can implement a
constrained information oracle via Equation 4 by calling a constrained imfereracle a constant
number of times.

LetZ C X be any subset of the variables such tZat< k for some constark. It remains to be
shown how to comput@(Z = z) in polynomial time from(#,6,,). The trick is to see that there
is always a cut-set of constant size that decompgfésto a set of polytrees, where each polytree
has a constant number of nodes; within any polytree containing a consiabier of nodes, we can
perform inference in constant time. We define a cutBsas follows:B contains every nodB;; for
which (1)Cj; isinZ and (2)B;; is notinZ. Note thatB NZ = 0. Given conditioning seB, no active
path can contain a nod&; as an interior (i.e., non-endpoint) node, even when any subseiof
added to the conditioning set (see Figure 6): any such hypothetica aetiti must pass through at
least one segmeB; — Cj; «— H;;. But this is not possible, because every such segment is blocked:
if Gjj is notinZ, then the segment is blocked becaGgehas no descendants, and hence can have no
descendants in the conditioning setCjf is in Z, then we know thaB;; € B and thus the segment
is blocked byB;;.

Because no active path can pass through a @gdé follows by construction of/ that—given
B and any subset &—each node itZ is d-connected to only a constant number of other nodes in
Z. Furthermore, the structure gf that is bounded between ty nodes forms a polytree. Thus,
we can expresp(Z = z) as

pZz=z) = %p(Z:z,B:b)

= % [ p(Ti =ti(z,b)),
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Figure 6: Portion of/{ showing that no active path can pass through@pynceB;; is given.

where eaclT; contains a constant number of variableistzb) is the set of values for those vari-
ables as determined lzyandb—that constitute a polytree it{. Thus, each ternp(T; = ti(z,b))
above can be computed in constant time using inference in a polytree. eiteue are at mokt
nodes inZ, the seB can contain at most nodes. Therefore, given that each nod8ihas at most
r states, there are at matterms in the sum above—where batlandk are constants—and we
conclude thap(Z) can be computed in polynomial timel

Finally, we prove that if we restrict LEARN to solutions in which each nods &étamostk
parents, the problem remains NP-hard forkalt 3.

Theorem 16 Theorem 15 holds even when solutions to LEARN are restricted to DAGsi¢h wh
each node has at most k parents, for att3.

Proof: The case wher& = 3 follows immediately from the proof of Theorem 8, where the con-
structed solution to LEARN is a DAG in which each node has at most threatgaend from the
proof of Theorem 9, where the given solution to LEARN is converted in(bedter) solution in
which each node has at most three parents. It is easy to see that thefserpmain valid under a
less restrictive > 3) bound on the number of parents, and thus the theorem follows.

4. Conclusion

In this paper, we demonstrated that the problem of identifying high-sc@®@s from large

datasets when using a consistent scoring criterion is NP-hard. Togethéne result of Chickering
(1996) that the non-asymptotic learning problem is NP-hard, our resulieisribat learning is hard
regardless of the size of the data. There is an interesting gap in the preselts. In particular,
Chickering (1996) proved that finite-sample learning is NP-hard wheh eade is restricted to
have at most two parents, whereas in this paper we proved that larg#eskearning is NP-hard
with a three-parent restriction. This leads to the question of whether dainget sample learning is
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NP-hard when we restrict to two parents; we believe that this problem limphlp NP-hard, and is
worth further investigation.

In practice, the large-sample learning problem actually requires scaamataset with a large
number of samples, as opposed to accessing a compact representtitegeaferative distribution.
We could alternatively have defined a learning problem in which there istaalalata set supplied;
the problem with this approach is that in order to guarantee that we get gegdample ranking
of model structures, we will need the number of data points to be so larg¢hthaize of the
problem instance is exponential in the number of variables in the domaineSults have practical
importance when it is reasonable to assume that (1) there is enough datthauthe relative
ranking of those DAGs considered by the learning algorithm is the same ae lartfe-sample
limit, and (2) the number of records in the data is small enough that we can tethguscore for
candidate structures in a reasonable amount of time.

As discussed in Section 1, there exist assumptions about the genersifilition that lead to
efficient large-sample learning algorithms. These assumptions are nottikkbid in most real-
world scenarios, but the corresponding “correct” algorithms can welkeven if the assumptions
do not hold. An interesting line of research is to investigate alternativekevessumptions about
the generative distribution that lead to efficient learning algorithms anégtes large-sample cor-
rectness.

Appendix A. Introduction to Perfectness Proofs

As described in Section 3.2, in these appendices we define two propédrtasbdistributions,
and prove that as long as these properties hold for every local distnbntihe network, the cor-
responding joint distribution is perfect with respect to the network structummma 5 follows
immediately from our main result once we demonstrate that the two propertiesanateffamily
of distributions defined by Equation 3.

The two properties that we define dsmary-like lattice(BLL) and binary-like totally strictly
positive (BLTSP). The “binary like” aspect of both of these properties referthe fact that the
distributions are defined such that we can treat each vargabilgt only has two states: a “distin-
guished” state and an “other” state. As first mentioned in Section 3.2, thepBhjperty of a local
distribution is similar to the positive-influence property found in the QBN liteggtilispecifies that
the probability of a node being in its “distinguished” state necessarily inesaahen we change a
single parent from the “other” state to the “distinguished” state. The difieg between BLL and
the positive-influence property is that BLL requires that the probabilitgtstrincrease, whereas
the positive-influence property requires that the probability does moedse. The BLTSP property
of a local distribution is similar to the positive-synergy property in the QBN litega The intuition
behind this property is that it requires that the (BLL) influence of a pasteictly increases with the
number of other parents that are in the “distinguished” state. The differeatween BLTSP and
positive synergy is, as above, the requirement of a strict inequality.

Our main result demonstrates that if all local distributions in a Bayesian netaverboth BLL
and BLTSP, then any active path corresponds to a dependence in thprfgability distribution
defined by that network:

Lemma 17 Let(G,0) be a Bayesian network in which all local distributions definedlaye both
BLL and BLTSP. Then the joint distribution represented $y9) is perfect with respect tg.
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The proof of Lemma 17 is non-trivial, but the main technique can be unaetsts follows.
We prove perfectness by demonstrating that for any active path betwearodesx andyY, there
is a corresponding dependence in the joint distribution whenever thes modlee conditioning set
are all in their distinguished states. Xf andY are adjacent ing and if there are no nodes in
the conditioning set, this dependence follows easily from the definition of. Bl& establish the
general result by induction, using the simple case as the basis. In jemehow how to apply
graph transformations that result in a simpler model for which our inductiem &pplies. Each
graph transformation is defined such that the original distribution over aheobserved nodes,
when conditioned on the observed nodes, is represented exactlyhanel @very local distribution
retains the BLL property; the BLTSP property is required in the originatibigions to guarantee
that the BLL property is retained as a result of each transformation.

The appendices are organized as follows. In Appendix B, we desgréyh-transformation
methods that can be applied to a Bayesian network. In Appendix C, weusglgrdefine BLL and
BLTSP, and we demonstrate that the transformations described in Ap@néisessarily maintain
the BLL property on every distribution. Finally, in Appendix D, we proverima 17.

To simplify notation, we us&; to denote a Bayesian network (as opposed to just the structure
of that network) for the remainder of the paper, and we leave the panavaétesd implicit.

Appendix B. Graph Transformations

In this section, we describe a number of transformations that we apply tgesiBa network in
order to more easily prove our main result. For the remainder of the paperilivassume that
the domain of interesV = {Vi,...,Vi} is decomposed into two sets of variableg3:is the set
of observed variables for which we are given a corresponding fsstateso, andU is the set
of unobserved variables. In contrast to the “hidden” variablesdescribed in Section 3.1, the
unobserved variabldg simply correspond to variables that are not in the particular conditioning set
0.

Given a Bayesian networ defined over the domai@ U U, each transformation outputs a new
Bayesian network;". We will usep(-) andp' (-) to denote the probability distributions defined by
G andG', respectively. As we see belog,” may be defined over only a subset of the nodes.in
UsingOT andUT to denote the observed and unobserved nodes, respectively iz ia gT, all
of our transformations maintain the following invariant:

vu"  p'(u"jo") = p(u'lo). (5)

Note thato ando’ are fixed (observed) values. In words, Equation 5 asserts that thibutisn over
the unobserved nodes that remain after the transformation is identical indhraddels whenever
we condition on the observed values.

B.1 Individual Transformations

There are five transformations that we use to prove our main result: edgiod, edge reversal,
node combination, barren node removal, and observed-child separkborach transformation,
there is both a structural change (e.g., an edge Y is added) and a corresponding change to
the conditional distributions (e.g., the local distribution Yois extended to include the new parent
X). For the remainder of this paper, we assume that the local distributions inatiel that result
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from a transformation are obtained via inference from the original moaethd case where the
parents of a node are identical in the two models, inference correspordgyimg the original
local distribution.

Whenever the structure of the resulting model includes the original distnyydgapulating the
local distributions via inference results in a new model that defines the afrigimt distribution.
This follows because, by definition of inclusion, there exists a set of Wis&ibutions for the new
model that yield the original joint distribution. Furthermore, these local digidhs are unique
(assuming that the original distribution is positive) and must match the comdsyy conditional
distributions from the original model; we use inference to ensure this match.

We say that a transformation valid if (1) the preconditions of the transformation (e.qg., there
exists an edgX — Y in the model) are met and (2) the result of the transformation is an acyclic
model. We now consider each transformation in turn.

B.1.1 EDGE DELETION

An edge deletiordeletes an edge of the ford — Y from G, whereO € O is an observed node,
and replaces the local distribution Yhby the same local distribution except that the vaiuder O
is fixed to its observed value (e.@Y (see Figure 7). Thus, if the parentsYoaireOU Z in G, then
the new local distribution foy in G' is defined as

P (y|2) = p(y|z,0°),

where the probabilityp(y|z,o°) can be extracted directly from the local distributionioin G. It is
easy to see that for the resulting modgl we have

Yu  p'(u,0) = p(u,o0)

(for fixed 0) and thus Equation 5 holds. Because deleting an edge can never c®ate,aan
edge-deletion transformation (for an existing edge) is always valid.

o
@~ ) ®

p'(ult)

p(ult,0%

Figure 7: Example of an edge-deletion transformation. The observed gahodeO is o°. After
deleting the edg® — U, the local distribution for nod® is identical to the original
distribution when constrained to= o°.
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B.1.2 EDGE REVERSAL

An edge reversaloriginally defined by Howard and Matheson (1981), is a transformatiairfitist
“covers” an edge by adding new edges until the edge is covered, anddlerses the edge (see
Figure 8). In particular, for an edde — Y, let X be the parents dfl that are not parents of,
let Z be the parents of botH andY, and letW be the parents of that are not parents ¢f. The
edge-reversal transformation adds the edge Y for everyX € X, adds the edgé/ — H for every

W € W, and reversell — Y.

[
oG z’x‘e

pT(hix,z,w,y) plylx,zw)

p(hlx,z,w,y) pOylx,z,w)

Figure 8: The relevant fragment of a graph structure for an edgersal transformation.

As shown in Figure 8, the local distributions fidrandy in gT are defined by the joint distribu-
tion defined inG. In contrast to the edge-deletion transformation, the local probability disitvis
for these nodes irgT cannot simply be extracted from the corresponding distributiong;ifor
example, we obtain the local distribution fidrin gT via inference as follows:

pT(h|X727W7y) = p(h|x,z,w,y)
p(h,y|X,Z,W)
p(y\h,x,z,w)
p(hix, ) p(ylh, z,w)
Zi p(hl |X7 Z) p(y|hivsz) ’

wherep(h|x, z) andp(ylh,z,w) are the local distributions ig.

Proposition 18 If there is no directed path from H to Y other than the edge-HY , then the edge
can be covered as described without creating a cycle.

Proof: Suppose not. Using the notation from above, there must either be Xam¢ for which
addingX — Y creates a cycle, or there must be soMe W for which addingW — H creates a
cycle. Because there is already a directed path ot Y, we immediately rule out the first case.
If addingW — H creates a cycle, then there must already be a directed pathHrooV. By
appendingV — Y to this directed path, we have a directed path fidnto Y that is not the edge
H —Y, yielding a contradictionl]
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Because no independence constraints are added as a result of adaidge to a model, and
because the edge is reversed only after being covered, the follovsimigyficdlows immediately from
Proposition 18 and Lemma 1.:

Proposition 19 If in G there is no directed path from H to Y other than the edge-HY, then
the edge-reversal transformation applied to-HY is valid; and for the moderyT that results, the
constraints of Equation 5 must hold.

B.1.3 NobDE COMBINATION

A node combinationakes a set of nodes, where each node i has no children, and replaces
the set with the singleompositenodeY = ComyY) whose states take on the cross product of the
states of all nodes il (see Figure 9). The parents ¥fare defined to be the union of all of the
parents of the nodes M. Because no node M has any children, it is easy to see that applying
a node-combination transformation can never create a cycle, and thuartkfbtmation is always
valid.

Do

States:

States: States: States: 000 100
0 0 0 001 101
1 1 1 010 110

011 111

Figure 9: An example of a node-combination transformation. The state eptieecombined node
Y has a unigue state for every possible combination of values fob, andYs.

The local distribution for the composite nodes defined in the obvious way: the local prob-
ability in gT of a composite statg given the parent values is simply the joint probability of the
corresponding states 8fin the original modelg given the same parent values.

Although the set of nodes in the Bayesian netwgfrkthat results from a node combination is
different than in the original networlg, it is important to understand th@tT represents a proba-
bility distribution over the original set of nodes. In particular, becausesthies of the composite
nodeY are defined to be the cross product of the states for all of the nodéstlrere is a one-to-
one correspondence between state¥ ahd sets of all states of the nodesyin Thus, given any
Bayesian network containing composite nodes, we can always “unwindéthodes into a clique
of nodes, where each node in the cligue—in addition to the adjacencies wighatiqhe—has the
same parents and children of the composite node. Because the nodesdbaiprihe composite
node form a clique, there are no independence constraints introdydid unwinding process.
For the remainder of this paper, when we discuss the joint distributionsemied by a Bayesian
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network, it is to be understood that we mean the distribution over the origomahuh; we leave
implicit the unwinding process that can be performed so that the netwonksindhe same nodes.
B.1.4 BARREN NODE REMOVAL

An unobserved node € U is barrenif U has no children. An observed no@ec O is barren

if O has no parents and no children. Tharren-node-removalransformation simply removes
from G any barren nodes along with their incident edges (see Figure 10).uSzeabarren node
has no children, no conditional distributions change (other than the delafitre barren-node
distribution). Because removing a barren node can never create atbpdeansformation is always

©

pTx)=p(x)

Figure 10: An example of a barren-node-removal transformation: bethrtbbserved nodg¢ and
the observed nod® are barren.

We now explain why Equation 5 must hold after removinguaobservedbarren node. Letting
UT = U\ U denote the unobserved nodes that remain after remavjiwge can compute the joint
probability in the original model ovad™ andO as

p(u’,0) = p(u,u,0).

BecausdJ has no children, we can “push the sum” all the way through to the last camalitio

distribution:
X .
] _pee) (z (U >)

= p(x|pa®).
xel'u0

p(u’,0)

Becaus@T is identical tog except that it does not contain nddeit follows that the above product
of conditional distributions is exactly the distribution represented;bythusp' (u”,0) = p(uT,0)
and Equation 5 must hold.

Equation 5 holds after removing abservedarren nodé® by a similar argument and because
Ois independent of every other node regardless of the conditioning set.

B.1.5 OBSERVEDCHILD SEPARATION (OCS)

The observed-child-separation (OCS) transformation is a “macro”foranation that combines a
node-combination transformation, an edge-reversal transformatidraraedge-deletion transfor-
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mation. In particular, letf be any node itJ that has at least one child@, and letY = {Y1,...,Ym}
denote the set of all children &f that are inO that have no children themselves. For the OCS
transformation (see the example in Figure 11), we first apply a node-catitrirtransformation

to the nodes irY, resulting in a model containing the composite ndde ComgY). Next, we
apply an edge-reversal transformation on the gdge Y. Finally, we delete the resulting edge
Y — H using an edge-deletion transformation. The OCS transformation is validew&etine sub-
transformations are valid.

$% ¥ VTV E

Figure 11: An example showing the sub-transformations that make up thex@€® transforma-
tion.

Because we have already shown that the invariant of Equation 5 haédseath component
transformation that makes up the OCS macro transformation, we concludegtietion 5 holds as
a result of this transformation as well.

In Figure 12, we show the relevant network fragment both before &ed @ general OCS
transformation is applied, along with the local distributiongjihthat must be derived via inference
in G. The node¥;—which are shaded in the figure—are the observed children of Hattat will
be separated frol using the transformation. The bold-font nod€sZ, andW represent sets of
nodes: each node i is a parent oH but not a parent of any;, each node iiZ is a parent oH
and a parent of at least oiYg, and each node i is not a parent oH but is a parent of at least
oneY;j. In the figure, the terny® in p(h|x,z,w,y°) is shorthand for the set of all observed states
¥3,...,¥% of the; variables; we assume thgft is the observed state df for all j. Similarly, the
termy in p(y|x,z,w) denotes an arbitrary set of staigs. . .,y for the observed; variables.

B.2 Transformation Algorithms

In this section, we present two graph-transformation algorithms that, like @t ‘@acro” trans-
formation, apply a sequence of transformations to a mgdalVe distinguish an “algorithm” from
a “macro transformation” by the fact that in the former, the order in whicrapg@y the individ-
ual transformations depends on the topology of the entire network steuchsrin the case of the
OCS macro transformation, we conclude that because the individudiananagions that define the
algorithm all maintain the invariant of Equation 5, the invariant holds for therdlgns as well.

We say that a nod¥ in a graph is dowestnode with some property if no descendanoin
the graph also has that property. Thus when the graph is a DAG contatriegstone node with a
given property, there must always exist at least one lowest node \aitiptbperty.
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Figure 12: General OCS macro transformation.

B.2.1 THE UNOBSERVEDPATH SHORTENING (UPS) ALGORITHM

The unobserved-path-shortening (UPS) algorithm is applied wheontains only unobserved
nodes (all nodes from® have been removed before this algorithm is used). We say a node is a
root if it has no parents. The algorithm takes as input any non-root Mod@d returns the model

G' in which all nodes have been deleted exceptYaand its root-node ancestoRs For every

Re R, the edgeR — Y is in gT (the edge need not be iG); gT contains no other edges (see
Figure 13). In Figure 14, we show how the UPS algorithm is implemented bywesee of the
transformations presented in Section B.1.

:>

Figure 13: An example application of the UPS algorithm.

The following lemma demonstrates that the steps given in Figure 14 correctlynraptehe
UPS algorithm using graph transformations.

Lemma 20 Let G be a Bayesian network containing non-root node Y, andRletenote the set
of root-node ancestors of Y iG. Let gT denote the Bayesian network that results from applying
Algorithm UPS with inputs7 and Y. Then after the algorithm completes, the nodesTinare
preciselyRU{Y}, and the edges igT are precisely R— Y for every R R.

1309



CHICKERING, HECKERMAN AND MEEK

Algorithm UPS

Input: Bayesian network; and non-root nod¥. (LetR denote the set of root-node ancestor¥ of
in G, and assume that all nodesdhare unobserved.)

Output: Bayesian network;" containing node® U {Y} and edge® — Y for everyRe R

1. SetG"' = @G

2. While gT contains at least one barren ndglez Y, deleteB using the barren-node removal
transformation.

3. WhileY has at least one parent that is not a root node

4, Choose any lowest non-rodtthat is a parent of

5. Reverse the edd¢ — Y using the edge-reversal transformation

6. Delete the (now barren) nodleusing the barren-node-removal transformation.
7. Returng’

Figure 14: The unobserved path shortening (UPS) algorithm

Proof: First we note that after step 2 of the algorithm, every nodg irother thar is an ancestor
of Y. This follows because, given that every nod@ﬁ is unobserved, any non-ancestoNofmust
either be barren or have some descendant (not eqialtteat is barren.

At step 5, there cannot be any directed path fidrio Y other than the edgd — Y becaused
is chosen to be a lowest parenttdf Thus, we know that the edge-reversal transformation at step 5
is always valid. Furthermore, because every node is an ancestoma know thaty must be the
only child of H, and thus after the edge reverddlmust be barrenH cannot gain a child from the
reversal), and we can always delétén step 6.

By definition of an edge reversal, the only nodes that can gain parentspirbsareY andH.
BecausdH is necessarily a non-root node, we conclude that every nddeawiii remain a root node
after every edge reversal. The definition of an edge reversal algamjges that any node other than
H that is an ancestor &f before the reversal will remain an ancestor after the reversal. Thes wh
the algorithm terminates, all nodes other tivamust be root-node parentsof O

B.2.2 THE OBSERVEDNODE ELIMINATION (ONE) ALGORITHM

In this section, we describe the observed-node elimination (ONE) algoritaréhetes all of the
observed variables fror§ such that, given certain preconditions, the invariant of Equation 5 holds
on the resulting model. The details of the algorithm are shown in Figure 15.

In Figure 16, we show an example of the algorithm applied to a model. The alkrigiadel
is shown in Figure 16a, where the observed nddeB, andG are depicted by shading. In step
2 of the algorithm, the edgds — C andF — G are removed, resulting in the model from Figure
16b. For step 3, we see that all four unobserved nodes have abteasbserved child. The only
lowest nodes ar€ andD; (arbitrarily) choosingC first (shown with a thick border in the figure), we
apply the OCS transformation (which “combines” the singleton rfedeovers the edg€ — G by
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Algorithm ONE

Input: Bayesian network; consisting of observed nodésand unobserved nodés set of obser-
vationso corresponding to node3

Output: Bayesian network; ™ containing only the nodes id

1. Setg' = G.

2. For every edg® — X in gT for which O € O is observed, remove the edge using an edge-
removal transformation.

3. While there exists an unobserved noddlithat has at least one child fro@in G', apply
the OCS transformation th using any lowest such node.

4. Delete every nod® € O by applying the barren-node-elimination transformation.

5. Returng".
Figure 15: The observed node elimination (ONE) algorithm

addingB — G, then reverses and deletes the edge betWeand G) resulting in the model shown
in Figure 16c¢. Still in step 3, the lowest nodes BrandD; choosingB for the OCS transformation
results in model shown in Figure 16d. In this modeF G is the combined node &, F, andG
from the OCS transformation. Still in step 3, the lowest node®\aedD; choosingD for the OCS
transformation results in the model shown in Figure 16e. For the last iterdtiste 3,A is the
only node with an observed child, and applying the OCS transformatiohg@sthe model shown
in Figure 16f. Finally, in step 4, the barren ndde G is deleted, resulting in the final model shown
in Figure 169 that contains only observed nodes.

To help prove properties about Algorithm ONE, we l@édo denote the Bayesian network that
results afteii iterations of the While loop at step 3. We defig€ to be the graphg' that results
after applying step 2 but before the first iteration of the While loop at staffe8useH' to denote
the (lowest) node chosen in iterationf the While loop, we us&' to denote the set of observed
children ofH' on iterationi of the While loop, and we us¢ = ComgY') to denote the composite
node created by the OCS transformation in iteratiohthe While loop.

As a result of applying the OCS transformation in step 3, we create the meposite nodey’
defined by the subs&t C O of the observed variables. To simplify discussion, we find it convenient
to treatO as a static set of nodes as opposed to a set that changes each time apesiteonode
is created. Thus, we will say that any composite néblis contained in the s& when technically
we should say that all nodes that have been combined to ¢feaecontained i1®.

Lemma 21 For all gi (i.e., for all graphs considered in step 3 of Algorithm ONE), every nod# in
has zero children.

Proof: The proposition clearly holds fog° due to step 2. Toward a contradiction, lebe the
first iteration of the While loop in which a node i@ gains a child. By definition of the OCS
transformation, the only nodes that can gain children are paremtsafid parents of nodes M.
Because these nodes already have children, they cannothé’in
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Figure 16: Example of the ONE algorithm applied to a model. Lowest hodesealio step 3 are
shaded.

Recall from Section B.1.5 that the OCS transformation required that thevelsehildren must
have no children themselves. Lemma 21 guarantees that this propertyd)rohmtyg‘, and thus
the OCS transformation can always be applied in step 3. We now demonsétiectimodeH' can
be chosen by Algorithm ONE in step 3 at most once. An immediate conseqaktids result is
that step 3 terminates in at makl| iterations.

Proposition 22 Let Ané(O) denote the set of nodes Whthat are ancestors iG' of at least one
node inO. Then AngO) = And—1(0)\ H'.

Proof: From the definition of the OCS transformation, at each iteraititiis “macro” transfor-
mation first applies a node-combination transformation on the observederhitdrof H', then
applies an edge-reversal transformation on the étige> Y', and then applies the edge-removal
transformation oty' — H'.

We first note that applying a node-combination transformation on nodesannot change the
set of ancestors of node @.

In order for a node to become a new ancestor of a nod® sbme edgé — B must be added
to G' such that before the additioA is not an ancestor of a node @ andB is an ancestor of a
node inO. From the definition of the OCS transformation, the only edges that arel ildesither
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(1) of the formA — Y', whereA is a parent oH' and hence an ancestor of nodec O, or (2) of
the formA — H', whereA is the parent o¥' € O. Thus we conclude th#nc(0) € Anc—1(0).

In order for a node to no longer be an ancestor of a nods some edgé — B must be deleted
such that after the deletios is no longer an ancestor @. The only edge that is deleted by the
transformation isd' — Y'. After the transformation, all parents Hf are necessarily parents ,
and thus the only node that can possibly no longer be an ancestor oéar®@ds H'. Becausé'
was chosen as the lowest node with a chil®inand because the only added edges were incident
intoH' or a parent oH', we know that no descendantldf can be an ancestor of a nodednand
the lemma follows[]

Corollary 23 Algorithm ONE terminates after choosing each node ftdim step 3 at most once.

Proof: As in Lemma 22, we us@nc(O) to denote the set of nodes ihthat are ancestors ig'
of at least one node i®. In order to be chosen in Step 3 during iteratiasf the While loop,H!
must be inAnd (O). From Lemma 22, iH' is chosen during iteration it can never be an element
of Ang;(O) for j >i. 0

The next result demonstrates that by breaking ties as appropriate,mguagantee that any
particular unobserved node with no unobserved parents will be aodetafter applying Algorithm
ONE.

Lemma 24 Let U € U be any unobserved node with no unobserved parends itf in Algorithm
ONE we break ties in step 3 in favor of not selecting U, then U will be a roog¢ mgT.

Proof: Suppose not. Then at some iteration of the While loop in step 3, an unobgeaxentV
must be added 0 by the algorithm. Let be the first iteration in which this occurs. By definition of
the OCS transformation, we conclude thiit=U and thaWV is a parent o¥' that is not a parent of
U. Because we break ties in favor of not choodihgand becaus@/ has a child inO, we conclude
that there must be a directed path frgvito U. But from Lemma 21 we conclude that the last edge
in this directed path is from a node hwhich means thdt) already has an unobserved parént.

Appendix C. Properties of Local Distributions

In this appendix, we formally define the BLL and BLTSP properties thaevasscribed (infor-
mally) in Appendix A, and we show the conditions under which these propeat@maintained in
the conditional probability distributions as a result of the various graplsfisamations defined in
Appendix B. We begin in Section C.1 by presenting some preliminary definitiodsesults. In
Section C.2, we use this material to derive the main results of this section.

C.1 Preliminary Definitions and Results

In this section, we consider non-negative real-valued functioiXs efhereX = (Xg,...,X) is a set

of variables such that the states of each variablere totally ordered. Byotally ordered we mean
totally ordered in thenon-strictsense, where some states may have equal order. For convenience,
we often writef (xa,...,%n) asf(...,x,...) to emphasize the argument

Definition 25 The function {X) is latticeif, for any i such that x> X/,
flo. %) > f(...,%,...),
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where the other arguments are held fixed and are arbitrary.

For example, for a function with two binary argumef¥g, Xz) with state orderingx({ > xi and
X9 > x3, we havef (x0,x9) > f(x9,x3) > f(x},x3) and f (x3,x9) > f(x},x9) > f(x},xd).

Definition 26 The function {X) is totally non-strictly positivef, for all i < j,
f(...,max(x,X),...,maxxj,X;),...) - f(...,min(x,x),...,min(x;,x),...) > (6)
f(...,Xi,...,Xj,...)'f(...,X{,...,le,...).

The concept of total non-strict positivity is often referred tonagdtivariate total positivity of
order two (see Karlin and Rinott, 1980). We now define a version of total positivitgretihe
inequality in Equation 6 must be strict whenever equality does not hold trivially

Definition 27 The function {X) is totally strictly positiveif, for all i < j,
f(...,max(x,X),...,max(xj,xj),...) - f(...,min(x,x),...,min(xj,x),...) > (7)
Pl XXy ) XX, ),
where the other arguments are held fixed and are arbitrary, and equaiits if and only if either

f(...,max(x,%),...,maxxj,X),...) = f(...,%,...,xj,...)  and

—f(...,
f(...,min(x,x),...,min(xj,xj),...) = f(...,x
or

f(...,max(x,%),...,maxxj,x),...) = f(...,x%,....xj,...)  and
f(.,min(x,x),...,min(xj, ), ...) = F(o.. %, X,.0).

For example, a functiorf with two binary argument$X;, X;) with state orderingsx? > xi and
X9 > x} is totally strictly positive if f(x2,x9) f(x},x3) > f(x0,x3) f(x},x3). Note that all other
combinations of arguments yield trivial equalities. For example, applying thetitsn whenx; =
X, = X3, %o = X3, andx, = x3, yields the constraint

F(min(&,8), min(,xd)) f(max(€,x0), maxpd,xd)) > £(8,x8) £(:8,9),

for which equality holds trivially by solving the left-hand side.

We now give properties of positive, lattice, and totally strictly positive fumsgiovhose argu-
mentsx are binary with values® andx!, and with state ordering® > x*. We call functions having
only binary argumentsube functionsAs a shorthand, we use (e.dJ to represenf (X}, xJ).

Proposition 28 Given real numbersi; > a; in the interval(0,1) and positive real numbers®§,
fO01 £10 and fi1 such that P9 > f91 > f1lgnd 90 > £10

a1 fO4 (1—ag)f > axfl04 (1—ay)flL, (8)

where equality holds if and only {ff10 > 1) A (f00 = f1O) A (fO1 = I A ((f10= f1) v (a; =
a2)). Equivalently,
f01—|—(11(f00— fOl) > f10+a2(f10_ fll)' (9)

1314



LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

Proof: There are two cases to consider.

Case 1:f1 > 19, Here, the right-hand-side of 8 will be strictly less thigi < L. Thus, because
the left-hand-side of 8 will be at lea§?*, 8 holds with strict inequality.

Case 2:f10> 11 Here, becaus€® > f10, f01 > f11 and 0< a; < 1,

a1 f04 (1—0ap) fOr > ay f104 (1—ay) f12 (10)

where equality holds if and only {ff% = £10) A (01 = f11), Becausef1° > f1! anda; > ap, we
have
a1 f04 (1—ap) f > ax f104 (1—ay) f12 (11)

where equality holds if and only {ff1° = 1) v (a; = a3). Inequalities 10 and 11 imply 8, where
equality holds if and only if f%° = f10) A (fO1 = fIH) A (0= 11V (a; = 0p)). O

Proposition 29 Given a positive, cube, and lattice functiofX{, Xz),
a1 fO4+ (1—ay)fO > ap f104 (1—ay) f12 (12)
for any two real number8 < a; < a1 < 1.

Proof: Becausef (Xy,Xp) is lattice, we havef® > 01 > f1l and {00 > f10 > {11 The strict
inequality 12 therefore follows by Proposition 28.

Proposition 30 Given a positive, cube, lattice, and totally strictly positive functid®; fX,),
f00+f11> f01_|-f10. (13)

Proof: We know
fOOfll > fOlflO‘

Subtractingf 9*f X from both sides, we obtain
(fOO_ fOl)fll > (flO_ fll)fOl.

Becausef91 > f11 we have
fOO_ fOl > flO_ fll'

O
The remainder of this section contains propositions needed to prove theesaltstin Section
C.2. We sometimes use functions having a rang@®df). We call such functionanit functions

Proposition 31 Given a real number f if0,1) and a positive, cube, and totally strictly positive
function dY1,Y>), the ratio

fgoo+ (1_ f)901

fglo+ (1— f)glt

is a strictly increasing function of f.
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Proof: A straightforward algebraic arrangement yields
fg°0+(1—f)g01_g_01+ 1 g° g™ (14)
fglo+(1-f)gt g™~ 1+(1-f)gh/(fg) \g® g't

Becausey(Y1,Y-) is totally strictly positive, the difference of fractions at the end of Equatibisl
positive. The proposition then follows becawgé/g'? is positive.[]

Proposition 32 Given a unit, cube, lattice, and totally strictly positive functiofXf,Xz) and a
positive, cube, and lattice functiorf\g),
fOOgO+ (1_ fOO)gl . flOgO+ (1_ flO)gl
fOlg0 (1— foh)gl ~ flig04 (1— fil)gl’

(15)

Proof: By Proposition 30, we know th&t®©+ f11 > {014 f10 Therefore, we have
(gogo+ g1gl> f00f11+gl(go o gl)(f00+ fll) > (gogo + glgl) f01f10—|— gl(go o gl)( f01—|— flO).

(16)

Adding g'g? to both sides of inequality 16 and factoring, we obtain

(0 + (1 10)g")(FHe + (1 F1)g") > (1797 + (1 12)g") (119" + (1 F%)g").

Inequality 15 follows from the fact that terms in the denominator are posifive.

Proposition 33 Given unit, cube, lattice, and totally strictly positive functiofX{, X;) and a posi-

tive, cube, and totally strictly positive functioMg, Y2), where d0,Y>) is lattice,

£00g00 4 (1 §00)gO1  §10400 | (7 §10)q01

f0lglo 4 (1 — foI)gll = fIiglo 4 (1— fil)gll’ (17)

Proof: The functiong(0,Y>) is unit, cube, and lattice. Consequently, by Proposition 32, we have
f00g00 4 (1 f00)401 {10600 (1 _ £10)q01
f01g00 1 (1 — fOI)gOT ~ f1Ig00 (1 — fil)gol’

Interchanging the denominator on the left-hand-side with the numerator oigtitdrand-side, we
get

£00g00 | (1 £00)g01 {01500 (1 £01)g01

f10g00 | (1 f10)g0L ~ FIIgO0 | (1 _ filyg0l’ (18)
Using Proposition 31 and that fact thet' > 1%, we obtain

f01g00+ (1_ f01)901 f11g00+ (l— fll)g01

fOI10 | (1 fOL)giL > f11gl0 | (1 fil)giL
or, equivalently,

01400, (1_ §01yq01  §01410_ (q _ £01ynll

g +(1-f7g~ g +(1-f")g (19)

f11g00 4 (1— f11)gol > fIiglo 4 (1— fil)gil’
Inequalities 18 and 19 imply

f00900+ (1_ f00)901 fOlglo+ (1_ fOl)gll

f10g00 ¢ (1— f10)g0l > fllglo (1— fih)gll’

which is equivalent to 171
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Proposition 34 Given a real number f (0, 1) and a positive and cube functio\g, Yz, Y3), where
0(0,Y2,Y3), 9(1,Y2,Y3), and gY1,1,Y3) are totally strictly positive and @1, Y2,0) and Y1, Y2, 1)
are totally non-strictly positive,

ngOO+ (1_ f)gOOl f9100+ (1_ f)glOl

fg010+ (1— f)g0tl ~ fgllo4 (1— f)glil’ (20)
Proof: Using Equation 14, we rewrite inequality 20 as follows:
P §0_ g e
9O " 1+ (1— )gOIL/(fg0l0) \ goI0  goil
g 1 <ﬁ . ﬂ)
gl " 14+ (1— f)gl/(fglio) \ git0 gt )-

Now, observe that inequality 21 has the same form as 9, with
= L and 0z = L
L+ (- D (fg™) T L (- D (fg)

In addition, becausg(0,Y>,Y3) and g(1,Y2,Ys) are totally strictly positive an@(Y1,Y»,0) and
0(Y1,Y2,1) are totally (non-strictly) positive, we have
Qo0 gloo  glol

9000 g001 g101
gOlO > gOll = glll and gOlO = gllO > glll'

a1

Thus, the conditions of Proposition 28 apply, and 20 will hold4f> a2, or
1 - 1
L+ (1= N)gPm/(fg"0) ~ 1+ (1~ it/ (fgho)
Rearranging inequality 22 and canceling the tefnasd(1— f), we obtain
Qe gt
¢fi0 < gito

(22)

which holds becausg(Yi, 1,Y3) is totally strictly positive [

Proposition 35 Given a unit, cube, and lattice functior{X) and positive, cube, and lattice func-
tion g(Y1,Y2,Y3), where d0,Y2,Ys3), 9(1,Y2,Y3), and dVi1,1,Y3) are totally strictly positive and
9(Y1,Y2,0) and g Y1, Y,, 1) are totally (non-strictly) positive,

fogooo_|_ (1_ f0)9001 flgloo+ (1_ fl)glol

f0gO104 (1 — £0)g01L > flglio4 (1— f1)glil’ (23)
Proof: By Proposition 34, we have

f0gO004 (1 f0)g0OL  §0q100 (1 _ £0)gloL

fOQOI0 | (1— f0)gOIL ~ FOGLI0L (1 O)gliL’ (24)
Becausef® > f1 andg(1,Y,,Ys) is totally strictly positive, Proposition 31 yields

f0g100+ (1_ fO)glol flg100+ (1_ fl)glol (25)

fOgli0 (1— fO)glil > figlloy (1— f1)glil’
Inequalities 24 and 25 imply 2381
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Proposition 36 Given a unit, cube, lattice and totally strictly positive functiofX{,Xz) and
positive, cube, lattice function(¥,Y2,Ys), where d0,0,Ys) is lattice, g0,Y2,Y3), 9(1,Y2,Y3),
0(Y1,0,Y3), and dV1,1,Y3) are totally strictly positive and @1,Y2,0) and Y1,Y>,1) are totally
(non-strictly) positive,

f009000+ (1_ fOO)QOOl f109100+ (1_ flO)glol
f019010+ (1_ fOl)gOll > fllgllO+ (1_ fll)glll'

(26)

Proof: Using Proposition 33 and the fact ttg(0, 0,Y3) is lattice andy(Yi,0,Ys) is totally strictly
positive, we get
£00g000 | (1 _ f00Y4001  §104100 4 (1 _ §10)g101

f01g000 (1 — f0I)g00L ~ FIiglo0 (1 — fi1)gloL (27)
Becausef (X3, 1) is lattice, Proposition 35 yields
{01000 4 (1 _ f01)g001 11100 | (] _ f11)glo1 8)

f019010+ (1_ fOl)gOll > fllgllO+ (1_ fll)glll'

Multiplying the left-hand-sizes of inequalities 27 and 28 and the right-h#&esof the same in-
equalities, we obtain 26.]

C.2 The BLL and BLTSP Properties

In this section, we turn our attention from general non-negative rdaégidunctions to conditional
probability distributions. In particular, we consider Bayesian networksligcrete, finite-valued
variables in which the local distributiongy|x, . ..,X,) have the following properties.

Definition 37 Given a set of variables Y 1 X..,%, such that each variable has a finite number of
totally ordered states, the distribution(yixs, . . ., X,) is lattice with respect to stat€ if the function

f(X1,...,%) = P(YO|Xa, ..., %) is lattice.

Definition 38 Given a set of variables Y 1 X..,%, such that each variable has a finite number of
totally ordered states, the distribution(yxs, .. .,X,) is totally strictly positive with respect to state
yP if the function 1xq,..., %) = p(Y°|X4,.. ., %n) is totally strictly positive.

We further concentrate on local distributions that are binary-like. lrilgag such distribu-
tions, we need the concept otlsstinguishedstate of a variable. For the remainder of the paper, we
usex® to denote the distinguished state of variale

Definition 39 Given a set of variables Y ,1X.. X% such that each variable has a finite number
of states and each variable X has a distinguished stdté¢he local distribution y|xq, ..., %) is
binary-likeif
y 7& yO andy’ ?é yO Imp“es p(y‘xla s ,Xn) = p(y,|X1, s 7Xn) (29)
x =% or (x Zx2andx #x°)i=1,...,nimplies p(y|xd,...,%) = p(Y[X,,...,X,). (30)
If condition 30 is satisfied for some particular state y, theég|x,...,X,) is said to bebinary-like
with respect toy.
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Thus, for a local distribution that is binary-like, if any non-distinguishé&atesis replaced with
another non-distinguished state on either side of the conditioning bar,idéioaal probability re-
mains the same. For a local distribution that is binary-like with respegttany non-distinguished
state on the right-hand side of the conditioning bar is replaced with anothatistinguished state,
the conditional probability for statgremains the same. When appropriate, wexise denote an
arbitrary non-distinguished state Xf

When working with distributions that are both binary-like and either lattice oflyostrictly
positive, we need to be careful how we assign the total ordering to the $tateach variable.
In particular, in order for a distribution to be both binary-like and either latbicéotally strictly
positive, all non-distinguished states must have equal order in thesfriot)-total ordering. We
incorporate this condition in the following definitions. In addition, we use tideiangx® > x! for
all variablesx.

Definition 40 Given asetof variablesY jX..,X%, such that each variable has a finite number of to-
tally ordered states, and each variable X has a distinguished Stathexdistribution gy|xy, . .., %)

is binary-like lattice (BLL)if (1) the distribution is lattice with respect t& y(2) the distribution is
binary-like and (3) if, for each variable X %%s greatest in order and all non-distinguished states
of X are equal in order. The distribution(yxs, ..., Xn) is binary-like lattice (BLL) with respect to

y0 if (1) the distribution is lattice with respect tdy(2) the distribution is binary-like with respect
to y° and (3) if, for each variable X ,%s greatest in order and all non-distinguished states of X are
equal in order.

Definition 41 Given aset of variablesY jX..,X%, such that each variable has a finite number of to-
tally ordered states, and each variable X has a distinguished statexdistribution gy|xy, . .., Xn)

is binary-like totally strictly positive (BLTSPIf (1) the distribution is totally strictly positive with
respect to §, (2) the distribution is binary-like and (3) if, for each variable X is greatest in
order and all non-distinguished states of X are equal in order. Theidigion p(y|Xy,...,Xn) iS
binary-like totally strictly positive (BLTSP) with respect 18 if (1) the distribution is binary-like
with respect to 9, (2) the distribution is totally strictly positive with respect t§ yand (3) if, for
each variable X, %is greatest in order and all non-distinguished states of X are equal iarord

In the following sections, we consider the graph transformations of Sd8tigrand investigate
the conditions under which the BLL and the BLTSP properties are retainéukeidistributions
that result from a transformation. We will say that a node is BLL (BLTSRy&an that the local
distribution for that node is BLL (BLTSP).

C.2.1 BLLAND BLTSPFOR THEEDGE-DELETION TRANSFORMATION

Lemma 42 (Edge Deletion, BLL and BLTSP) Let G be a model containing the edge O U,
where O¢ O is observed, and Ia§T denote the model that results from applying the edge-deletion
transformation on O— U in G. IfU is BLL in G thenU is BLLinG", and if U is BLTSP ing than
UisBLTSPinG'.

Proof: LetT be the set of parents tf other tharO. From the definition of an edge deletiohywill
be the parents df in gT and, assuming (e.gd’ is the observed value @, we have

p' (ult) = p(ult,0)
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for all u andt. From the definition of BLL, ifp(u|t,0) is BLL, then it is also BLL when restricted to
o= o0*. Similarly, from the definition of BLTSP, ip(ult,0) is BLTSP, then it is also BLTSP when
restricted too = o*. O

C.2.2 BLLAND BLTSPFOR THEBARREN-NODE-REMOVAL TRANSFORMATION

Proposition 43 Let G be a model containing barren node X, and @T denote the model that
results from applying a barren-node-removal transformatio;ton X. For any node ¥ X in G,
we have: (1) if Y is BLL ing, thenY is BLL irgT, and (2) if Y is BLTSP in7, then Y is BLTSP in

G'.
Proof: Follows immediately from the definition of a barren-node removal becaudedhkdistri-
butions that remain i " are identical inG. [

C.2.3 BLLAND BLTSPFOR THEOCS TRANSFORMATION

Lemma 44 (OCS, BLL inY) Consider the OCS transformation shown in Figure 12, where
p(hlx,z) is BLL. If p(yj|z,w,h) is BLL with respect toﬁy j=1,...,m, then P(yjx,z,w) =
p(y|x,z,w) is BLL with respect to§=y°. If m= 1 and py|z,w,h) = p(y1|z,w,h) is BLL, then

P (y|X,z,w) is BLL.

Proof: For notational simplicity, we usé to denote the set of nodes in the original grapg; that
is, we use the nod¥ from G as shorthand for the set of nodes that were combined to create that
variable.
First, we show thap(y|x, z,w) is either binary-like or binary-like with respect $8. From the
sum rule of probability, we have

P(yIx.z,w) = p(h°|x,2) p(ylz,w,h%) + 3 p(hix,2) p(y|z,w,h). (31)
h-Zho

Whenm = 1 andp(y|z,w, h) is binary-like, becaus@(h|x,z) is also binary like, we can rewrite
Equation 31 as follows:

p(yIx,z,w) = p(h°|x,2) p(y|z,w,h°%) + (1— p(h°[x,2)) p(y|z,wh"). (32)
Becausen(h|x, ) is binary-like with respect th° and the remaining two terms in Equation 32 are
binary-like, it follows thatp(y|x,z,w) is binary-like. Wherm > 1 andp(y;|z,w,h) is binary-like
with respect tgf9, j = 1,...,m, Equation 32 witt¥ = y° still holds, because(y|z,w, h) is binary-
like with respect to/°. Consequentlyp(y|x,z,w) is binary-like with respect tg°. It remains to
show thatp(y°|x, z,w) is lattice. There are three cases to consider.
Case 1:X € X changes. IiX is empty, there is nothing to prove, so assufis not empty. Here,
we need to show thai(y°|x%,x’,z,w) > p(y°|xt,x’,z,w), whereX’ = X \ {X}. Using Equation 32
with Y = y° and omitting those variables that are held constant, we rewrite this condition as

p(h°x°) p(y°|h%) + (1— p(h°x°)) p(y°|ht) > (33)
p(h%xt) p(y°Ih%) + (1 - P(hO\X )) py’Iht).
Becausep(y?|h) is lattice, j = 1,...,m, we know thatp(y°|h') = [T, p(y?|h') is lattice—that is,

p(y°|h%) > p(y°|ht). Becausgy(h®|x), we havep(h®|x°) > p(h°|x}). Consequently, inequality 33
holds.
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Case 2W € W changes. IV is empty there is nothing to prove, so assuMés not empty. Here,
we need to show thap(y°|x,z,wP,w’) > p(y°|x,z,w!,w'), whereW’ = W \ {W}. Again using
Equation 32 and omitting those variables that are held constant, this conditiombés

p(Y’|wP, h%) + (1 — p(h%)) p(y°wP, ht) > (34)
p(ho) p(Y°Iwh,h0) + (1— p(h°)) p(y°w,ht).

First note thap(y°|w, h) is lattice. To see this fact, write
Y iweh) = [ PR [ ORI

where eachY, has parent$V andH and eachy, has parenH. Because there is at least ovig

and p(ya|w, h) is lattice, it follows thatp(y°|w, h) is lattice. Identifyingp(h®) with a; = a, and
p(y°|w', hi) W|th fil in Proposition 29, and noting thét is lattice becausp(y°|w, h) is lattice, we

flnd that mequallty 34 holds.

Case 3Z € Z changes. IZ is empty there is nothing to prove, so assuris not empty. Here, we

need to show than(y°|x, 2, Z,w) > p(y°|x,Z},Z,w), wherezZ’ = Z \ {Z}. Using Equation 32, this

condition becomes

p(h°2) p(y°|Z,h% + (1— p(h°2)) p(y°|2,ht) > (35)
p(h°Z) p(y°|Z, h%) + (1— p(h°|Z})) p(y°|Z, ht).

By an argument analogous to that in Case 2 of this Lemma, it followsptlydiz, h) is lattice. Thus,
identifying p(h°|Z) with o andp(y°|Z,h) with flJ in Proposition 29 and using the fact thh®|2)
andp(y°|z h) are lattice, we establish inequality 35.

Lemma 45 (OCS, BLL inH) Consider the OCS transformation shown in Figure 12, where
p(h[x,z) is BLL. If p(yj|z,w,h) is BLTSP with respect to®y j = 1,...,m, then P (h|x,z,w) =
p(hly% x,z,w) is BLL.

Proof: As in the proof of Lemma 44, we u¥eto denote the set of; nodes in the original grap§.
From Bayes'’ rule and the definition ¥f we have

p(hix,z) p(y°|z,w,h)

Pl 2 W) = o 27 DTz, W, 1) + (1~ p(Wx,2)) PP

(36)

wherep(y°|z,w, h) = My p(y?|z,w, h). Because(h|x, z) is binary-like ando(y;j|z, w, h) is binary-
like with respect tcy(j’, i =1,...,m, it follows that p(h|y°,x, z,w) is binary-like. It remains to show
that p(h°|y°, x, z,w) is lattice.

Dividing the numerator and denominator of the right-hand-side of Equaidry 3he numerator
and settingh to h°, we obtain

1

T 14 (-p(01X.Z)) pOPIZW.) -
p(XZ)  PPIZWIP)

p(h°ly°.x,z,w)

37)

There are three cases to consider.
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Case 1: X € X changes. IfX is empty, there is nothing to prove, so assuXés not empty.
Here, we need to show thath®|y°,x% x’, z,w) > p(h°y°,x%, x’, z,w), whereX’ = X\ {X}. Using
Equation 37 and the fact thaf@ +a) > 1/(1+b) if and only if 1/a > 1/b for positivea andb,

this condition becomes

p(°p®)  p(y’h®) _ p(h%x)  py°Ih°)
(1= p(h°[x%)) p(y°lht) = (1—p(h°[x")) p(y°lht)’
which holds becausp(h°|x) is lattice.
Case 2:W € W changes. W is empty, there is nothing to prove, so asswweas not empty.
Here, we need to show thath®|y°,x,z,wP,w') > p(h%|y°,x,z,w!, W), wherew’ = W\ {W}. By
an argument similar to that in Case 1, this condition becomes
p(h%)  p(PWwo.h%)  p(h%)  py°pwt,h%)
(1= p(h%)) p(y°[we,ht) = (1—p(hO)) p(y°|wt, ht)

Canceling the terms involving(h®), we see that this inequality holdspfy°|h, w) is totally strictly
positive. To establish the latter fact, recall that

p(y’lw;h) = [ p(y3lw. h) |:| P(yalh).,

where eacl¥; has parent8V andH and eacly,, has parent. Now note that the product of two
functions that are positive and totally strictly positive is also positive and tcatailtly positive, and
that if (X1, Xy) is positive and totally strictly positive arg{X;) is positive, thenf (Xg,Xz) - g(X1)

is positive and totally strictly positive.

Case 3:Z € Z changes. IZ is empty, there is nothing to prove, so assufis not empty. Here,
we need to show thai(h®|y°, x,2,z,w) > p(h°|y°,x, 2}, z,w), wherez’ = Z\ {Z}. This condition

becomes
p(h°?)  p(y°|2,h%) - p(°z")  p(y°|z~h°)
(1= p(h°[2)) p(y°|2, %) = (1-p(h°|Z)) p(yPlz*,ht)’
By an argument analogous to the last one in Casp(¥
p(h°|x) is lattice. The inequality therefore holds.

In the base case of the proof of our main result (Theorem 53), wereegnly that the distri-
butions have the BLL property. The proof of the preceding lemma show<BAMRASP is a required
property in the original model. Namely, in Case@hC|y°,w) is lattice if and only ifp(y°|w, h) is
totally strictly positive.

(38)

z,h) is totally strictly positive. Also,

Lemma 46 (OCS, BLTSP inY) Consider the OCS transformation shown in Figure 12, where
p(h[x,z) is BLL and BLTSP. If fy;|z,w,h) is BLL with respect to§/and BLTSP with respect tdy

j=1,...,m, then py|x,z,w) is BLTSP with respect tdyIf m= 1 and ply|z,w,h) = p(y1|z,w, h)
is BLL and BLTSP, then(g|x,z,w) is BLTSP.

Proof: In the proof of Lemma 44, we showed that (1)nif= 1 and p(y|z,w,h) is binary-like,
thenp(y|x,z,w) is binary-like; and (2) ifm > 1 andp(y;|z,w, h) is binary-like with respect tg(j’,
j=1,...,m, thenp(y|x,z,w) is binary-like with respect tg°. It remains to show than(y°|x, z, w)
is totally strictly positive. There are six cases to consider.
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Case 1X, X2 € X changes. Assum&| > 2. Here, we need to show that

p(yO’X%Xg?X/vaW) p(y0|X}>Xg7X/727W)
p(YOx2,x3, % z,w) ~ p(yOlxd,xd, x!,z,w)

(39)

whereX’ = X\ {Xg,X}. Using Equation 32 fo¥ = y° and omitting those variables that are held
constant, we rewrite this condition as

p(h°]x2,x9) p(y°|h%) + (1— p(h°x2,x9)) p(y°|h")
(holxl,xz) (¥°Ih0) + (1 — p(h%x§,x3)) p(y°|ht)
p(h°x3, %) p(y°[h%) + (1 — p(h°|xq,x9)) p(y°lh!)
p(hO[xg,%3) P(Y°[hP) + (1 — p(h%|x{,x3)) p(y°lht)’

Becausep(y{|h) is lattice, j = 1,...,m, we know thatp(y°|h) = 1], p(y9|h) is lattice. Thus,
identifying p(h°|x;,x5) with 1 and p(y°|h') with g' in Proposition 32, we find that inequality 40
holds.

Case 2X € X andW € W changes. Assum&| > 1 and|W| > 1. Using Equation 32, we need to
show the inequality

p(HOXC) py7IWP, HO) + (1. p(HP)) plyPIwP, )

p(h%x°) p(y°wt, hO) +- (1 p(h°x%)) p(y°|w?, ht)
p(RO]XY) p(yP|wP, h9) + (1 — p(h°x)) p(yPw, ht)
p(hxt) p(yPwt, hO) + (1 p(h[xt)) p(yPlwt, ht)’

> (40)

(41)

By an argument analogous to one in Case 2 of Lemma 45, we know(tfty, h) is totally strictly
positive. Therefore, identifying(y°|w', hl) with gl in Proposition 31 and noting thai(h°|x°) >
p(h%xt), we establish inequality 41.

Case 3:X € X andZ € Z changes. Assumi| > 1 and|Z| > 1. Using Equation 32, we need to
show the inequality

p(h°1X°,2%) p(y°|2°, ) + (1— p(h°X°, 2%)) p(y°|2°,h*)
p(h°p°,z) p(y0|z',h%) + (1 p(h°]X°,2%)) p(y°|z!, ht)
p(h2]xE, 22) p(y|22,h0) + (1— p(h]xt, 22)) p(yP|2°, ht)
p(h°xt,2) p(y?|zh ho) + (1 p(hxt,2h)) p(y?[zh ht)|

Becausep(y°|2, h) = [T, p(y?|2%, h), we know thatp(y°|2%, h) is lattice. By an argument analo-
gous to one in Case 2 of Lemma 45, we know th@P|z h) is totally strictly positive. Identifying
p(hO|x,Z1) with f'I andp(y°|Z,hl) with g/, Proposition 33 establishes this identity.

Case 4W;, W, € W changes. Assum@V| > 2. Using Equation 32, we need to show the inequality

P) pOOWe, W, h°) + (1— p(h%) p(yOws, wp, ht)
P(h°) p(yPIwe, w3, h°) + (1 (ho)) POYO[WR, wa, ht)

p(h°%) p(y°Iwi,wh, h°) + (1 p(h°)) p(y°|wi, w8, h')

P(h%) p(y°lwi, w3, h0) + (1— p(h%)) p(yPlwi, w3, ht)’
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Identifying p(h°) with f and p(Y°|w, wh, h) with glik, Proposition 34 establishes this identity if we
can show that ¥ satisfies the strict and non-strict total positivity conditions of the proposifion
do so, write

Py’ w1, Wz, h) = [7] p(y3Iw, wa, h) U P(yplws, h) [ POY2Iwe. h) U p(y2Ih),

where eacl¥, has parent$\y, Wo, andH, eachyY, has parent$\y, andH, eachY; has parent¥\,
andH, and eachry has parent. It is not difficult to show that, if there is at least one variable
having bothWy andW, as parents, then the product is totally strictly positive. If there is no such
variable, however, the product is not totally strictly positive, becad§€/9010= g100/g110 and
g001/g011= g101/g111. Nonetheless, it is not difficult to show that the remaining four pairwise
total strict positivity conditions hold. Consequently, the conditions of Psitiom 34 hold.

Case 5Z € Z andW € W changes. Assum&| > 1 and|W| > 1. Using Equation 32, we need to
show the inequality

p(h°|2°) p(y°|Z, WP, h°) + (1 — p(h°|2)) p(y°|Z, WP, ht) -

p(h0[2) p(y°| 2, wh, h0) + (1 — p(h02)) p(y°| 2%, wt, ht)
p(h%|ZY) p(yP|Z4, WP, h%) + (1— p(h°|ZY)) p(y°|zt, wP, ht)
(h0|21) POl wt, h0) + (1 P(ho\zl)) p(YP°|Zt,wt, ht)”

Identifying p(h°|Z) with f' andp(y°|Z,w!, h¥) with gk, Proposition 35 establishes this identity if
g’k satisfies the strict and non-strict total positivity conditions of the ProposiByran argument
analogous to one in Case 4 of this Lemmy& satisfies these conditions.

Case 6Z3,7Z, € Z changes. Assum&| > 2. Using Equation 32, we need to show the inequality

p(°|2,2) p(y°|2,B,h%) + (1 - p(h°|2. D)) p(y°’|1 B, B, h")

p(h%2,2) p(Y0|Z, 25, h0) + (1 - p(h°Z,Z)) p(Y°| 2,7, ht)
p(h%z, ) p(y°|2,B,h0) + (1 — p(h°|Z}, ) p(y°|Z, B, ht)
p(h°|z;, Z) p(y°|2, 23, h0) + (1 p(h°|z;, 7)) p(y°lz, 3, ht)”

Identifying p(h°|Z,, 2, )Wlth fil andp(y®|Z,, 22,hk with gk, Proposition 36 establishes this identity
if gk satisfies the conditions of the Proposition. Becapgé|2,x3,h) = T, p(y?|2, 2,h), we
know thatp(y°|2, 23, h) is lattice. By an argument analogous to that of Case 4 of this Lergiﬂha,
satisfies the strict and non-strict total positivity conditions of Propositiori 36

Putting the three previous lemmas together, we get the following generd fmsthe OCS
transformation.

Corollary 47 (OCS transformation) Let G be a Bayesian network, and l§t" be the result of ap-
plying the observed-child-separation transformation on unobservdd Rowith observed children
Y. If the observed values for the childr&hare the distinguished statg$ for those children, and
ifin G, H is both BLL and BLTSP, and each observed child Y is both BLL with respect toiOy

and BLTSP with respect td ythen in G', (1) His BLL, (2) Y= CompgY) is BLL with respect to
y°, and (3) Y= ComgY) BLTSP with respect tdy

Proof: (1), (2), and (3) follow immediately from Lemma 45, Lemma 44, and Lemma 4pewes
tively. O
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C.2.4 BLLAND BLTSPFOR THEEDGE-REVERSAL TRANSFORMATION

Corollary 48 (Edge Reversal, BLL inY) Consider the edge-reversal transformation shown in
Figure 8. If the local distributions for H and Y are BLL ig, then the local distribution for Y
in G" is BLL.

Proof: The local distribution fol after reversindd — Y is exactly the same as the local distribution
for Y after a one-child OCS transformation fdr— Y; thus, the corollary follows from then= 1
case of Lemma 44]

Corollary 49 (Edge Reversal, BLTSP inY) Consider the edge-reversal transformation shown in
Figure 8. If the local distribution for H is BLL and BLTSP @, and if the local distribution for Y
is BLL and BLTSP ing, then the local distribution for Y i " is BLTSP.

Proof: The local distribution folr after reversingd — Y is exactly the same as the local distribution
for Y after a one-child OCS transformation fdr— Y; thus, the corollary follows from then= 1
case of Lemma 46.]

C.2.5 BLLFOR THEUPS ALGORITHM

We now show that if every node ii is BLL, then every node in the graph that results from applying
the UPS algorithm is also BLL.

Lemma 50 Let G be any Bayesian network, and @T be the result of applying the UPS algorithm
with Bayesian network; and non-root node Y . If every nodedhis BLL, then every node ig" is
BLL.

Proof: The result follows because, from Corollary 48, after each étlgeY is reversedy remains
BLL,; the property need not hold fafl after the reversal becaubkis immediately removed.]

C.2.6 BLLFOR THEONE ALGORITHM

Recall Algorithm ONE from Section B.2.2 which eliminates all observed noaes & model. In
this section, we show conditions under which the nodes that remain aftelgtivétbam are BLL.

As in Section B.2.2, we usg' to denote the Bayesian network that results dftesrations of the
While loop at step 3 of the algorithm, we defiljé? to be the graplﬂgT that results after applying
step 2 but before the first iteration of the While loop at step 3, wéHise denote the (lowest) node
chosen in iteratiom of the While loop, we us&' to denote the set of observed childrenHifon
iterationi of the While loop, and we usé¢ = Com F(Yi) to denote the composite node created by
the OCS transformation in iteratiorof the While loop.

Lemma 51 Let G be a Bayesian network in which all nodes are both BLL and BLTSP, aral let
be a set of observations for nod@s If for every Oc O that has at least one parent not @, the
observation ino for O is the distinguished state’ othen every node in the Bayesian netw@rk
that results from applying Algorithm ONE ® is BLL.

Proof: From Lemma 42, we know that we retain the BLL and BLTSP properties of ks
while removing edges in step 2, and thus all nodeg?nare both BLL and BLTSP. Similarly,
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from Proposition 43, step 4 does not affect the BLL or BLTSP propedfeéhe nodes that remain.
Thus, the lemma follows if we can show that for every OCS transformatioliegpp step 3 of the
algorithm, every non-observed node retains the BLL property.

Consider thath iteration of the While loop in step 3. From Corollary 47, if (1) the observed
state for each child iiY' is the distinguished state for that child, () is both BLL and BLTSP, and
(3) each child inY' is both BLL with respect to its distinguished state and BLTSP with respect to
its distinguished state, then we are guaranteed that all observed varithiesthe BLL property.
We now demonstrate that these three preconditions of Corollary 47 hodddoy iteration.

After applying step 2 of the algorithm, any observed node without at lessbbserved parent
will be completely disconnected from the graph, and thus precondition §\yays satisfied. From
Corollary 23, each unobserved node is chosen at most once in stepcaud® the parents (and
hence the local distribution) for an unobserved node only change wisenohosen in step 3, we
conclude that precondition (2) is always satisfied.

The only local distributions for nodes (@ that change in iterationare the node¥', which are
replaced by the single nod€. From Corollary 47, if preconditions (1) and (2) hold, and if every
nodeO € O is both BLL with respect t@® and BLTSP with respect to” beforethe transformation,
then every nod®© < O is both BLL with respect ta® and BLTSP with respect ta® after the
transformation. Because all nodesOnare initially both BLL with respect to their distinguished
states and BLTSP with respect to their distinguished states, preconditiaiwg)s holds and the
lemma follows.[J

Appendix D. Main Results

In this appendix, we prove Lemma 17 and Lemma 5 using results establishedpretteus ap-
pendices.

Lemma 52 Let G be any Bayesian network in which all local distributions are BLL, and let X be
any root node ing. If X and Y are d-connected by @ractive path ing, then gy°x°) > p(y°|x}).

Proof: From Lemma 50, we can apply Algorithm UPS ¢band nodeY, and every node in the
resulting modelG" will be BLL. Furthermore, we know from Lemma 20 thAtis a root-node
parent ofY, and that all other nodez in gT are also root-node parents 6f Expressing the
difference of interest using " :

P(Y’x°) — p(y°Ixt) = [Zp yx°,2)p Z|X°] [Zp yIx,2)p ZIXO)]

Because all nodes id are d-separated frotd in g whenevel is not in the conditioning set we
have

P(Y°1XC) — p(y°|x*) = Z P(2) [PT (Y’ 2) — pT (Y%, 2)] -
Every difference in the sum above is guaranteed to be greater thahydedinition of BLL.[]

Theorem 53 Let G be a Bayesian network in which all conditional distributions are BLL and
BLTSP, and leb be a set of observations for nodés If for every Oe O that has at least one
parent not inO, the observation i for O is the distinguished staté athen if there is &D-active
path between X and Y ig, then gy°|x%,0%) > p(y°|x},a°).
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Proof: Without loss of generality, assume théats not a descendant ¥fin G. LetUAng X) denote
the set of unobserved nodesdhfor which there is a directed path ¥though unobserved nodes.
In other wordsUANn(X) is the set of ancestors &f if we were to remove all of the nodes @
from G. We prove the theorem by induction on the siz&JéindX).

For the basis, we consider the case wh¢AngX)| = 0. From Lemma 51, we can use Algo-
rithm ONE to convertj into a Bayesian network containing only unobserved nodes and for which
every node is BLL. Furthermore, becauseéhas no unobserved parentsdh we can assume by
Lemma 24 thaK is a root node in the resulting modng. Because there is @-active path be-
tweenX andY in G, there must be @-active path betweeX andY in GT. Thus the base case
follows from Lemma 52.

For the induction hypothesis, we assume the theorem is true whelbed X)| is less than
k, and we consider the case whelhAn(X)| = k. Let Z be any element dJ AngX) for which no
parent ofZ is also inUANng X); that is,Z is a root-node ancestor &fin the graph that results from
removingO from G. Becaus& ¢ O, we know that the theorem holds if

P2, 0%)p(y°1x°,2,0%) +  p(x’,0%) p(y’x°, 2", o)
>

p(2Ix',0%)p(y°x"2,0%)  +  p(!x",0%) py’Ixt, 2t o).

We conclude from Proposition 29—using; = p(Zx%,0%), az = p(@|x!,0%, and fi =
p(y°|x,z,0%)—that the following four conditions are sufficient to establipky®|x?,o%) >

P(y°Ixt, 0%):

1. p(2|x°,a%) > p(2|x%, %) (i.e.,a1 > ay)
2. p(y°x°,2,0% > p(y°[x°,Z, 0°) (i.e., £00 > 01
3. p(y°x°,24,0% > p(y°|x*, Z, 0°) (i.e., fOL > 11
4. p(y°]x°,2°,0% > p(y°|x*, 2,0°) (i.e., £00 > 10y

and that either of the following two conditions is sufficient to rule out equadity] thus establish
the lemma:

p(yO‘XO,ZO,OO) > p(yO’XO’Zl’OO)) A
(p(@x%,0% > p(2|x,0%)) (i.e., (0 > ap) A (90> fO1))

6. p(y°1x°, 2%, 0% > p(y°|x}, 2, 0% (i.e., f00 > £10)

We consider two cases: ig, eitherX andY are d-separated b U {Z} or they are not d-
separated b U {Z}.

Suppose&X andY are d-separated YU {Z}. We can immediately conclude that equality holds
for both (3) and (4). Becaus¢ andY are not d-separated Iy, we conclude both that andY are
d-connected give® and thaty andZ are d-connected give@® U X. From this first d-connection
fact and the fact thgtUAn(Z)| = 0, we conclude that (1) is a strict inequality by the base case of
the induction. From the second d-connection fact, and because tlongitans of the theorem are
not violated by addingk = x° to the observation set, we conclude that (2) is also a strict inequality
by again deferring to the base case of the induction. Thus, all inequaliji€d)(hold, with (1)
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and (2) holding as strict inequalities. Because condition (5) is simply the rctign of the strict
versions of (2) and (1), the theorem follows.

SupposeX andY are not d-separated b9 U {Z}. In this case, the two d-connection facts
from the previous case may or may not hold. If either or both of them hatd;cam show that the
corresponding inequality is strict using the same argument as above. df eitlboth of them do
not hold, we conclude that equality holds for the corresponding inequalitys, we know that (1)
and (2) both hold, although we have no guarantees on strictness.dgemdaaf the parents of are
necessarily in the conditioning set, the preconditions of the theorem avtaied by adding either
z=2° or z= 7 to the conditioning set. Because the result of either addition redudeszX)| by
one, we conclude by induction that both (3) and (4) are strict inequalifiesis, all inequalities
(2)-(4) hold. Because condition (6) is simply the strict version of (4)thieerem follows[]

Theorem 53 is closely related to existing results in the QBN literature. In platidiheorem 4
from Druzdzel and Henrion (1993) implies that in a graph satisfying timestioct versions of BLL
and BLTSP, our Theorem 53 holds except with the conclusiongh@tx®, a®) > p(y°|x*, ).

We now prove the main results of the appendices. We re-state the coraiayauopting our
convention of usingy to denote both the structure and the parameters of a Bayesian network.
Lemma 17Let G be a Bayesian network in which all local distributions are both BLL and BLTS
Then the joint distribution represented yis perfect with respect to the structure gf
Proof: Let p(-) denote the joint distribution defined liy. Becausep(-) is defined by a Bayesian
network, we know it factors according to the structureggfand thus we need only show that)
is faithful with respect to the structure ¢f. To demonstrate thai(-) is faithful, we consider an
arbitrary d-connection fact iy and prove that there is a corresponding dependenpé jnLet X
andY be any pair of nodes ig that are d-connected by some &etn G. From Theorem 53, we
know that for the observatio® = o°, we havep(y°|x°,a®) > p(y°|xt,0%), and thusp(:) is faithful.

O

We now prove Lemma 5; this lemma provides a method for constructing BLL affit6BL

distributions.

Lemma 5Let G be a Bayesian network, leg denote the number of states of node Y P&t denote

the set of parents of node Y &, let NNZpa, ) denote the number of non-zero elements in the set
pay, and letax be a constant satisfying< ax < 1. If all of the local distributions are defined as

way=] o @2)
P& = =y (l—a;(pa‘()> otherwise,

where
F(pay) =22 NNZPay),

then the distribution defined hy is perfect with respect to the structure gf
Proof: Given Lemma 17, we need only show thy|pa, ) is BLL and BLTSP. For every variable
in G, we define the distinguished state to be state zero, and we order the sthtdsesstate zero is
greatest and all non-zero states are equal. Thus, according to thiioefof BLL (Definition 40)
and the definition of BLTSP (Definition 41), we need to show th@tpa, ) is binary-like, lattice
with respect toy = 0, and totally strictly positive with respect yo= 0.

Due to the definition ofF in Equation 42, it follows immediately from Definition 39 that
p(y|pay) is binary-like. We now show thai(y|pay ) is lattice with respect tg = 0. From Equation
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42, this follows as long as

NNZpal NNZpa2
) Z(paY) S 0(2_( ) Z(paY>

1
2

NI

a2 (

whenpa} andpaZ are identical except thagd contains one extra zero in some position. Due to the
fact thata < 1, the above condition is equivalentNiNZ(pal) < NNZ(pa) (simplify by taking the
logarithm base, then subtracting constants, then multiplying by -1, and then taking the logarithm
base%; the direction of the sign above thus changes three times). Bepahis®ntains exactly one
more zero than dogsd, NNZ(pal) = NNZ(pa?) 4 1 and we conclude that(y|pa, ) is lattice with
respect toy = 0.

Finally, we show thap(y|pay ) is totally strictly positive with respect tp= 0. For an arbitrary
pair of parentgX;, X;} C Pa,, let X;; denote the remaining parents. That is,

Pa, = {X, X} UXjj.
From Definition 27 (and the example that follows it), it suffices to show that
P(y = 0x?,x7,xij ) Py = Ox¢", X}, ij) > p(y = O]x, X}, xij) p(y = O]x", X, i} ).
Letting n;j; denote the number of non-zero elements;jrand plugging in Equation 42 yields
o2 (1) g2 (3)" 5 g2 ()" g2 ()"
Taking the logarithm (bas®) of both sides (which reverses the sign of the inequality becaust#),
subtracting 4 from both sides, and then dividing both sides y‘y' (which reverses the sign of the

inequality once again) leaves
AN
2 2 2

which clearly holds[J
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