
Journal of Machine Learning Research 5 (2004) 1287–1330 Submitted 3/04; Published 10/04

Large-Sample Learning of Bayesian Networks is NP-Hard

David Maxwell Chickering DMAX @MICROSOFT.COM

David Heckerman HECKERMA@MICROSOFT.COM

Christopher Meek MEEK@MICROSOFT.COM

Microsoft Research
Redmond, WA 98052, USA

Editor: David Madigan

Abstract
In this paper, we provide new complexity results for algorithms that learn discrete-variable Bayesian
networks from data. Our results apply whenever the learningalgorithm uses a scoring criterion that
favors the simplest structure for which the model is able to represent the generative distribution ex-
actly. Our results therefore hold whenever the learning algorithm uses a consistent scoring criterion
and is applied to a sufficiently large dataset. We show that identifying high-scoring structures is NP-
hard, even when any combination of one or more of the following hold: the generative distribution
is perfect with respect to some DAG containing hidden variables; we are given an independence
oracle; we are given an inference oracle; we are given an information oracle; we restrict potential
solutions to structures in which each node has at mostk parents, for allk≥ 3.

Our proof relies on a new technical result that we establish in the appendices. In particular,
we provide a method for constructing the local distributions in a Bayesian network such that the
resulting joint distribution is provably perfect with respect to the structure of the network.
Keywords: learning Bayesian networks, search complexity, large-sample data, NP-Hard

1. Introduction

Researchers in the machine-learning community have generally accepted that without restrictive
assumptions, learning Bayesian networks from data is NP-hard, and consequently a large amount of
work in this community has been dedicated to heuristic-search techniques to identify good models.
A number of discouraging complexity results have emerged over the last fewyears that indicate that
this belief is well founded. Chickering (1996) shows that for a generaland widely used class of
Bayesian scoring criteria, identifying the highest-scoring structure fromsmall-sample data is hard,
even when each node has at most two parents. Dasgupta (1999) showsthat it is hard to find the
polytree with highest maximum-likelihood score. Although we can identify the highest-scoring
tree structure using a polynomial number of calls to the scoring criterion, Meek (2001) shows that
identifying the bestpath structure—that is, a tree in which each node has degree at most two—
is hard. Bouckaert (1995) shows that for domains containing only binary variables, finding the
parameter-minimal structure that is consistent with an independence oracle ishard; we discuss this
result in more detail below. Finally, Srebro (2001) shows that it is hard to find Markov networks
with bounded tree width that maximize the maximum-likelihood score.

In this paper, we are interested in the large-sample version of the learning problem considered
by Chickering (1996). The approach used by Chickering (1996) to reduce a known NP-complete
problem to the problem of learning is to construct a complicated prior networkthat defines the

c©2004 David Maxwell Chickering, David Heckerman and Christopher Meek.

CHICKERING, HECKERMAN AND MEEK

Bayesian score, and then create a dataset consisting of a single record. Although the result is
discouraging, the proof technique leaves open the hope that, in scenarios where the network scores
are more “well behaved”, learning is much easier.

As the number of records in the observed data grows large, most scoringcriteria will agree on the
same partial ranking of model structures; in particular, anyconsistentscoring criterion will—in the
limit of large data—favor a structure that allows the model to represent the generative distribution
over a structure that does not, and when comparing two structures that both allow the model to
represent the generative distribution, will favor the structure that results in fewer model parameters.
Almost all scoring criteria used in practice are consistent, including (1) anyBayesian criterion that
does not rule out model structures apriori, (2) the minimum-description-length criterion, and (3) the
Bayesian-information criterion.

In this paper, we consider the scenario when a learning algorithm is using aconsistent scoring
criterion with a large dataset. We assume that the learning algorithm has directaccess to the gener-
ative distribution itself; the resulting learning problem is to identify the simplest DAG that allows
the resulting Bayesian network to represent the generative distribution exactly. There are a number
of algorithms that have been developed for this large-sample learning problem. The SGS algorithm
(Spirtes, Glymour and Scheines, 2000), the GES algorithm (Meek, 1997;Chickering, 2002), and
the KES algorithm (Nielsen, Kŏcka and Pẽna, 2003) all identify the optimal DAG if there exists
a solution in which all independence and dependence relationships implied bythat structure hold
in the generative distribution (that is, the generative distribution isDAG perfectwith respect to the
observable variables). Unfortunately, none of these algorithms run in polynomial time in the worst
case.

With some restrictive assumptions, however, we can accomplish large-samplelearning effi-
ciently. If (1) the generative distribution is DAG perfect with respect to theobservable variables
and (2) we know that there exists a solution in which each node has at mostk parents (for some
constantk), then we can apply the SGS algorithm to identify the best network structure ina poly-
nomial number of independence tests. In particular, because we know thevaluek, we can limit the
worst-case number of independence tests used by the algorithm. Alternatively, if (1) the generative
distribution is DAG perfect with respect tosomeDAG that might contain vertices corresponding to
hidden variables, and (2) we are given a total ordering over the variables that is consistent with the
best structure, then we can find the best DAG using a polynomial number ofcalls to the scoring
criterion by applying a version of the GES algorithm that greedily adds and then deletes the parents
of each node.

Unfortunately, the assumptions needed for these special-case efficientsolutions are not likely to
hold in most real-world scenarios. In this paper, we show that in general—without the assumption
that the generative distribution is DAG perfect with respect to the observables and without the
assumption that we are given a total ordering—large-sample learning is NP-hard. We demonstrate
that learning is NP-hard even when (1) the generative distribution is perfect with respect to a DAG
(which contains hidden variables), (2) we are given an independenceoracle, (3) we are given given
an inference oracle, and/or (4) we are given an information oracle. Weshow that these results also
apply to the problem of identifying high-scoring structures in which each node has at mostk parents,
for all k≥ 3.

A secondary contribution of this paper is a general result about Bayesian networks: in the
appendices of this paper, we identify two properties of the local distributionsin a Bayesian network

1288

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

that are sufficient to guarantee that all independence and dependence facts implied by the structure
also hold in the joint distribution. Our NP-hard proof relies on this result.

As an extension of our main result, we consider the case in which we are given an independence
oracle, and we show in Theorem 15 that the resulting learning problem remains NP-hard. This
theorem extends the independence-oracle result of Bouckaert (1995) in a number of ways. Perhaps
most important, we place no restriction on the number of states for the (discrete) variables in the
domain, which proves the conjecture in Bouckaert (1995) that learning with an independence oracle
in non-binary domains is NP-hard. Another extension we make has to do with assumptions about
the generative distribution. In the elegant reduction proof of Bouckaert (1995), the constructed inde-
pendence oracle is consistent with a particular generative distribution thatis not perfect with respect
to any DAG. Although this distribution has properties that yield a much simpler reduction than our
own, the results of this paper apply under the common assumption in the machine-learning literature
that the generative distribution is, in fact, perfect with respect to some DAG. Furthermore, the DAG
we use in the reduction, which contains hidden variables, has a sparse dependency structure: each
node has at most two parents. Finally, our result extends the Bouckaert(1995) oracle-learning result
to scenarios where we want to identify sparse (i.e., parent-count limited) model structures that are
consistent with an oracle.

2. Background

In this section, we provide background material relevant to the rest of thepaper. We denote a
variable by an upper case token (e.g.,A,Bi ,Y) and a state or value of that variable by the same
token in lower case (e.g.,a,bi ,y). We denote sets with bold-face capitalized tokens (e.g.,A,B) and
corresponding sets of values by bold-face lower case tokens (e.g.,a,b). Finally, we use calligraphic
tokens (e.g.,B,G) to denote Bayesian networks and graphs.

In this paper, we concentrate on Bayesian networks for a set of variables X = {X1, . . . ,Xn},
where eachXi ∈ X has a finite number of states. ABayesian networkfor a set of variablesX
is a pair(G ,θG) that defines a joint probability distribution overX. G = (V,E) is an acyclic
directed graph—orDAG for short—consisting of (1) nodesV in one-to-one correspondence with
the variablesX, and (2) directed edgesE that connect the nodes.θG is a set of parameter values
that specify the conditional probability distributions that collectively define the joint distribution.

We assume that each conditional probability distribution is a full table. That is,for each variable
there is a separate (unconstrained) multinomial distribution given every distinct configuration of the
parent values. For a variableXi with r i states,r i−1 parameters are both necessary and sufficient to
specify an arbitrary multinomial distribution overXi . Thus, assuming that there areqi distinct parent
configurations forXi , the conditional distribution forXi will contain (r −1) ·qi parameter values.
We also assume that the number of states for each variable is some constant that does not depend
on the number of variables in the domain.

Learning a Bayesian network from data requires both identifying the modelstructureG and
identifying the corresponding set of model parameter valuesθG . Given a fixed structure, however,
it is straightforward to estimate the parameter values. As a result, research on the problem of
learning Bayesian networks from data is focused on methods for identifying one or more “good”
DAG structures from data.

All independence constraints that necessarily hold in the joint distribution represented by any
Bayesian network with structureG can be identified by the by thed-separationcriterion of Pearl

1289

CHICKERING, HECKERMAN AND MEEK

(1988) applied to toG . In particular, two nodesX andY are said to be d-separated in a DAGG
given a set of nodesO if and only if there is noO-active pathin G betweenX andY; anO-active
path is a simple path for which each nodeZ along the path either (1) has converging arrows andZ
or a descendant ofZ is in O or (2) does not have converging arrows andZ is not inO. By simple,
we mean that the path never passes through the same node twice. If two nodes are not d-separated
given some set, we say that they ared-connectedgiven that set. We useX⊥⊥GY|Z to denote the
assertion that DAGG imposes the constraint—via d-separation—that for all valuesz of the setZ,
X is independent ofY givenZ = z. For a probability distributionp(·), we useX⊥⊥pY|Z to denote
the assertion that for all valuesz of the setZ, X is independent ofY givenZ = z in p.

We say that a distributionp(X) is Markov with respect to a DAGG if X⊥⊥GY|Z implies

X⊥⊥pY|Z. Similarly, we say thatp(X) is faithful with respect toG if X⊥⊥pY|Z impliesX⊥⊥GY|Z.
If p is both Markov and faithful with respect toG , we say thatp is perfectwith respect toG . Note
that if p is faithful with respect toG , thenX 6⊥⊥GY|Z implies thatthere existssomex, y andz such

that p(x,y|z) 6= p(x|z)p(y|z); there may be other values for which equality holds. We say thatp(X)
is DAG perfectif there exists a DAGG such thatp(X) is perfect with respect toG .

We say that a DAGG includesa distributionp(X)—and thatp(X) is included byG—if the
distribution can be represented by some Bayesian network with structureG . Because we are only
considering Bayesian networks that have complete tables as conditional distributions,G includes
p(X) if and only if p(X) is Markov with respect toG . We say that two DAGsG and G ′ are
equivalentif the two sets of distributions included byG andG ′ are the same. Due to the complete-
table assumption, an equivalent definition is thatG andG ′ are equivalent if they impose the same
independence constraints (via d-separation). For any DAGG , we say an edgeX→Y is coveredin G
if X andY have identical parents, with the exception thatX is not a parent of itself. The significance
of covered edges is evident from the following result:

Lemma 1 (Chickering, 1995) Let G be any DAG, and letG ′ be the result of reversing the edge
X→Y in G . ThenG ′ is a DAG that is equivalent toG if and only if X→Y is covered inG .

As described above, when a Bayesian network has complete tables, the number of parameters
is completely determined by its DAG and the number of states for each variable in the domain.
To simplify presentation, we assume that the number of states for the variable corresponding to
each vertex in a DAG is available implicitly, and therefore we can define the number of parameters
associated with a DAG without reference to the corresponding state counts. In particular, we say
that a DAGsupportsa number of parametersk when all Bayesian networks with that structure
(defined over a particular domain) containk parameters. The following result follows immediately
from Lemma 1 for Bayesian networks with complete tables:

Lemma 2 (Chickering, 1995) If G andG ′ are equivalent, then they support the same number of
parameters.

We say that DAGH includesDAG G if every distribution included byG is also included by
H . As above, an alternative but equivalent definition—due to the assumptionof complete-table
Bayesian networks—is thatH includesG if every independence constraint implied byH is also
implied byG . Note that we are using “includes” to describe the relationship between a DAG and a
particular distribution, as well as a relationship between two DAGs.

1290

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

Theorem 3 (Chickering, 2002) If H includesG , then there exists a sequence of single edge
additions and covered edge reversals inG such that (1) after each addition and reversal,G remains
a DAG, (2) after each addition and reversal,H includesG , and (3) after all additions and reversals,
G = H .

The “converse” of Theorem 3 will also prove useful.

Lemma 4 If F can be transformed intoG by a series of single edge additions and covered edge
reversals, such that after each addition and reversalF remains a DAG, thenG includesF .

Proof: Follows immediately from Lemma 1 and from the fact that the DAG that results fromadding
a single edge toF necessarily includesF . �

3. Main Results

In this section, we provide the main results of this paper. We first define the decision problems that
we use to prove that learning is NP-hard. As discussed in Section 1, in the limitof large data, all
consistent scoring criteria rank network structures that include the generative distribution over those
that do not, and among those structures that include the generative distribution, the criteria rank
according to the number of parameters supported—with simpler structures receiving better scores.
Thus, a natural decision problem corresponding to large-sample learning is the following:

LEARN
INSTANCE: Set of variablesX = {X1, . . . ,Xn}, probability distributionp(X), and constant param-
eter boundd.
QUESTION: Does there exist a DAG that includesp and supports≤ d parameters?

It is easy to see that if there exists an efficient algorithm for learning the optimal Bayesian-
network structure from large-sample data, we can use that algorithm to solve LEARN: simply learn
the best structure and evaluate the number of parameters it supports. By showing that LEARN
is NP-hard, we therefore immediately conclude that the optimization problem ofidentifying the
optimal DAG is hard as well. We show that LEARN is NP-hard using a reductionfrom a restricted
version of the NP-complete problem FEEDBACK ARC SET. The general FEEDBACK ARC SET
problem is stated by Garey and Johnson (1979) as follows:

FEEDBACK ARC SET
INSTANCE: Directed graphG = (V,A), positive integerk≤ |A|.
QUESTION: Is there a subsetA′ ⊂ A with |A′| ≤ k such thatA′ contains at least one arc from every
directed cycle inG?

Gavril (1977) shows that FEEDBACK ARC SET remains NP-complete for directed graphs in
which no vertex has a total in-degree and out-degree more than three. Werefer to this restricted
version as DEGREE-BOUNDED FEEDBACK ARC SET, orDBFASfor short.

The remainder of this section is organized as follows. In Section 3.1, we describe a polynomial-
time reduction from instances of DBFAS to instances of LEARN. In Section 3.2, we describe the
main result of the appendices upon which Section 3.3 relies; in Section 3.3, weprove that there is
a solution to an instance of DBFAS if and only if there is a solution to the instance of LEARN that
results from the reduction, and therefore we establish that LEARN is NP-hard. In Section 3.4, we

1291

CHICKERING, HECKERMAN AND MEEK

extend our main result to the case when the learning algorithm has access to various oracles, and
to the case when there is an upper bound on the number of parents for each node in the solution to
LEARN.

For the remainder of this paper we assume—without loss of generality—that in any instance of
DBFAS, no vertex has in-degree or out-degree of zero; if such a node exists, none of its incident
edges can participate in a cycle, and we can remove that node from the graph without changing the
solution.

3.1 A Reduction from DBFAS to LEARN

In this section, we show how to reduce an arbitrary instance of DBFAS into acorresponding instance
of LEARN. To help distinguish between elements in the instance of DBFAS and elements in the
instance of LEARN, we will subscript the corresponding symbols withD andL, respectively. In
particular, we useGD = (VD,AD) andkD to denote the graph and arc-set bound, respectively, from
the instance of DBFAS; from this instance, we create an instance of LEARNconsisting of a set of
variablesXL, a probability distributionpL(XL), and a parameter bounddL.

For eachVi ∈ VD in the instance of DBFAS, we create a corresponding nine-state discrete vari-
ableVi for XL. For each arcVi → Vj ∈ AD in the instance of DBFAS, we create seven discrete
variables forXL: Ai j ,Bi j ,Ci j ,Di j ,Ei j ,Fi j ,Gi j . VariablesAi j , Di j andGi j have nine states, variables
Bi j , Ei j andFi j have two states, and variableCi j has three states. There are no other variables in
XL for the instance of LEARN. The probability distributionpL(XL) for the instance of LEARN is
specified using a Bayesian network(H L,θH L

). The model is defined over the variables inXL,
along with, for each arcVi →Vj ∈ AD from the instance of DBFAS, a single “hidden” binary vari-
ableHi j . Let HL denote the set of all such hidden variables. The distributionpL(XL) is defined by
summing the distributionpL(HL,XL), defined by(H L,θH L

), over all of the variables inHL. The

structureH L is defined as follows. For each arcVi →Vj ∈ AD in the instance of DBFAS, the DAG
contains the edges shown in Figure 1. The number of states for each nodein the figure is specified
in parentheses below the node.

V

i

V

j

G

ij

F

ij

E

ij

D

ij

C

ij

B

ij

A

ij

H

ij

(9)

(9)

(9)

(9)

(9)

(2)
 (2)

(2)

(2)

(3)

Figure 1: Edges inH L corresponding to each arcVi →Vj ∈ AD from the instance of DBFAS. The
number of states for each node is given in parentheses below the node.

For an example, Figure 2a shows an instance of DBFAS, and Figure 2b shows the resulting
structure ofH L.

1292

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

(a)

V

1

V

2

V

3

(b)

G

31

F

31

E

31

D

31

C

31

B

31

A

31

H

31

G

12

F

12

E

12

D

12

C

12

B

12

A

12

H

12

V

2

V

3

V

1

G

23

F

23

E

23

D

23

C

23

B

23

A

23

H

23

Figure 2: An example of the structureH L that results from the reduction from a specific instance
of DBFAS: (a) an instance of DBFAS consisting of three nodesV1, V2 andV3 and (b) the
corresponding structureH L.

We now specify the local probability distributions inθH L
. Let rX denote the number of states

of X, let PaX denote the set of parents ofX in H L, and letNNZ(paX) denote the number of values
in paX that arenotequal to zero. Then for each nodeX in H L, the local probability distribution for
X is defined as follows:

p(X = x|PaX = paX) =



























































1
16 if x = 0 andNNZ(paX) = 0

1
(rX−1)

15
16 if x 6= 0 andNNZ(paX) = 0

1
64 if x = 0 andNNZ(paX) = 1

1
(rX−1)

63
64 if x 6= 0 andNNZ(paX) = 1

1
128 if x = 0 andNNZ(paX) = 2

1
(rX−1)

127
128 if x 6= 0 andNNZ(paX) = 2.

(1)

Because each node inH L has at most two parents, the above conditions define every local distribu-
tion in θH L

.
Finally, we define the constantdL in the instance of LEARN. Every node inGD has either

exactly one or exactly two parents because, in any instance of DBFAS, thetotal degree of each node
is at most three and by assumption no node has an in-degree or an out-degree of zero. LettD denote
the number of nodes inGD from the instance of DBFAS that have exactly two in-coming edges;
similarly, let oD = |VD|− tD be the number of nodes that have exactly one in-coming edge. Then

1293

CHICKERING, HECKERMAN AND MEEK

we have
dL = 186|AD|+18kD +16(|AD|−kD)+16oD +32tD. (2)

We now argue that the reduction is polynomial. It is easy to see that we can specify the structure
H L and the bounddL in polynomial time; we now argue that we can specify all of the parameter
valuesθH L

in polynomial time as well. Because each node inH L has at most two parents, each
corresponding conditional-probability table contains a constant number ofparameters. Thus, as
long as each parameter is represented using number of bits that is polynomialin the size of the
instance of DBFAS, the parametersθH L

can be written down in polynomial time. Each node has

either two, three, or nine states, and thus it follows from the specification ofp(X = x|PaX = paX)
in Equation 1 that each parameter is a fraction whose denominator is a power of two that can never
exceed 1024 (i.e.,(9−1)×128). Thus, when using a straight-forward binary representation forthe
parameter values, we can represent each such value exactly using at most ten (i.e., log21024) bits.
Thus we conclude that the entire reduction is polynomial.

3.2 Specifying a Perfect Distribution

In our reduction from DBFAS to LEARN in the previous section, we specified the probability
distribution pL(XL) using the Bayesian network(H L,θH L

). As we shall see in Section 3.3, our

proof that LEARN is NP-hard requires that the distributionpL(HL,XL) is perfect with respect to
the structureH L. In this section, we discuss the result from the appendices that guarantees that the
local distributions defined by Equation 1 lead to an appropriate joint distribution.

Our results on perfectness are closely related to work on qualitative beliefnetworks (QBNs),
which are studied by (e.g.) Wellman (1990) and Druzdzel and Henrion (1993). In the appendices,
we consider two properties of local probability distributions: one is related tothe positive-influence
property of QBNs, and the other is related to the positive-product-synergy property of QBNs. For
a rigorous definition of these QBN concepts, see Druzdzel and Henrion(1993). Roughly speaking,
a distribution has the positive-influence property if observing higher values of a parent node cannot
decrease the probability of observing higher values of the target node when all other parent values
are fixed. The positive-product-synergy property dictates how changes in the values for apair of
parents affects the probability of the target node, and is closely related to the function property
multivariate total positivity of order twoin the mathematics community (see Karlin and Rinott,
1980). The two QBN properties imposenon-strictinequality constraints. For example, if the local
distribution for a nodeY has the positive-influence property, then increasing the value of one ofits
parents does not necessarily increase the probability ofY; it is instead constrained to not decrease.
The positive-product-synergy property imposes an analogous non-strict inequality constraint.

In the appendices, we define strict versions of the QBN properties for aspecial class of distribu-
tions. The main result of the appendices (Lemma 17) is that for any Bayesiannetwork in which each
local distribution has both of our properties, the joint distribution is necessarily perfect with respect
to the network structure. The following result provides a prescription forconstructing distributions
for which both our properties hold:

Lemma 5 Let (G ,θG) be a Bayesian network, let rX denote the number of states of node X, let

PaX denote the set of parents of node X inG , let NNZ(paX) denote the number of non-zero elements
in the setpaX, and letαX be a constant satisfying0 < αX < 1. If all of the local distributions inθG

1294

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

are defined as

p(X = x|PaX = paX) =







αF(paX)
X if x = 0
1

(rX−1)

(

1−αF(paX)
X

)

otherwise,
(3)

where

F(paX) = 2−
1
2

NNZ(paX)

,

then the distribution defined by(G ,θG) is perfect with respect toG .

The local distributions defined by Equation 1 are simply specializations of Equation 3 where
αX = 1

16 for everyX. Thus, the following corollary follows immediately from Lemma 5:

Corollary 6 The distribution pL(HL,XL) resulting from the reduction is perfect with respect toH L.

3.3 Reduction Proofs

In this section, we prove LEARN is NP-hard by demonstrating that there is a solution to the instance
of DBFAS if and only if there is a solution to the instance of LEARN that results from the reduction.
In the results that follow, we often consider sub-graphs of solutions to LEARN that correspond
only to those nodes that are “relevant” to a particular arc in the instance of DBFAS. Therefore, to
simplify the discussion, we use{Vi ,Vj} edge componentto refer to a sub-graph defined by the nodes
{Vi ,Ai j ,Bi j ,Ci j ,Di j ,Ei j ,Fi j ,Gi j ,Vj}. We useedge componentwithout reference to a particularVi

andVj when an explicit reference is not necessary. Figure 3, which is key to the results that follow,
shows two configurations of the edges in an edge component.

V

i

V

j

G

ij

F

ij

E

ij

D

ij

C

ij

B

ij

A

ij

V

i

V

j

G

ij

F

ij

E

ij

D

ij

C

ij

B

ij

A

ij

(a)
 (b)

Figure 3: Two configurations of the edges in an edge component.

We first prove a preliminary result that is used in both of the main proofs of this section. Re-
call thatH L contains an additional “hidden” nodeHi j within each edge component. We will be
considering active paths inH L, but are only concerned about those in which the endpoints are in
XL and for which noHi j is in the conditioning set; these active paths correspond to dependencies
that exist within the (marginalized) distributionpL(XL). To simplify presentation, we define aXL-
restrictedactive path to denote such an active path. In this and later results, we will demonstrate

1295

CHICKERING, HECKERMAN AND MEEK

that one DAGF 1 includes another DAGF 2 by showing that for any active path inF 2, there exists
a corresponding (i.e., same endpoints and same conditioning set) active pathin F 1.

Lemma 7 Let pL(XL) be the distribution defined for the instance of LEARN in the reduction, and
let F be any DAG defined overXL such that each edge component inF contains the edges in either
Figure 3a or in Figure 3b. ThenF includes pL(XL).

Proof: Let H L be the DAG definingpL(XL) in the reduction. We prove thatF includespL(XL)
by demonstrating that for everyXL-restricted active path inH L, there exists a corresponding active
path inF . To do this, we construct an additional modelH

′ that includesH L—and consequently
H
′ can representpL(XL) exactly—such thatXL-restricted active paths inH ′ are easily mapped to

their corresponding active paths inF .
We createH

′ from H L as follows. For eachi and j, if the edge component inF is in the
configuration shown in Figure 3a, we add the edgeEi j → Hi j to H and then reverse the (now
covered) edgeHi j → Fi j . Similarly, if the edge component inF is in the configuration shown in
Figure 3b, we add the edgeBi j → Hi j to H and then reverse the edgeHi j → Ci j . The resulting
components inH ′ are shown in Figure 4a and Figure 4b, respectively. Because we createdH

′ by

V

i

V

j

G

ij

F

ij

E

ij

D

ij

C

ij

B

ij

A

ij

V

i

V

j

G

ij

F

ij

E

ij

D

ij

C

ij

B

ij

A

ij

(a)
 (b)

H

ij

H

ij

Figure 4: Edges inH ′ corresponding to the edge components in Figure 3

edge additions and covered edge reversals, we know by Lemma 4 thatH
′ includesH L. It is now

easy to see that anyXL-restricted active path inH ′ has a corresponding active path inF : simply
replace any segmentX→ Hi j →Y in the path by the corresponding edgeX→Y from F , and the
resulting path will be active inF . �

Theorem 8 If there is a solutionA′D to the given instance of DBFAS with|A′D| ≤ kD, then there is a
solutionF L to the instance of LEARN with≤ dL parameters.

Proof: We create a solution DAGF L as follows. For every arcVi → Vj ∈ A′D in the DBFAS
solution,F L contains the edges shown in Figure 3a. For the remaining arcsVi → Vj that are not
in A′D, F L contains the edges shown in Figure 3b.F L contains no other edges. First we argue
that F L is acyclic. Each{Vi ,Vj} edge component inF L is itself acyclic, and contains a directed
path fromVi to Vj if and only if the corresponding arcVi →Vj ∈ AD from the instance of DBFAS
is not in A′D; if the corresponding arc from the instance of DBFAS is inA′D, F L contains neither

1296

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

a directed path fromVi to Vj , nor a directed path fromVj to Vi that is contained within the edge
component. Therefore, for any hypothetical cycle inF L, there would be a corresponding cycle
in GD that passed entirely through arcs not inA′D, which is impossible assumingA′D is a solution
to DBFAS. From Lemma 7, we know thatF L includespL(XL). Now we derive the number of
parameters supported byF L. Within each edge component, the parents forAi j , Bi j , Di j , Ei j and
Gi j are the same regardless of whether or not the arc is inA′D; it is easy to verify that for each edge
component, the local distributions for these nodes contribute a total of 186 parameters. For each arc
Vi →Vj ∈ A′D, the corresponding nodesCi j andFi j contribute a total of 16+2 = 18 parameters; for
each arcVi→Vj 6∈ A′D, the nodesCi j andFi j contribute a total of 4+12= 16 parameters. For every
nodeVi ∈ VD in the instance of DBFAS that has exactly two parents, the correspondingVi ∈ XL in
the instance of LEARN will also have two parents. Similarly, for every nodeVi ∈ VD with exactly
one parent, the correspondingVi ∈ XL has exactly one parent. By construction ofF L, every parent
node for anyVi ∈ XL has two states (and is equalFji for some j), and therefore because each node
Vi ∈XL has nine states, the total number of parameters used in the local distributions for these nodes
is 16oD +32tD. Thus, we conclude that the number of parameters inF is exactly

186|AD|+18|A′D|+16(|AD|− |A′D|)+16oD +32tD.

Because|A′D| ≤ kD, we conclude from Equation 2 that the number of parameters inF L is less than
or equal todL, and thusF L is a valid solution to the instance of LEARN.�

Theorem 9 If there is a solutionF L to the instance of LEARN with≤ dL parameters, then there is
a solution to the given instance of DBFAS with|A′D| ≤ kD.

Proof: Given the solutionF L, we create a new solutionF L
′ as follows. For every pair(Vi ,Vj)

corresponding to an edgeVi→Vj ∈ AD in the instance of DBFAS, if there is no directed path inF L

from Vi to Vj , then the corresponding edge component inF L
′ contains the edges shown in Figure

3a. Otherwise, when there is at least one directed path inF L from Vi to Vj , the corresponding edge
component inF L

′ contains the edges shown in Figure 3b. By construction,F L
′ will contain a cycle

only if F L contains a cycle, and consequently we conclude thatF L
′ is a DAG. From Lemma 7, we

know thatF L
′ includespL(XL).

In the next two paragraphs, we argue thatF L
′ does not support more parameters than doesF L.

Consider the DAGF 0 that is identical toF L
′, except that for alli and j, the only parent ofCi j is

Bi j and the only parent ofFi j is Ei j (see Figure 5). BecauseF 0 is a subgraph ofF L
′, any active

V

i

V

j

G

ij

F

ij

E

ij

D

ij

C

ij

B

ij

A

ij

Figure 5: Edges within each edge component ofF 0

path inF 0 must have a corresponding active path inF L
′, and thus we conclude thatF L

′ includes

1297

CHICKERING, HECKERMAN AND MEEK

F 0. The original solutionF L also includesF 0 by the following argument:F 0 is a strict sub-graph
of H L (F 0 contains a subset of the edges and noHi j nodes), and thus any active path inF 0 has a
correspondingXL-restricted active path inH L; becauseH L is perfect with respect to the distribution
pL(HL,XL) defined by(H L,θH L

) (Corollary 6), we know that any suchXL-restricted active path

in H L corresponds to a dependence inpL(XL), and thus, becauseF L includespL(XL), there must
be a corresponding active path inF L.

From Theorem 3, we know that there exists a sequence of edge additions and covered edge
reversals that transformsF 0 into F L, and another sequence of edge additions and covered edge
reversals that transformsF 0 into F L

′. From Lemma 1 and Lemma 2, a covered edge reversal does
not change the number of parameters supported by a DAG, and thus we can compare the number
of parameters supported by the two DAGs by evaluating the increase in parameters that result from
the additions within each of the two transformations.F 0 can be transformed intoF L

′ by simply
adding, for each edge component, the corresponding two extra edges inF L

′. That is, we either (1)
add the edgesEi j →Ci j andFi j →Ci j , resulting in an increase of 12 parameters, or (2) add the edges
Bi j → Fi j andCi j → Fi j , resulting in an increase of 10 parameters. IfF L supports fewer parameters
thanF L

′, there must be at least one{Vi ,Vj} edge component for which the total parameter increase
from adding edges between nodes in that component is less than the corresponding increase in
F L
′. In order to reverse any edge in an edge component fromF 0, we need to first cover that

edge by adding at least one other edge that is contained in that component; itis easy to verify
that any such “covering addition” results in an increase of at least 16 parameters (addingEi j →Vj

results in this increase, and all other additions result in a larger increase). Thus we conclude that
for the{Vi ,Vj} edge component, only edge additions are performed in the transformation from F 0

to F L. Hi j does not exist inF L, and therefore becausepL(HL,XL) is a DAG-perfect distribution
(Corollary 6),Ci j andFi j cannot be conditionally independent given any other nodes inXL; thus,
in order forF L to includepL(XL), there must be an edge betweenCi j andFi j in F L. We consider
two cases, corresponding to the two possible directions of the edge between Ci j andFi j in F L. If
the edge is directed asCi j → Fi j , we know that there is a directed path betweenVi andVj in F L

because none of the edges fromF 0 can be reversed. By construction ofF L
′, this implies that the

increase in parameters supported byF L
′ attributed to this edge component is 10. InH L, Fi j and

Bi j are d-connected given any conditioning set fromXL that containsCi j (see Figure 1), and thus
we know thatFi j 6⊥⊥pL

Bi j |S for any S⊂ XL that containsCi j ; this implies that the edgeBi j → Fi j

must exist inF L, else we could find a conditioning setS that containsCi j for whichFi j⊥⊥F L
Bi j |S,

which contradicts the fact thatF L includespL(XL). But adding bothCi j → Fi j andBi j → Fi j to
F 0 requires an addition ofat least10 parameters, contradicting the supposition that the parameter
increase due to this edge component is smaller inF L than inF L

′. If the edge betweenCi j andFi j is
directed asFi j →Ci j , we know thatF L must also contain the edgeEi j →Ci j , lest (using the same
logic as above) there would exist some conditioning setS containingFi j such thatCi j⊥⊥F L

Ei j |S
but Ci j 6⊥⊥pL

Ei j |S, contradicting the fact thatF L includespL(XL). Adding both of these edges,
however, requires an addition ofat least12 parameters; because the corresponding edge component
in F L

′ attributedat most12 parameters in the transformation fromF L
′, this again contradicts the

supposition that the parameter increase due to this edge component is smaller inF L than inF L
′.

Having established thatF L
′ is a solution to LEARN that supports fewer parameters thanF L,

we now useF L
′ to construct a solutionA′D to the instance of DBFAS. For each{Vi ,Vj} edge

1298

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

component inF L
′, if that component contains the edges shown in Figure 3a, then we include inA′D

the arcVi →Vj . A′D contains no other arcs.
We now argue thatA′D contains at least one arc from every cycle from the instance of DBFAS.

Each arcVi → Vj ∈ AD that isnot contained inA′D has a corresponding edge component inF L
′

for which there is a directed path fromVi to Vj . Thus, any hypothetical cycle in the instance of
DBFAS that does not pass through an edge inA′D has a corresponding directed cycle inF L

′, which
is impossible becauseF L

′ is a DAG.
Finally, we argue thatA′D contains at mostkD arcs. Recall thatoD andtD denote the number

of nodes inGD that have exactly one and two in-coming edges, respectively. As in the proof of
Theorem 8, it is easy to verify that the number of parametersd′L supported byF L

′ is exactly

186|AD|+18|A′D|+16(|AD|− |A′D|)+16oD +32tD.

Given thatd′L ≤ dL, we conclude from Equation 2 that|A′D| ≤ kD. �

Given the previous results, the main result of this paper now follows easily.

Theorem 10 LEARN is NP-hard.

Proof: Follows immediately from Theorem 8 and Theorem 9.�

Also, due to the fact that the distribution in the reduction is obtained by marginalizing out the
hidden variables in a DAG-perfect distribution, the following result is immediate.

Corollary 11 LEARN remains NP-hard when we restrict the input probability distribution tobe the
marginalization of a DAG-perfect distribution.

3.4 Extensions

Many approaches to learning Bayesian networks from data use independence tests or mutual-
information calculations to help guide a search algorithm. In this section, we show that even if
such tests and calculations could be obtained in constant time, the search problem remains hard.
In particular, we show that Theorem 10 holds even when the learning algorithm has access to at
least one of three oracles. Furthermore, we show that the problem remains hard when we restrict
ourselves to considering only those solutions to LEARN for which each node has at mostk parents,
for all k≥ 3.

The first oracle we consider is an independence oracle. This oracle can evaluate independence
queries in constant time.

Definition 12 (Independence Oracle)
An independence oraclefor a distribution p(X) is an oracle that, in constant time, can determine
whether or not X⊥⊥pY|Z for any X and Y inX and for anyZ ⊆ X.

The second oracle we consider can perform certain inference queries in constant time; namely,
the inference oracle can return the joint probability of any constant-sizedset of variables. This
oracle can in turn be used to compute conditional probabilities in constant time using division.

Definition 13 (Constrained Inference Oracle)
A constrained inference oraclefor a distribution p(X) is an oracle that, in constant time, can com-
pute p(Z = z) for anyZ ⊆ X such that|Z| ≤ k for some constant k.

1299

CHICKERING, HECKERMAN AND MEEK

Some learning algorithms use mutual information—or an approximation of mutual
information—from a distribution to help construct model structures. The(conditional mutual) in-
formationbetween variablesX andY given the set of variablesZ is defined as

In f (X;Y|Z) = ∑
x,y,z

p(x,y,z) log
p(x,y|z)

p(x|z)p(y|z)
. (4)

The third oracle we consider can compute the mutual information between two variable in constant
time, given that there are only a constant number of variables in the conditioning set.

Definition 14 (Constrained Information Oracle)
A constrained information oraclefor a distribution p(X) is an oracle that, in constant time, can
compute In f(X;Y|Z) for any X and Y inX and for anyZ ⊆ X such that|Z| ≤ k for some constant
k.

Theorem 15 Theorem 10 holds even when the learning algorithm has access to (1) an indepen-
dence oracle, (2) a constrained inference oracle, or (3) a constrained information oracle.

Proof: We establish this result by demonstrating that we can implement all three of theseoracles in
polynomial time using the Bayesian network(H ,θH) from our reduction. Thus if LEARN can be
solved in polynomial time when we have access to any of the constant-time oracles, it must also be
solvable in polynomial timewithoutany such oracle.

(1) holds immediately because we can test for d-separation inH in polynomial time. (3) follows
from (2) because, given that each variable has some constant numberof states, we can implement a
constrained information oracle via Equation 4 by calling a constrained inference oracle a constant
number of times.

Let Z ⊆ X be any subset of the variables such that|Z| ≤ k for some constantk. It remains to be
shown how to computep(Z = z) in polynomial time from(H ,θH). The trick is to see that there
is always a cut-set of constant size that decomposesH into a set of polytrees, where each polytree
has a constant number of nodes; within any polytree containing a constantnumber of nodes, we can
perform inference in constant time. We define a cut-setB as follows:B contains every nodeBi j for
which (1)Ci j is in Z and (2)Bi j is not inZ. Note thatB∩Z = /0. Given conditioning setB, no active
path can contain a nodeCi j as an interior (i.e., non-endpoint) node, even when any subset ofZ is
added to the conditioning set (see Figure 6): any such hypothetical active path must pass through at
least one segmentBi j →Ci j ←Hi j . But this is not possible, because every such segment is blocked:
if Ci j is not inZ, then the segment is blocked becauseCi j has no descendants, and hence can have no
descendants in the conditioning set; ifCi j is in Z, then we know thatBi j ∈ B and thus the segment
is blocked byBi j .

Because no active path can pass through a nodeCi j , it follows by construction ofH that—given
B and any subset ofZ—each node inZ is d-connected to only a constant number of other nodes in
Z. Furthermore, the structure ofH that is bounded between theCi j nodes forms a polytree. Thus,
we can expressp(Z = z) as

p(Z = z) = ∑
b

p(Z = z,B = b)

= ∑
b

∏
i

p(T i = t i(z,b)),

1300

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

V

i

C

ij

B

ij

A

ij

G

ki

F

ki

E

ki

D

ki

C

ki

H

ki

G

li

F

li

E

li

D

li

C

li

H

li

B

li

B

ki

Figure 6: Portion ofH showing that no active path can pass through anyCi j onceBi j is given.

where eachT i contains a constant number of variables—t i(z,b) is the set of values for those vari-
ables as determined byz andb—that constitute a polytree inH . Thus, each termp(T i = t i(z,b))
above can be computed in constant time using inference in a polytree. Because there are at mostk
nodes inZ, the setB can contain at mostk nodes. Therefore, given that each node inB has at most
r states, there are at mostrk terms in the sum above—where bothr andk are constants—and we
conclude thatp(Z) can be computed in polynomial time.�

Finally, we prove that if we restrict LEARN to solutions in which each node has at mostk
parents, the problem remains NP-hard for allk≥ 3.

Theorem 16 Theorem 15 holds even when solutions to LEARN are restricted to DAGs in which
each node has at most k parents, for all k≥ 3.

Proof: The case wherek = 3 follows immediately from the proof of Theorem 8, where the con-
structed solution to LEARN is a DAG in which each node has at most three parents, and from the
proof of Theorem 9, where the given solution to LEARN is converted into a(better) solution in
which each node has at most three parents. It is easy to see that these proofs remain valid under a
less restrictive (k > 3) bound on the number of parents, and thus the theorem follows.�

4. Conclusion

In this paper, we demonstrated that the problem of identifying high-scoringDAGs from large
datasets when using a consistent scoring criterion is NP-hard. Togetherwith the result of Chickering
(1996) that the non-asymptotic learning problem is NP-hard, our result implies that learning is hard
regardless of the size of the data. There is an interesting gap in the present results. In particular,
Chickering (1996) proved that finite-sample learning is NP-hard when each node is restricted to
have at most two parents, whereas in this paper we proved that large-sample learning is NP-hard
with a three-parent restriction. This leads to the question of whether or notlarge-sample learning is

1301

CHICKERING, HECKERMAN AND MEEK

NP-hard when we restrict to two parents; we believe that this problem is probably NP-hard, and is
worth further investigation.

In practice, the large-sample learning problem actually requires scanninga dataset with a large
number of samples, as opposed to accessing a compact representation ofthe generative distribution.
We could alternatively have defined a learning problem in which there is an actual data set supplied;
the problem with this approach is that in order to guarantee that we get the large-sample ranking
of model structures, we will need the number of data points to be so large thatthe size of the
problem instance is exponential in the number of variables in the domain. Our results have practical
importance when it is reasonable to assume that (1) there is enough data such that the relative
ranking of those DAGs considered by the learning algorithm is the same as in the large-sample
limit, and (2) the number of records in the data is small enough that we can compute the score for
candidate structures in a reasonable amount of time.

As discussed in Section 1, there exist assumptions about the generative distribution that lead to
efficient large-sample learning algorithms. These assumptions are not likelyto hold in most real-
world scenarios, but the corresponding “correct” algorithms can workwell even if the assumptions
do not hold. An interesting line of research is to investigate alternative, weaker assumptions about
the generative distribution that lead to efficient learning algorithms and guarantee large-sample cor-
rectness.

Appendix A. Introduction to Perfectness Proofs

As described in Section 3.2, in these appendices we define two properties of local distributions,
and prove that as long as these properties hold for every local distribution in the network, the cor-
responding joint distribution is perfect with respect to the network structure. Lemma 5 follows
immediately from our main result once we demonstrate that the two properties hold for the family
of distributions defined by Equation 3.

The two properties that we define arebinary-like lattice(BLL) and binary-like totally strictly
positive(BLTSP). The “binary like” aspect of both of these properties refersto the fact that the
distributions are defined such that we can treat each variableas if it only has two states: a “distin-
guished” state and an “other” state. As first mentioned in Section 3.2, the BLLproperty of a local
distribution is similar to the positive-influence property found in the QBN literature; it specifies that
the probability of a node being in its “distinguished” state necessarily increases when we change a
single parent from the “other” state to the “distinguished” state. The difference between BLL and
the positive-influence property is that BLL requires that the probability strictly increase, whereas
the positive-influence property requires that the probability does not decrease. The BLTSP property
of a local distribution is similar to the positive-synergy property in the QBN literature. The intuition
behind this property is that it requires that the (BLL) influence of a parent strictly increases with the
number of other parents that are in the “distinguished” state. The difference between BLTSP and
positive synergy is, as above, the requirement of a strict inequality.

Our main result demonstrates that if all local distributions in a Bayesian network are both BLL
and BLTSP, then any active path corresponds to a dependence in the jointprobability distribution
defined by that network:

Lemma 17 Let (G ,θ) be a Bayesian network in which all local distributions defined byθ are both
BLL and BLTSP. Then the joint distribution represented by(G ,θ) is perfect with respect toG .

1302

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

The proof of Lemma 17 is non-trivial, but the main technique can be understood as follows.
We prove perfectness by demonstrating that for any active path betweentwo nodesX andY, there
is a corresponding dependence in the joint distribution whenever the nodes in the conditioning set
are all in their distinguished states. IfX andY are adjacent inG and if there are no nodes in
the conditioning set, this dependence follows easily from the definition of BLL. We establish the
general result by induction, using the simple case as the basis. In general, we show how to apply
graph transformations that result in a simpler model for which our induction step applies. Each
graph transformation is defined such that the original distribution over the non-observed nodes,
when conditioned on the observed nodes, is represented exactly, and where every local distribution
retains the BLL property; the BLTSP property is required in the original distributions to guarantee
that the BLL property is retained as a result of each transformation.

The appendices are organized as follows. In Appendix B, we describegraph-transformation
methods that can be applied to a Bayesian network. In Appendix C, we rigorously define BLL and
BLTSP, and we demonstrate that the transformations described in AppendixB necessarily maintain
the BLL property on every distribution. Finally, in Appendix D, we prove Lemma 17.

To simplify notation, we useG to denote a Bayesian network (as opposed to just the structure
of that network) for the remainder of the paper, and we leave the parameter valuesθ implicit.

Appendix B. Graph Transformations

In this section, we describe a number of transformations that we apply to a Bayesian network in
order to more easily prove our main result. For the remainder of the paper, we will assume that
the domain of interestV = {V1, . . . ,Vn} is decomposed into two sets of variables:O is the set
of observed variables for which we are given a corresponding set of stateso, and U is the set
of unobserved variables. In contrast to the “hidden” variablesHL described in Section 3.1, the
unobserved variablesU simply correspond to variables that are not in the particular conditioning set
O.

Given a Bayesian networkG defined over the domainO∪U, each transformation outputs a new
Bayesian networkGT . We will usep(·) andpT(·) to denote the probability distributions defined by
G andGT , respectively. As we see below,GT may be defined over only a subset of the nodes inG .
UsingOT andUT to denote the observed and unobserved nodes, respectively, that remain inGT , all
of our transformations maintain the following invariant:

∀uT pT(uT |oT) = p(uT |o). (5)

Note thato andoT are fixed (observed) values. In words, Equation 5 asserts that the distribution over
the unobserved nodes that remain after the transformation is identical in the two models whenever
we condition on the observed values.

B.1 Individual Transformations

There are five transformations that we use to prove our main result: edge deletion, edge reversal,
node combination, barren node removal, and observed-child separation. For each transformation,
there is both a structural change (e.g., an edgeX → Y is added) and a corresponding change to
the conditional distributions (e.g., the local distribution forY is extended to include the new parent
X). For the remainder of this paper, we assume that the local distributions in themodel that result

1303

CHICKERING, HECKERMAN AND MEEK

from a transformation are obtained via inference from the original model. In the case where the
parents of a node are identical in the two models, inference corresponds tocopying the original
local distribution.

Whenever the structure of the resulting model includes the original distribution, populating the
local distributions via inference results in a new model that defines the original joint distribution.
This follows because, by definition of inclusion, there exists a set of localdistributions for the new
model that yield the original joint distribution. Furthermore, these local distributions are unique
(assuming that the original distribution is positive) and must match the corresponding conditional
distributions from the original model; we use inference to ensure this match.

We say that a transformation isvalid if (1) the preconditions of the transformation (e.g., there
exists an edgeX→ Y in the model) are met and (2) the result of the transformation is an acyclic
model. We now consider each transformation in turn.

B.1.1 EDGE DELETION

An edge deletiondeletes an edge of the formO→ Y from G , whereO∈ O is an observed node,
and replaces the local distribution inY by the same local distribution except that the valueo for O
is fixed to its observed value (e.g.)o0 (see Figure 7). Thus, if the parents ofY areO∪Z in G , then
the new local distribution forY in GT is defined as

pT(y|z) = p(y|z,o0),

where the probabilityp(y|z,o0) can be extracted directly from the local distribution ofY in G . It is
easy to see that for the resulting modelGT we have

∀u pT(u,o) = p(u,o)

(for fixed o) and thus Equation 5 holds. Because deleting an edge can never create acycle, an
edge-deletion transformation (for an existing edge) is always valid.

O
 U

T

O
 U

T

p
T
(
u
|
t
)

=

p
(
u
|
t,o
0
)

Figure 7: Example of an edge-deletion transformation. The observed value of nodeO is o0. After
deleting the edgeO→ U , the local distribution for nodeU is identical to the original
distribution when constrained too = o0.

1304

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

B.1.2 EDGE REVERSAL

An edge reversal, originally defined by Howard and Matheson (1981), is a transformation that first
“covers” an edge by adding new edges until the edge is covered, and then reverses the edge (see
Figure 8). In particular, for an edgeH → Y, let X be the parents ofH that are not parents ofY,
let Z be the parents of bothH andY, and letW be the parents ofY that are not parents ofH. The
edge-reversal transformation adds the edgeX→Y for everyX ∈ X, adds the edgeW→H for every
W ∈W, and reversesH→Y.

Y
H

X
 Z
 W

Y
H

X
 Z
 W

p
T
(
h
|
x
,
z
,
w
,y
)

=

p
(
h
|
x
,
z
,
w
,
y
)

p
T
(
y
|
x
,
z
,
w
)

=

p
(
y
|
x
,
z
,
w
)

Figure 8: The relevant fragment of a graph structure for an edge-reversal transformation.

As shown in Figure 8, the local distributions forH andY in GT are defined by the joint distribu-
tion defined inG . In contrast to the edge-deletion transformation, the local probability distributions
for these nodes inGT cannot simply be extracted from the corresponding distributions inG ; for
example, we obtain the local distribution forH in GT via inference as follows:

pT(h|x,z,w,y) = p(h|x,z,w,y)

=
p(h,y|x,z,w)

p(y|h,x,z,w)

=
p(h|x,z)p(y|h,z,w)

∑i p(hi |x,z)p(y|hi ,z,w)
,

wherep(h|x,z) andp(y|h,z,w) are the local distributions inG .

Proposition 18 If there is no directed path from H to Y other than the edge H→Y, then the edge
can be covered as described without creating a cycle.

Proof: Suppose not. Using the notation from above, there must either be someX ∈ X for which
addingX→ Y creates a cycle, or there must be someW ∈W for which addingW→ H creates a
cycle. Because there is already a directed path fromX to Y, we immediately rule out the first case.
If addingW→ H creates a cycle, then there must already be a directed path fromH to W. By
appendingW→ Y to this directed path, we have a directed path fromH to Y that is not the edge
H→Y, yielding a contradiction.�

1305

CHICKERING, HECKERMAN AND MEEK

Because no independence constraints are added as a result of addingan edge to a model, and
because the edge is reversed only after being covered, the following result follows immediately from
Proposition 18 and Lemma 1:

Proposition 19 If in G there is no directed path from H to Y other than the edge H→ Y, then
the edge-reversal transformation applied to H→Y is valid; and for the modelGT that results, the
constraints of Equation 5 must hold.

B.1.3 NODE COMBINATION

A node combinationtakes a set of nodesY, where each node inY has no children, and replaces
the set with the singlecompositenodeY = Comp(Y) whose states take on the cross product of the
states of all nodes inY (see Figure 9). The parents ofY are defined to be the union of all of the
parents of the nodes inY. Because no node inY has any children, it is easy to see that applying
a node-combination transformation can never create a cycle, and thus the transformation is always
valid.

X
 Z
 W

X
 Z
 W

Y

1
 Y

2

Y

3

States:

0

1

Y

States:

0

1

States:

0

1

States:

000
 100

001
 101

010
 110

011
 111

Figure 9: An example of a node-combination transformation. The state spaceof the combined node
Y has a unique state for every possible combination of values forY1, Y2, andY3.

The local distribution for the composite nodeY is defined in the obvious way: the local prob-
ability in GT of a composite statey given the parent values is simply the joint probability of the
corresponding states ofY in the original modelG given the same parent values.

Although the set of nodes in the Bayesian networkGT that results from a node combination is
different than in the original networkG , it is important to understand thatGT represents a proba-
bility distribution over the original set of nodes. In particular, because thestates of the composite
nodeY are defined to be the cross product of the states for all of the nodes inY, there is a one-to-
one correspondence between states ofY and sets of all states of the nodes inY. Thus, given any
Bayesian network containing composite nodes, we can always “unwind” those nodes into a clique
of nodes, where each node in the clique—in addition to the adjacencies within the clique—has the
same parents and children of the composite node. Because the nodes that made up the composite
node form a clique, there are no independence constraints introduced by this unwinding process.
For the remainder of this paper, when we discuss the joint distribution represented by a Bayesian

1306

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

network, it is to be understood that we mean the distribution over the original domain; we leave
implicit the unwinding process that can be performed so that the networks contain the same nodes.

B.1.4 BARREN NODE REMOVAL

An unobserved nodeU ∈ U is barren if U has no children. An observed nodeO ∈ O is barren
if O has no parents and no children. Thebarren-node-removaltransformation simply removes
from G any barren nodes along with their incident edges (see Figure 10). Because a barren node
has no children, no conditional distributions change (other than the deletionof the barren-node
distribution). Because removing a barren node can never create a cycle, the transformation is always
valid.

U

X
 O

X

p
T
(
x
)
=
p
(
x
)

Figure 10: An example of a barren-node-removal transformation: both the unobserved nodeU and
the observed nodeO are barren.

We now explain why Equation 5 must hold after removing anunobservedbarren node. Letting
UT = U \U denote the unobserved nodes that remain after removingU , we can compute the joint
probability in the original model overUT andO as

p(uT ,o) = ∑
u

p(u,u,o).

BecauseU has no children, we can “push the sum” all the way through to the last conditional
distribution:

p(uT ,o) = ∏
x∈uT∪o

p(x|paX)

(

∑
u

p(u|·)

)

= ∏
x∈uT∪o

p(x|paX).

BecauseGT is identical toG except that it does not contain nodeU , it follows that the above product
of conditional distributions is exactly the distribution represented byGT ; thuspT(uT ,o) = p(uT ,o)
and Equation 5 must hold.

Equation 5 holds after removing anobservedbarren nodeO by a similar argument and because
O is independent of every other node regardless of the conditioning set.

B.1.5 OBSERVEDCHILD SEPARATION (OCS)

The observed-child-separation (OCS) transformation is a “macro” transformation that combines a
node-combination transformation, an edge-reversal transformation, and an edge-deletion transfor-

1307

CHICKERING, HECKERMAN AND MEEK

mation. In particular, letH be any node inU that has at least one child inO, and letY = {Y1, . . . ,Ym}
denote the set of all children ofH that are inO that have no children themselves. For the OCS
transformation (see the example in Figure 11), we first apply a node-combination transformation
to the nodes inY, resulting in a model containing the composite nodeY = Comp(Y). Next, we
apply an edge-reversal transformation on the edgeH → Y. Finally, we delete the resulting edge
Y→ H using an edge-deletion transformation. The OCS transformation is valid whenever the sub-
transformations are valid.

H
 Z

Y

1

Y

2

H
 Z

Y

H
 Z

Y

H
 Z

Y

Figure 11: An example showing the sub-transformations that make up the OCSmacro transforma-
tion.

Because we have already shown that the invariant of Equation 5 holds after each component
transformation that makes up the OCS macro transformation, we conclude thatEquation 5 holds as
a result of this transformation as well.

In Figure 12, we show the relevant network fragment both before and after a general OCS
transformation is applied, along with the local distributions inGT that must be derived via inference
in G . The nodesYj—which are shaded in the figure—are the observed children of nodeH that will
be separated fromH using the transformation. The bold-font nodesX, Z, andW represent sets of
nodes: each node inX is a parent ofH but not a parent of anyYj , each node inZ is a parent ofH
and a parent of at least oneYj , and each node inW is not a parent ofH but is a parent of at least
oneYj . In the figure, the termy0 in p(h|x,z,w,y0) is shorthand for the set of all observed states
y0

1, . . . ,y
0
n of theYj variables; we assume thaty0

j is the observed state ofYj for all j. Similarly, the
termy in p(y|x,z,w) denotes an arbitrary set of statesy1, . . . ,yn for the observedYj variables.

B.2 Transformation Algorithms

In this section, we present two graph-transformation algorithms that, like the OCS “macro” trans-
formation, apply a sequence of transformations to a modelG . We distinguish an “algorithm” from
a “macro transformation” by the fact that in the former, the order in which weapply the individ-
ual transformations depends on the topology of the entire network structure. As in the case of the
OCS macro transformation, we conclude that because the individual transformations that define the
algorithm all maintain the invariant of Equation 5, the invariant holds for the algorithms as well.

We say that a nodeX in a graph is alowestnode with some property if no descendant ofX in
the graph also has that property. Thus when the graph is a DAG containing at least one node with a
given property, there must always exist at least one lowest node with that property.

1308

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

Y

1

Y

2

H

Y

m

W
X
 Z

Y
H

W
X
 Z

p
T
(
h
|
x
,
z
,
w
)

=

p
(
h
|
x
,
z
,
w
,
y
0
)

p
T
(
y
|
x
,
z
,
w
)

=

p
(
y
|
x
,
z
,
w
)

Figure 12: General OCS macro transformation.

B.2.1 THE UNOBSERVEDPATH SHORTENING (UPS) ALGORITHM

The unobserved-path-shortening (UPS) algorithm is applied whenG contains only unobserved
nodes (all nodes fromO have been removed before this algorithm is used). We say a node is a
root if it has no parents. The algorithm takes as input any non-root nodeY, and returns the model
GT in which all nodes have been deleted except forY and its root-node ancestorsR. For every
R∈ R, the edgeR→ Y is in GT (the edge need not be inG); GT contains no other edges (see
Figure 13). In Figure 14, we show how the UPS algorithm is implemented by a sequence of the
transformations presented in Section B.1.

B

A
R

1
 R

2

Y

C

R

1
 R

2

Y

Figure 13: An example application of the UPS algorithm.

The following lemma demonstrates that the steps given in Figure 14 correctly implement the
UPS algorithm using graph transformations.

Lemma 20 Let G be a Bayesian network containing non-root node Y, and letR denote the set
of root-node ancestors of Y inG . Let GT denote the Bayesian network that results from applying
Algorithm UPS with inputsG and Y. Then after the algorithm completes, the nodes inGT are
preciselyR∪{Y}, and the edges inGT are precisely R→Y for every R∈ R.

1309

CHICKERING, HECKERMAN AND MEEK

Algorithm UPS
Input: Bayesian networkG and non-root nodeY. (Let R denote the set of root-node ancestors ofY
in G , and assume that all nodes inG are unobserved.)
Output: Bayesian networkGT containing nodesR∪{Y} and edgesR→Y for everyR∈ R

1. SetGT = G

2. While GT contains at least one barren nodeB 6= Y, deleteB using the barren-node removal
transformation.

3. WhileY has at least one parent that is not a root node

4. Choose any lowest non-rootH that is a parent ofY

5. Reverse the edgeH→Y using the edge-reversal transformation

6. Delete the (now barren) nodeH using the barren-node-removal transformation.

7. ReturnGT

Figure 14: The unobserved path shortening (UPS) algorithm

Proof: First we note that after step 2 of the algorithm, every node inGT other thanY is an ancestor
of Y. This follows because, given that every node inGT is unobserved, any non-ancestor ofY must
either be barren or have some descendant (not equal toY) that is barren.

At step 5, there cannot be any directed path fromH to Y other than the edgeH→Y becauseH
is chosen to be a lowest parent ofH. Thus, we know that the edge-reversal transformation at step 5
is always valid. Furthermore, because every node is an ancestor ofY, we know thatY must be the
only child of H, and thus after the edge reversal,H must be barren (H cannot gain a child from the
reversal), and we can always deleteH in step 6.

By definition of an edge reversal, the only nodes that can gain parents in step 5 areY andH.
BecauseH is necessarily a non-root node, we conclude that every node inR will remain a root node
after every edge reversal. The definition of an edge reversal also guarantees that any node other than
H that is an ancestor ofY before the reversal will remain an ancestor after the reversal. Thus when
the algorithm terminates, all nodes other thanY must be root-node parents ofY. �

B.2.2 THE OBSERVEDNODE ELIMINATION (ONE) ALGORITHM

In this section, we describe the observed-node elimination (ONE) algorithm that deletes all of the
observed variables fromG such that, given certain preconditions, the invariant of Equation 5 holds
on the resulting model. The details of the algorithm are shown in Figure 15.

In Figure 16, we show an example of the algorithm applied to a model. The original model
is shown in Figure 16a, where the observed nodesE, F , andG are depicted by shading. In step
2 of the algorithm, the edgesF →C andF → G are removed, resulting in the model from Figure
16b. For step 3, we see that all four unobserved nodes have at leastone observed child. The only
lowest nodes areC andD; (arbitrarily) choosingC first (shown with a thick border in the figure), we
apply the OCS transformation (which “combines” the singleton nodeG, covers the edgeC→G by

1310

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

Algorithm ONE
Input: Bayesian networkG consisting of observed nodesO and unobserved nodesU, set of obser-
vationso corresponding to nodesO
Output: Bayesian networkGT containing only the nodes inU

1. SetGT = G .

2. For every edgeO→ X in GT for which O∈ O is observed, remove the edge using an edge-
removal transformation.

3. While there exists an unobserved node inU that has at least one child fromO in GT , apply
the OCS transformation toGT using any lowest such node.

4. Delete every nodeO∈O by applying the barren-node-elimination transformation.

5. ReturnGT .

Figure 15: The observed node elimination (ONE) algorithm

addingB→ G, then reverses and deletes the edge betweenC andG) resulting in the model shown
in Figure 16c. Still in step 3, the lowest nodes areB andD; choosingB for the OCS transformation
results in model shown in Figure 16d. In this model,EFG is the combined node ofE, F , andG
from the OCS transformation. Still in step 3, the lowest nodes areA andD; choosingD for the OCS
transformation results in the model shown in Figure 16e. For the last iteration of step 3,A is the
only node with an observed child, and applying the OCS transformation results in the model shown
in Figure 16f. Finally, in step 4, the barren nodeEFG is deleted, resulting in the final model shown
in Figure 16g that contains only observed nodes.

To help prove properties about Algorithm ONE, we useG i to denote the Bayesian network that
results afteri iterations of the While loop at step 3. We defineG0 to be the graphGT that results
after applying step 2 but before the first iteration of the While loop at step 3.We useH i to denote
the (lowest) node chosen in iterationi of the While loop, we useY i to denote the set of observed
children ofH i on iterationi of the While loop, and we useYi = Comp(Y i) to denote the composite
node created by the OCS transformation in iterationi of the While loop.

As a result of applying the OCS transformation in step 3, we create the new composite nodeYi

defined by the subsetY ⊆O of the observed variables. To simplify discussion, we find it convenient
to treatO as a static set of nodes as opposed to a set that changes each time a new composite node
is created. Thus, we will say that any composite nodeYi is contained in the setO when technically
we should say that all nodes that have been combined to createY are contained inO.

Lemma 21 For all G i (i.e., for all graphs considered in step 3 of Algorithm ONE), every node inO
has zero children.

Proof: The proposition clearly holds forG0 due to step 2. Toward a contradiction, leti be the
first iteration of the While loop in which a node inO gains a child. By definition of the OCS
transformation, the only nodes that can gain children are parents ofH i and parents of nodes inY i .
Because these nodes already have children, they cannot be inO. �

1311

CHICKERING, HECKERMAN AND MEEK

A
 B

E
 F

C

G

A
 B

E
 F

C

G

A
 B

E
 F

C

G

A
 B

EFG

C

A
 B
 C
 A
 B
 C

D
 D

D
D

EFG
D

A
 B
 C

EFG
D
 D

(a)
 (b)

(c)
 (d)

(e)
 (f)
 (g)

Figure 16: Example of the ONE algorithm applied to a model. Lowest nodes chosen in step 3 are
shaded.

Recall from Section B.1.5 that the OCS transformation required that the observed children must
have no children themselves. Lemma 21 guarantees that this property holds for everyG i , and thus
the OCS transformation can always be applied in step 3. We now demonstrate that the nodeH i can
be chosen by Algorithm ONE in step 3 at most once. An immediate consequenceof this result is
that step 3 terminates in at most|U| iterations.

Proposition 22 Let Anci(O) denote the set of nodes inU that are ancestors inG i of at least one
node inO. Then Anci(O) = Anci−1(O)\H i .

Proof: From the definition of the OCS transformation, at each iterationi this “macro” transfor-
mation first applies a node-combination transformation on the observed children Y i of H i , then
applies an edge-reversal transformation on the edgeH i → Yi , and then applies the edge-removal
transformation onYi → H i .

We first note that applying a node-combination transformation on nodes inO cannot change the
set of ancestors of node inO.

In order for a node to become a new ancestor of a node inO, some edgeA→ B must be added
to G i such that before the addition,A is not an ancestor of a node inO andB is an ancestor of a
node inO. From the definition of the OCS transformation, the only edges that are added are either

1312

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

(1) of the formA→Yi , whereA is a parent ofH i and hence an ancestor of nodeYi ∈ O, or (2) of
the formA→ H i , whereA is the parent ofYi ∈O. Thus we conclude thatAnci(O)⊆ Anci−1(O).

In order for a node to no longer be an ancestor of a node inO, some edgeA→B must be deleted
such that after the deletion,A is no longer an ancestor ofO. The only edge that is deleted by the
transformation isH i →Yi . After the transformation, all parents ofH i are necessarily parents ofYi ,
and thus the only node that can possibly no longer be an ancestor of a node in O is H i . BecauseH i

was chosen as the lowest node with a child inO, and because the only added edges were incident
into H i or a parent ofH i , we know that no descendant ofH i can be an ancestor of a node inO, and
the lemma follows.�

Corollary 23 Algorithm ONE terminates after choosing each node fromU in step 3 at most once.

Proof: As in Lemma 22, we useAnci(O) to denote the set of nodes inU that are ancestors inG i

of at least one node inO. In order to be chosen in Step 3 during iterationi of the While loop,H i

must be inAnci(O). From Lemma 22, ifH i is chosen during iterationi, it can never be an element
of Ancj(O) for j > i. �

The next result demonstrates that by breaking ties as appropriate, we can guarantee that any
particular unobserved node with no unobserved parents will be a root node after applying Algorithm
ONE.

Lemma 24 Let U ∈ U be any unobserved node with no unobserved parents inG . If in Algorithm
ONE we break ties in step 3 in favor of not selecting U, then U will be a root node in GT .

Proof: Suppose not. Then at some iteration of the While loop in step 3, an unobserved parentW
must be added toU by the algorithm. Leti be the first iteration in which this occurs. By definition of
the OCS transformation, we conclude thatH i = U and thatW is a parent ofYi that is not a parent of
U . Because we break ties in favor of not choosingU , and becauseW has a child inO, we conclude
that there must be a directed path fromW toU . But from Lemma 21 we conclude that the last edge
in this directed path is from a node inU which means thatU already has an unobserved parent.�

Appendix C. Properties of Local Distributions

In this appendix, we formally define the BLL and BLTSP properties that were described (infor-
mally) in Appendix A, and we show the conditions under which these properties are maintained in
the conditional probability distributions as a result of the various graph transformations defined in
Appendix B. We begin in Section C.1 by presenting some preliminary definitions and results. In
Section C.2, we use this material to derive the main results of this section.

C.1 Preliminary Definitions and Results

In this section, we consider non-negative real-valued functions ofX, whereX = (X1, . . . ,Xn) is a set
of variables such that the states of each variableXi are totally ordered. Bytotally ordered, we mean
totally ordered in thenon-strictsense, where some states may have equal order. For convenience,
we often writef (x1, . . . ,xn) as f (. . . ,xi , . . .) to emphasize the argumentxi .

Definition 25 The function f(X) is lattice if, for any i such that xi > x′i ,

f (. . . ,xi , . . .) > f (. . . ,x′i , . . .),

1313

CHICKERING, HECKERMAN AND MEEK

where the other arguments are held fixed and are arbitrary.

For example, for a function with two binary arguments(X1,X2) with state orderingsx0
1 > x1

1 and
x0

2 > x1
2, we havef (x0

1,x
0
2) > f (x0

1,x
1
2) > f (x1

1,x
1
2) and f (x0

1,x
0
2) > f (x1

1,x
0
2) > f (x1

1,x
1
2).

Definition 26 The function f(X) is totally non-strictly positiveif, for all i < j,

f (. . . ,max(xi ,x
′
i), . . . ,max(x j ,x

′
j), . . .) · f (. . . ,min(xi ,x

′
i), . . . ,min(x j ,x

′
j), . . .)≥ (6)

f (. . . ,xi , . . . ,x j , . . .) · f (. . . ,x
′
i , . . . ,x

′
j , . . .).

The concept of total non-strict positivity is often referred to asmultivariate total positivity of
order two (see Karlin and Rinott, 1980). We now define a version of total positivity where the
inequality in Equation 6 must be strict whenever equality does not hold trivially.

Definition 27 The function f(X) is totally strictly positiveif, for all i < j,

f (. . . ,max(xi ,x
′
i), . . . ,max(x j ,x

′
j), . . .) · f (. . . ,min(xi ,x

′
i), . . . ,min(x j ,x

′
j), . . .)≥ (7)

f (. . . ,xi , . . . ,x j , . . .) · f (. . . ,x
′
i , . . . ,x

′
j , . . .),

where the other arguments are held fixed and are arbitrary, and equalityholds if and only if either

f (. . . ,max(xi ,x
′
i), . . . ,max(x j ,x

′
j), . . .) = f (. . . ,xi , . . . ,x j , . . .) and

f (. . . ,min(xi ,x
′
i), . . . ,min(x j ,x

′
j), . . .) = f (. . . ,x′i , . . . ,x

′
j , . . .)

or

f (. . . ,max(xi ,x
′
i), . . . ,max(x j ,x

′
j), . . .) = f (. . . ,x′i , . . . ,x

′
j , . . .) and

f (. . . ,min(xi ,x
′
i), . . . ,min(x j ,x

′
j), . . .) = f (. . . ,xi , . . . ,x j , . . .).

For example, a functionf with two binary arguments(X1,X2) with state orderingsx0
1 > x1

1 and
x0

2 > x1
2 is totally strictly positive if f (x0

1,x
0
2) f (x1

1,x
1
2) > f (x0

1,x
1
2) f (x1

1,x
0
2). Note that all other

combinations of arguments yield trivial equalities. For example, applying the definition whenx1 =
x′1 = x0

1, x2 = x0
2, andx′2 = x1

2, yields the constraint

f (min(x0
1,x

0
1),min(x0

2,x
1
2)) f (max(x0

1,x
0
1),max(x0

2,x
1
2))≥ f (x0

1,x
1
2) f (x0

1,x
0
2),

for which equality holds trivially by solving the left-hand side.
We now give properties of positive, lattice, and totally strictly positive functions whose argu-

mentsx are binary with valuesx0 andx1, and with state orderingx0 > x1. We call functions having
only binary argumentscube functions. As a shorthand, we use (e.g.)f i j to representf (xi

1,x
j
2).

Proposition 28 Given real numbersα1 ≥ α2 in the interval(0,1) and positive real numbers f00,
f 01, f10, and f11 such that f00≥ f 01≥ f 11 and f00≥ f 10,

α1 f 00+(1−α1) f 01≥ α2 f 10+(1−α2) f 11, (8)

where equality holds if and only if(f 10≥ f 11)∧ (f 00 = f 10)∧ (f 01 = f 11)∧ ((f 10 = f 11)∨ (α1 =
α2)). Equivalently,

f 01+α1(f 00− f 01)≥ f 10+α2(f 10− f 11). (9)

1314

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

Proof: There are two cases to consider.
Case 1:f 11 > f 10. Here, the right-hand-side of 8 will be strictly less thanf 11≤ f 01. Thus, because
the left-hand-side of 8 will be at leastf 01, 8 holds with strict inequality.
Case 2:f 10≥ f 11. Here, becausef 00≥ f 10, f 01≥ f 11, and 0< α1 < 1,

α1 f 00+(1−α1) f 01≥ α1 f 10+(1−α1) f 11, (10)

where equality holds if and only if(f 00 = f 10)∧ (f 01 = f 11). Becausef 10≥ f 11 andα1 ≥ α2, we
have

α1 f 10+(1−α1) f 11≥ α2 f 10+(1−α2) f 11, (11)

where equality holds if and only if(f 10 = f 11)∨ (α1 = α2). Inequalities 10 and 11 imply 8, where
equality holds if and only if(f 00 = f 10)∧ (f 01 = f 11)∧ ((f 10 = f 11∨ (α1 = α2)). �

Proposition 29 Given a positive, cube, and lattice function f(X1,X2),

α1 f 00+(1−α1) f 01 > α2 f 10+(1−α2) f 11, (12)

for any two real numbers0 < α2≤ α1 < 1.

Proof: Becausef (X1,X2) is lattice, we havef 00 > f 01 > f 11 and f 00 > f 10 > f 11. The strict
inequality 12 therefore follows by Proposition 28.�

Proposition 30 Given a positive, cube, lattice, and totally strictly positive function f(X1,X2),

f 00+ f 11 > f 01+ f 10. (13)

Proof: We know
f 00 f 11 > f 01 f 10.

Subtractingf 01 f 11 from both sides, we obtain

(f 00− f 01) f 11 > (f 10− f 11) f 01.

Becausef 01 > f 11, we have
f 00− f 01 > f 10− f 11.

�

The remainder of this section contains propositions needed to prove the main results in Section
C.2. We sometimes use functions having a range of(0,1). We call such functionsunit functions.

Proposition 31 Given a real number f in(0,1) and a positive, cube, and totally strictly positive
function g(Y1,Y2), the ratio

f g00+(1− f)g01

f g10+(1− f)g11

is a strictly increasing function of f .

1315

CHICKERING, HECKERMAN AND MEEK

Proof: A straightforward algebraic arrangement yields

f g00+(1− f)g01

f g10+(1− f)g11 =
g01

g11 +
1

1+(1− f)g11/(f g10)

(

g00

g10−
g01

g11

)

(14)

Becauseg(Y1,Y2) is totally strictly positive, the difference of fractions at the end of Equation 14 is
positive. The proposition then follows becauseg11/g10 is positive.�

Proposition 32 Given a unit, cube, lattice, and totally strictly positive function f(X1,X2) and a
positive, cube, and lattice function g(Y),

f 00g0 +(1− f 00)g1

f 01g0 +(1− f 01)g1 >
f 10g0 +(1− f 10)g1

f 11g0 +(1− f 11)g1 . (15)

Proof: By Proposition 30, we know thatf 00+ f 11 > f 01+ f 10. Therefore, we have

(g0g0 +g1g1) f 00 f 11+g1(g0−g1)(f 00+ f 11) > (g0g0 +g1g1) f 01 f 10+g1(g0−g1)(f 01+ f 10).
(16)

Addingg1g1 to both sides of inequality 16 and factoring, we obtain

(f 00g0 +(1− f 00)g1)(f 11g0 +(1− f 11)g1) > (f 01g0 +(1− f 01)g1)(f 10g0 +(1− f 10)g1).

Inequality 15 follows from the fact that terms in the denominator are positive.�

Proposition 33 Given unit, cube, lattice, and totally strictly positive function f(X1,X2) and a posi-
tive, cube, and totally strictly positive function g(Y1,Y2), where g(0,Y2) is lattice,

f 00g00+(1− f 00)g01

f 01g10+(1− f 01)g11 >
f 10g00+(1− f 10)g01

f 11g10+(1− f 11)g11. (17)

Proof: The functiong(0,Y2) is unit, cube, and lattice. Consequently, by Proposition 32, we have

f 00g00+(1− f 00)g01

f 01g00+(1− f 01)g01 >
f 10g00+(1− f 10)g01

f 11g00+(1− f 11)g01.

Interchanging the denominator on the left-hand-side with the numerator on theright-hand-side, we
get

f 00g00+(1− f 00)g01

f 10g00+(1− f 10)g01 >
f 01g00+(1− f 01)g01

f 11g00+(1− f 11)g01. (18)

Using Proposition 31 and that fact thatf 01 > f 11, we obtain

f 01g00+(1− f 01)g01

f 01g10+(1− f 01)g11 >
f 11g00+(1− f 11)g01

f 11g10+(1− f 11)g11

or, equivalently,
f 01g00+(1− f 01)g01

f 11g00+(1− f 11)g01 >
f 01g10+(1− f 01)g11

f 11g10+(1− f 11)g11. (19)

Inequalities 18 and 19 imply

f 00g00+(1− f 00)g01

f 10g00+(1− f 10)g01 >
f 01g10+(1− f 01)g11

f 11g10+(1− f 11)g11.

which is equivalent to 17.�

1316

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

Proposition 34 Given a real number f in(0,1) and a positive and cube function g(Y1,Y2,Y3), where
g(0,Y2,Y3), g(1,Y2,Y3), and g(Y1,1,Y3) are totally strictly positive and g(Y1,Y2,0) and g(Y1,Y2,1)
are totally non-strictly positive,

f g000+(1− f)g001

f g010+(1− f)g011 >
f g100+(1− f)g101

f g110+(1− f)g111. (20)

Proof: Using Equation 14, we rewrite inequality 20 as follows:

g001

g011 +
1

1+(1− f)g011/(f g010)

(

g000

g010−
g001

g011

)

> (21)

g101

g111 +
1

1+(1− f)g111/(f g110)

(

g100

g110−
g101

g111

)

.

Now, observe that inequality 21 has the same form as 9, with

α1 =
1

1+(1− f)g011/(f g010)
and α2 =

1
1+(1− f)g111/(f g110)

.

In addition, becauseg(0,Y2,Y3) and g(1,Y2,Y3) are totally strictly positive andg(Y1,Y2,0) and
g(Y1,Y2,1) are totally (non-strictly) positive, we have

g000

g010 >
g001

g011 ≥
g101

g111 and
g000

g010 ≥
g100

g110 >
g101

g111.

Thus, the conditions of Proposition 28 apply, and 20 will hold ifα1 > α2, or

1
1+(1− f)g011/(f g010)

>
1

1+(1− f)g111/(f g110)
. (22)

Rearranging inequality 22 and canceling the termsf and(1− f), we obtain

g011

g010 <
g111

g110

which holds becauseg(Y1,1,Y3) is totally strictly positive.�

Proposition 35 Given a unit, cube, and lattice function f(X) and positive, cube, and lattice func-
tion g(Y1,Y2,Y3), where g(0,Y2,Y3), g(1,Y2,Y3), and g(Y1,1,Y3) are totally strictly positive and
g(Y1,Y2,0) and g(Y1,Y2,1) are totally (non-strictly) positive,

f 0g000+(1− f 0)g001

f 0g010+(1− f 0)g011 >
f 1g100+(1− f 1)g101

f 1g110+(1− f 1)g111. (23)

Proof: By Proposition 34, we have

f 0g000+(1− f 0)g001

f 0g010+(1− f 0)g011 >
f 0g100+(1− f 0)g101

f 0g110+(1− f 0)g111. (24)

Becausef 0 > f 1 andg(1,Y2,Y3) is totally strictly positive, Proposition 31 yields

f 0g100+(1− f 0)g101

f 0g110+(1− f 0)g111 >
f 1g100+(1− f 1)g101

f 1g110+(1− f 1)g111. (25)

Inequalities 24 and 25 imply 23.�

1317

CHICKERING, HECKERMAN AND MEEK

Proposition 36 Given a unit, cube, lattice and totally strictly positive function f(X1,X2) and
positive, cube, lattice function g(Y1,Y2,Y3), where g(0,0,Y3) is lattice, g(0,Y2,Y3), g(1,Y2,Y3),
g(Y1,0,Y3), and g(Y1,1,Y3) are totally strictly positive and g(Y1,Y2,0) and g(Y1,Y2,1) are totally
(non-strictly) positive,

f 00g000+(1− f 00)g001

f 01g010+(1− f 01)g011 >
f 10g100+(1− f 10)g101

f 11g110+(1− f 11)g111. (26)

Proof: Using Proposition 33 and the fact thatg(0,0,Y3) is lattice andg(Y1,0,Y3) is totally strictly
positive, we get

f 00g000+(1− f 00)g001

f 01g000+(1− f 01)g001 >
f 10g100+(1− f 10)g101

f 11g100+(1− f 11)g101. (27)

Becausef (X1,1) is lattice, Proposition 35 yields

f 01g000+(1− f 01)g001

f 01g010+(1− f 01)g011 >
f 11g100+(1− f 11)g101

f 11g110+(1− f 11)g111. (28)

Multiplying the left-hand-sizes of inequalities 27 and 28 and the right-hand-sides of the same in-
equalities, we obtain 26.�

C.2 The BLL and BLTSP Properties

In this section, we turn our attention from general non-negative real-valued functions to conditional
probability distributions. In particular, we consider Bayesian networks for discrete, finite-valued
variables in which the local distributionsp(y|x1, . . . ,xn) have the following properties.

Definition 37 Given a set of variables Y, X1,. . . ,Xn such that each variable has a finite number of
totally ordered states, the distribution p(y|x1, . . . ,xn) is lattice with respect to statey0 if the function
f (x1, . . . ,xn) = p(y0|x1, . . . ,xn) is lattice.

Definition 38 Given a set of variables Y, X1,. . . ,Xn such that each variable has a finite number of
totally ordered states, the distribution p(y|x1, . . . ,xn) is totally strictly positive with respect to state
y0 if the function f(x1, . . . ,xn) = p(y0|x1, . . . ,xn) is totally strictly positive.

We further concentrate on local distributions that are binary-like. In describing such distribu-
tions, we need the concept of adistinguishedstate of a variable. For the remainder of the paper, we
usex0 to denote the distinguished state of variableX.

Definition 39 Given a set of variables Y , X1,. . . ,Xn such that each variable has a finite number
of states and each variable X has a distinguished state x0, the local distribution p(y|x1, . . . ,xn) is
binary-like if

y 6= y0 andy′ 6= y0 implies p(y|x1, . . . ,xn) = p(y′|x1, . . . ,xn) (29)

xi = x′i or (xi 6= x0
i andx′i 6= x0

i) i = 1, . . . ,n implies p(y|x1, . . . ,xn) = p(y|x′1, . . . ,x
′
n). (30)

If condition 30 is satisfied for some particular state y, then p(y|x1, . . . ,xn) is said to bebinary-like
with respect toy.

1318

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

Thus, for a local distribution that is binary-like, if any non-distinguished state is replaced with
another non-distinguished state on either side of the conditioning bar, the conditional probability re-
mains the same. For a local distribution that is binary-like with respect toy, if any non-distinguished
state on the right-hand side of the conditioning bar is replaced with another non-distinguished state,
the conditional probability for statey remains the same. When appropriate, we usex1 to denote an
arbitrary non-distinguished state ofX.

When working with distributions that are both binary-like and either lattice or totally strictly
positive, we need to be careful how we assign the total ordering to the states for each variableX.
In particular, in order for a distribution to be both binary-like and either latticeor totally strictly
positive, all non-distinguished states must have equal order in the (non-strict) total ordering. We
incorporate this condition in the following definitions. In addition, we use the orderingx0 > x1 for
all variablesX.

Definition 40 Given a set of variables Y , X1,. . . ,Xn such that each variable has a finite number of to-
tally ordered states, and each variable X has a distinguished state x0, the distribution p(y|x1, . . . ,xn)
is binary-like lattice (BLL)if (1) the distribution is lattice with respect to y0, (2) the distribution is
binary-like and (3) if, for each variable X, x0 is greatest in order and all non-distinguished states
of X are equal in order. The distribution p(y|x1, . . . ,xn) is binary-like lattice (BLL) with respect to
y0 if (1) the distribution is lattice with respect to y0, (2) the distribution is binary-like with respect
to y0 and (3) if, for each variable X, x0 is greatest in order and all non-distinguished states of X are
equal in order.

Definition 41 Given a set of variables Y , X1,. . . ,Xn such that each variable has a finite number of to-
tally ordered states, and each variable X has a distinguished state x0, the distribution p(y|x1, . . . ,xn)
is binary-like totally strictly positive (BLTSP)if (1) the distribution is totally strictly positive with
respect to y0, (2) the distribution is binary-like and (3) if, for each variable X, x0 is greatest in
order and all non-distinguished states of X are equal in order. The distribution p(y|x1, . . . ,xn) is
binary-like totally strictly positive (BLTSP) with respect toy0 if (1) the distribution is binary-like
with respect to y0, (2) the distribution is totally strictly positive with respect to y0, and (3) if, for
each variable X, x0 is greatest in order and all non-distinguished states of X are equal in order.

In the following sections, we consider the graph transformations of SectionB.1, and investigate
the conditions under which the BLL and the BLTSP properties are retained inthe distributions
that result from a transformation. We will say that a node is BLL (BLTSP) tomean that the local
distribution for that node is BLL (BLTSP).

C.2.1 BLL AND BLTSP FOR THEEDGE-DELETION TRANSFORMATION

Lemma 42 (Edge Deletion, BLL and BLTSP) Let G be a model containing the edge O→ U,
where O∈O is observed, and letGT denote the model that results from applying the edge-deletion
transformation on O→U in G . If U is BLL in G then U is BLL inGT , and if U is BLTSP inG than
U is BLTSP inGT .

Proof: Let T be the set of parents ofU other thanO. From the definition of an edge deletion,T will
be the parents ofU in GT and, assuming (e.g.)o∗ is the observed value ofO, we have

pT(u|t) = p(u|t,o∗)

1319

CHICKERING, HECKERMAN AND MEEK

for all u andt. From the definition of BLL, ifp(u|t,o) is BLL, then it is also BLL when restricted to
o = o∗. Similarly, from the definition of BLTSP, ifp(u|t,o) is BLTSP, then it is also BLTSP when
restricted too = o∗. �

C.2.2 BLL AND BLTSP FOR THEBARREN-NODE-REMOVAL TRANSFORMATION

Proposition 43 Let G be a model containing barren node X, and letGT denote the model that
results from applying a barren-node-removal transformation toG on X. For any node Y6= X in G ,
we have: (1) if Y is BLL inG , then Y is BLL inGT , and (2) if Y is BLTSP inG , then Y is BLTSP in
GT .

Proof: Follows immediately from the definition of a barren-node removal because thelocal distri-
butions that remain inGT are identical inG . �

C.2.3 BLL AND BLTSP FOR THEOCS TRANSFORMATION

Lemma 44 (OCS, BLL in Y) Consider the OCS transformation shown in Figure 12, where
p(h|x,z) is BLL. If p(y j |z,w,h) is BLL with respect to y0j , j = 1, . . . ,m, then pT(y|x,z,w) =

p(y|x,z,w) is BLL with respect to y0 = y0. If m = 1 and p(y|z,w,h) = p(y1|z,w,h) is BLL, then
pT(y|x,z,w) is BLL.

Proof: For notational simplicity, we useY to denote the set ofYj nodes in the original graphG ; that
is, we use the nodeY from GT as shorthand for the set of nodes that were combined to create that
variable.

First, we show thatp(y|x,z,w) is either binary-like or binary-like with respect toy0. From the
sum rule of probability, we have

p(y|x,z,w) = p(h0|x,z) p(y|z,w,h0)+ ∑
h6=h0

p(h|x,z) p(y|z,w,h). (31)

Whenm = 1 andp(y|z,w,h) is binary-like, becausep(h|x,z) is also binary like, we can rewrite
Equation 31 as follows:

p(y|x,z,w) = p(h0|x,z) p(y|z,w,h0)+(1− p(h0|x,z)) p(y|z,w,h1). (32)

Becausep(h|x,z) is binary-like with respect toh0 and the remaining two terms in Equation 32 are
binary-like, it follows thatp(y|x,z,w) is binary-like. Whenm≥ 1 andp(y j |z,w,h) is binary-like
with respect toy0

j , j = 1, . . . ,m, Equation 32 withY = y0 still holds, becausep(y|z,w,h) is binary-
like with respect toy0. Consequently,p(y|x,z,w) is binary-like with respect toy0. It remains to
show thatp(y0|x,z,w) is lattice. There are three cases to consider.
Case 1:X ∈ X changes. IfX is empty, there is nothing to prove, so assumeX is not empty. Here,
we need to show thatp(y0|x0,x′,z,w) > p(y0|x1,x′,z,w), whereX′ = X \{X}. Using Equation 32
with Y = y0 and omitting those variables that are held constant, we rewrite this condition as

p(h0|x0) p(y0|h0)+(1− p(h0|x0)) p(y0|h1) > (33)

p(h0|x1) p(y0|h0)+(1− p(h0|x1)) p(y0|h1).

Becausep(y0
j |h) is lattice, j = 1, . . . ,m, we know thatp(y0|hi) = ∏m

j=1 p(y0
j |h

i) is lattice—that is,
p(y0|h0) > p(y0|h1). Becausep(h0|x), we havep(h0|x0) > p(h0|x1). Consequently, inequality 33
holds.

1320

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

Case 2:W ∈W changes. IfW is empty there is nothing to prove, so assumeW is not empty. Here,
we need to show thatp(y0|x,z,w0,w′) > p(y0|x,z,w1,w′), whereW′ = W \ {W}. Again using
Equation 32 and omitting those variables that are held constant, this condition becomes

p(h0) p(y0|w0,h0)+(1− p(h0)) p(y0|w0,h1) > (34)

p(h0) p(y0|w1,h0)+(1− p(h0)) p(y0|w1,h1).

First note thatp(y0|w,h) is lattice. To see this fact, write

p(y0|w,h) = ∏
a

p(y0
a|w,h)∏

b

p(y0
b|h),

where eachYa has parentsW andH and eachYb has parentH. Because there is at least oneYa

and p(y0
a|w,h) is lattice, it follows thatp(y0|w,h) is lattice. Identifyingp(h0) with α1 = α2 and

p(y0|wi ,h j) with f i j in Proposition 29, and noting thatf i j is lattice becausep(y0|w,h) is lattice, we
find that inequality 34 holds.
Case 3:Z ∈ Z changes. IfZ is empty there is nothing to prove, so assumeZ is not empty. Here, we
need to show thatp(y0|x,z0,z′,w) > p(y0|x,z1,z′,w), whereZ′ = Z \{Z}. Using Equation 32, this
condition becomes

p(h0|z0) p(y0|z0,h0)+(1− p(h0|z0)) p(y0|z0,h1) > (35)

p(h0|z1) p(y0|z1,h0)+(1− p(h0|z1)) p(y0|z1,h1).

By an argument analogous to that in Case 2 of this Lemma, it follows thatp(y0|z,h) is lattice. Thus,
identifying p(h0|zi) with αi andp(y0|zi ,h j) with f i j in Proposition 29 and using the fact thatp(h0|z)
andp(y0|z,h) are lattice, we establish inequality 35.�

Lemma 45 (OCS, BLL in H) Consider the OCS transformation shown in Figure 12, where
p(h|x,z) is BLL. If p(y j |z,w,h) is BLTSP with respect to y0

j , j = 1, . . . ,m, then pT(h|x,z,w) =

p(h|y0,x,z,w) is BLL.

Proof: As in the proof of Lemma 44, we useY to denote the set ofYj nodes in the original graphG .
From Bayes’ rule and the definition ofY, we have

p(h|y0,x,z,w) =
p(h|x,z) p(y0|z,w,h)

p(h0|x,z) p(y0|z,w,h0)+(1− p(h0|x,z)) p(y0|z,w,h1)
. (36)

wherep(y0|z,w,h) = ∏m
j=1 p(y0

j |z,w,h). Becausep(h|x,z) is binary-like andp(y j |z,w,h) is binary-
like with respect toy0

j , i = 1, . . . ,m, it follows thatp(h|y0,x,z,w) is binary-like. It remains to show
that p(h0|y0,x,z,w) is lattice.

Dividing the numerator and denominator of the right-hand-side of Equation 36 by the numerator
and settingh to h0, we obtain

p(h0|y0,x,z,w) =
1

1+ (1−p(h0|x,z))
p(h0|x,z)

p(y0|z,w,h1)
p(y0|z,w,h0)

. (37)

There are three cases to consider.

1321

CHICKERING, HECKERMAN AND MEEK

Case 1: X ∈ X changes. IfX is empty, there is nothing to prove, so assumeX is not empty.
Here, we need to show thatp(h0|y0,x0,x′,z,w) > p(h0|y0,x1,x′,z,w), whereX′ = X \{X}. Using
Equation 37 and the fact that 1/(1+ a) > 1/(1+ b) if and only if 1/a > 1/b for positivea andb,
this condition becomes

p(h0|x0)

(1− p(h0|x0))

p(y0|h0)

p(y0|h1)
>

p(h0|x1)

(1− p(h0|x1))

p(y0|h0)

p(y0|h1)
,

which holds becausep(h0|x) is lattice.
Case 2:W ∈W changes. IfW is empty, there is nothing to prove, so assumeW is not empty.
Here, we need to show thatp(h0|y0,x,z,w0,w′) > p(h0|y0,x,z,w1,w′), whereW′ = W \{W}. By
an argument similar to that in Case 1, this condition becomes

p(h0)

(1− p(h0))

p(y0|w0,h0)

p(y0|w0,h1)
>

p(h0)

(1− p(h0))

p(y0|w1,h0)

p(y0|w1,h1)
.

Canceling the terms involvingp(h0), we see that this inequality holds ifp(y0|h,w) is totally strictly
positive. To establish the latter fact, recall that

p(y0|w,h) = ∏
a

p(y0
a|w,h)∏

b

p(y0
b|h),

where eachYa has parentsW andH and eachYb has parentH. Now note that the product of two
functions that are positive and totally strictly positive is also positive and totallystrictly positive, and
that if f (X1,X2) is positive and totally strictly positive andg(X1) is positive, thenf (X1,X2) ·g(X1)
is positive and totally strictly positive.
Case 3:Z ∈ Z changes. IfZ is empty, there is nothing to prove, so assumeX is not empty. Here,
we need to show thatp(h0|y0,x,z0,z,w) > p(h0|y0,x,z1,z,w), whereZ′ = Z \{Z}. This condition
becomes

p(h0|z0)

(1− p(h0|z0))

p(y0|z0,h0)

p(y0|z0,h1)
>

p(h0|z1)

(1− p(h0|z1))

p(y0|z1,h0)

p(y0|z1,h1)
. (38)

By an argument analogous to the last one in Case 2,p(y0|z,h) is totally strictly positive. Also,
p(h0|x) is lattice. The inequality therefore holds.�

In the base case of the proof of our main result (Theorem 53), we require only that the distri-
butions have the BLL property. The proof of the preceding lemma shows why BLTSP is a required
property in the original model. Namely, in Case 2,p(h0|y0,w) is lattice if and only ifp(y0|w,h) is
totally strictly positive.

Lemma 46 (OCS, BLTSP inY) Consider the OCS transformation shown in Figure 12, where
p(h|x,z) is BLL and BLTSP. If p(y j |z,w,h) is BLL with respect to y0j and BLTSP with respect to y0

j ,

j = 1, . . . ,m, then p(y|x,z,w) is BLTSP with respect to y0. If m= 1 and p(y|z,w,h) = p(y1|z,w,h)
is BLL and BLTSP, then p(y|x,z,w) is BLTSP.

Proof: In the proof of Lemma 44, we showed that (1) ifm = 1 and p(y|z,w,h) is binary-like,
then p(y|x,z,w) is binary-like; and (2) ifm≥ 1 andp(y j |z,w,h) is binary-like with respect toy0

j ,
j = 1, . . . ,m, thenp(y|x,z,w) is binary-like with respect toy0. It remains to show thatp(y0|x,z,w)
is totally strictly positive. There are six cases to consider.

1322

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

Case 1:X1,X2 ∈ X changes. Assume|X| ≥ 2. Here, we need to show that

p(y0|x0
1,x

0
2,x
′,z,w)

p(y0|x0
1,x

1
2,x
′,z,w)

>
p(y0|x1

1,x
0
2,x
′,z,w)

p(y0|x1
1,x

1
2,x
′,z,w)

. (39)

whereX′ = X \ {X1,X2}. Using Equation 32 forY = y0 and omitting those variables that are held
constant, we rewrite this condition as

p(h0|x0
1,x

0
2) p(y0|h0)+(1− p(h0|x0

1,x
0
2)) p(y0|h1)

p(h0|x0
1,x

1
2) p(y0|h0)+(1− p(h0|x0

1,x
1
2)) p(y0|h1)

> (40)

p(h0|x1
1,x

0
2) p(y0|h0)+(1− p(h0|x1

1,x
0
2)) p(y0|h1)

p(h0|x1
1,x

1
2) p(y0|h0)+(1− p(h0|x1

1,x
1
2)) p(y0|h1)

.

Becausep(y0
j |h) is lattice, j = 1, . . . ,m, we know thatp(y0|h) = ∏m

j=1 p(y0
j |h) is lattice. Thus,

identifying p(h0|xi
1,x

j
2) with f i j and p(y0|hi) with gi in Proposition 32, we find that inequality 40

holds.
Case 2:X ∈ X andW ∈W changes. Assume|X| ≥ 1 and|W| ≥ 1. Using Equation 32, we need to
show the inequality

p(h0|x0) p(y0|w0,h0)+(1− p(h0|x0)) p(y0|w0,h1)

p(h0|x0) p(y0|w1,h0)+(1− p(h0|x0)) p(y0|w1,h1)
> (41)

p(h0|x1) p(y0|w0,h0)+(1− p(h0|x1)) p(y0|w0,h1)

p(h0|x1) p(y0|w1,h0)+(1− p(h0|x1)) p(y0|w1,h1)
.

By an argument analogous to one in Case 2 of Lemma 45, we know thatp(y0|w,h) is totally strictly
positive. Therefore, identifyingp(y0|wi ,h j) with gi j in Proposition 31 and noting thatp(h0|x0) >
p(h0|x1), we establish inequality 41.
Case 3:X ∈ X andZ ∈ Z changes. Assume|X| ≥ 1 and|Z| ≥ 1. Using Equation 32, we need to
show the inequality

p(h0|x0,z0) p(y0|z0,h0)+(1− p(h0|x0,z0)) p(y0|z0,h1)

p(h0|x0,z1) p(y0|z1,h0)+(1− p(h0|x0,z1)) p(y0|z1,h1)
>

p(h0|x1,z0) p(y0|z0,h0)+(1− p(h0|x1,z0)) p(y0|z0,h1)

p(h0|x1,z1) p(y0|z1,h0)+(1− p(h0|x1,z1)) p(y0|z1,h1)
.

Becausep(y0|z0,h) = ∏m
j=1 p(y0

j |z
0,h), we know thatp(y0|z0,h) is lattice. By an argument analo-

gous to one in Case 2 of Lemma 45, we know thatp(y0|z,h) is totally strictly positive. Identifying
p(h0|xi ,zj) with f i j andp(y0|zi ,h j) with gi j , Proposition 33 establishes this identity.
Case 4:W1,W2 ∈W changes. Assume|W| ≥ 2. Using Equation 32, we need to show the inequality

p(h0) p(y0|w0
1,w

0
2,h

0)+(1− p(h0)) p(y0|w0
1,w

0
2,h

1)

p(h0) p(y0|w0
1,w

1
2,h

0)+(1− p(h0)) p(y0|w0
1,w

1
2,h

1)
>

p(h0) p(y0|w1
1,w

0
2,h

0)+(1− p(h0)) p(y0|w1
1,w

0
2,h

1)

p(h0) p(y0|w1
1,w

1
2,h

0)+(1− p(h0)) p(y0|w1
1,w

1
2,h

1)
.

1323

CHICKERING, HECKERMAN AND MEEK

Identifying p(h0) with f andp(y0|wi
1,w

j
2,h

k) with gi jk , Proposition 34 establishes this identity if we
can show thatgi jk satisfies the strict and non-strict total positivity conditions of the proposition. To
do so, write

p(y0|w1,w2,h) = ∏
a

p(y0
a|w1,w2,h)∏

b

p(y0
b|w1,h)∏

c
p(y0

c|w2,h)∏
d

p(y0
c|h),

where eachYa has parentsW1, W2, andH, eachYb has parentsW1 andH, eachYc has parentsW2

andH, and eachYd has parentH. It is not difficult to show that, if there is at least one variable
having bothW1 andW2 as parents, then the product is totally strictly positive. If there is no such
variable, however, the product is not totally strictly positive, becauseg000/g010= g100/g110 and
g001/g011= g101/g111. Nonetheless, it is not difficult to show that the remaining four pairwise
total strict positivity conditions hold. Consequently, the conditions of Proposition 34 hold.
Case 5:Z ∈ Z andW ∈W changes. Assume|Z| ≥ 1 and|W| ≥ 1. Using Equation 32, we need to
show the inequality

p(h0|z0) p(y0|z0,w0,h0)+(1− p(h0|z0)) p(y0|z0,w0,h1)

p(h0|z0) p(y0|z0,w1,h0)+(1− p(h0|z0)) p(y0|z0,w1,h1)
>

p(h0|z1) p(y0|z1,w0,h0)+(1− p(h0|z1)) p(y0|z1,w0,h1)

p(h0|z1) p(y0|z1,w1,h0)+(1− p(h0|z1)) p(y0|z1,w1,h1)
.

Identifying p(h0|zi) with f i andp(y0|zi ,w j ,hk) with gi jk , Proposition 35 establishes this identity if
gi jk satisfies the strict and non-strict total positivity conditions of the Proposition. By an argument
analogous to one in Case 4 of this Lemma,gi jk satisfies these conditions.
Case 6:Z1,Z2 ∈ Z changes. Assume|Z| ≥ 2. Using Equation 32, we need to show the inequality

p(h0|z0
1,z

0
2) p(y0|z0

1,z
0
2,h

0)+(1− p(h0|z0
1,z

0
2)) p(y0|z0

1,z
0
2,h

1)

p(h0|z0
1,z

1
2) p(y0|z0

1,z
1
2,h

0)+(1− p(h0|z0
1,z

1
2)) p(y0|z0

1,z
1
2,h

1)
>

p(h0|z1
1,z

0
2) p(y0|z1

1,z
0
2,h

0)+(1− p(h0|z1
1,z

0
2)) p(y0|z1

1,z
0
2,h

1)

p(h0|z1
1,z

1
2) p(y0|z1

1,z
1
2,h

0)+(1− p(h0|z1
1,z

1
2)) p(y0|z1

1,z
1
2,h

1)
.

Identifying p(h0|zi
1,z

j
2) with f i j andp(y0|zi

1,z
j
2,h

k) with gi jk , Proposition 36 establishes this identity
if gi jk satisfies the conditions of the Proposition. Becausep(y0|z0

1,x
0
2,h) = ∏m

j=1 p(y0
j |z

0
1,z

0
2,h), we

know thatp(y0|z0
1,z

0
2,h) is lattice. By an argument analogous to that of Case 4 of this Lemma,gi jk

satisfies the strict and non-strict total positivity conditions of Proposition 36. �

Putting the three previous lemmas together, we get the following general result for the OCS
transformation.

Corollary 47 (OCS transformation) LetG be a Bayesian network, and letGT be the result of ap-
plying the observed-child-separation transformation on unobserved node H with observed children
Y. If the observed values for the childrenY are the distinguished statesy0 for those children, and
if in G , H is both BLL and BLTSP, and each observed child Yi ∈ Y is both BLL with respect to y0

i
and BLTSP with respect to y0

i , then inGT , (1) H is BLL, (2) Y= Comp(Y) is BLL with respect to
y0, and (3) Y= Comp(Y) BLTSP with respect to y0.

Proof: (1), (2), and (3) follow immediately from Lemma 45, Lemma 44, and Lemma 46, respec-
tively. �

1324

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

C.2.4 BLL AND BLTSP FOR THEEDGE-REVERSAL TRANSFORMATION

Corollary 48 (Edge Reversal, BLL inY) Consider the edge-reversal transformation shown in
Figure 8. If the local distributions for H and Y are BLL inG , then the local distribution for Y
in GT is BLL.

Proof: The local distribution forY after reversingH→Y is exactly the same as the local distribution
for Y after a one-child OCS transformation forH →Y; thus, the corollary follows from them= 1
case of Lemma 44.�

Corollary 49 (Edge Reversal, BLTSP inY) Consider the edge-reversal transformation shown in
Figure 8. If the local distribution for H is BLL and BLTSP inG , and if the local distribution for Y
is BLL and BLTSP inG , then the local distribution for Y inGT is BLTSP.

Proof: The local distribution forY after reversingH→Y is exactly the same as the local distribution
for Y after a one-child OCS transformation forH →Y; thus, the corollary follows from them= 1
case of Lemma 46.�

C.2.5 BLL FOR THEUPS ALGORITHM

We now show that if every node inG is BLL, then every node in the graph that results from applying
the UPS algorithm is also BLL.

Lemma 50 LetG be any Bayesian network, and letGT be the result of applying the UPS algorithm
with Bayesian networkG and non-root node Y. If every node inG is BLL, then every node inGT is
BLL.

Proof: The result follows because, from Corollary 48, after each edgeH→Y is reversed,Y remains
BLL; the property need not hold forH after the reversal becauseH is immediately removed.�

C.2.6 BLL FOR THEONE ALGORITHM

Recall Algorithm ONE from Section B.2.2 which eliminates all observed nodes from a model. In
this section, we show conditions under which the nodes that remain after the algorithm are BLL.
As in Section B.2.2, we useG i to denote the Bayesian network that results afteri iterations of the
While loop at step 3 of the algorithm, we defineG0 to be the graphGT that results after applying
step 2 but before the first iteration of the While loop at step 3, we useH i to denote the (lowest) node
chosen in iterationi of the While loop, we useY i to denote the set of observed children ofH i on
iterationi of the While loop, and we useYi = Comp(Y i) to denote the composite node created by
the OCS transformation in iterationi of the While loop.

Lemma 51 Let G be a Bayesian network in which all nodes are both BLL and BLTSP, and leto
be a set of observations for nodesO. If for every O∈ O that has at least one parent not inO, the
observation ino for O is the distinguished state o0, then every node in the Bayesian networkGT

that results from applying Algorithm ONE toG is BLL.

Proof: From Lemma 42, we know that we retain the BLL and BLTSP properties of all nodes
while removing edges in step 2, and thus all nodes inG0 are both BLL and BLTSP. Similarly,

1325

CHICKERING, HECKERMAN AND MEEK

from Proposition 43, step 4 does not affect the BLL or BLTSP properties of the nodes that remain.
Thus, the lemma follows if we can show that for every OCS transformation applied in step 3 of the
algorithm, every non-observed node retains the BLL property.

Consider theith iteration of the While loop in step 3. From Corollary 47, if (1) the observed
state for each child inY i is the distinguished state for that child, (2)H i is both BLL and BLTSP, and
(3) each child inY i is both BLL with respect to its distinguished state and BLTSP with respect to
its distinguished state, then we are guaranteed that all observed variablesretain the BLL property.
We now demonstrate that these three preconditions of Corollary 47 hold forevery iterationi.

After applying step 2 of the algorithm, any observed node without at least one observed parent
will be completely disconnected from the graph, and thus precondition (1) isalways satisfied. From
Corollary 23, each unobserved node is chosen at most once in step 3. Because the parents (and
hence the local distribution) for an unobserved node only change whenit is chosen in step 3, we
conclude that precondition (2) is always satisfied.

The only local distributions for nodes inO that change in iterationi are the nodesY i , which are
replaced by the single nodeYi . From Corollary 47, if preconditions (1) and (2) hold, and if every
nodeO∈O is both BLL with respect too0 and BLTSP with respect too0 beforethe transformation,
then every nodeO ∈ O is both BLL with respect too0 and BLTSP with respect too0 after the
transformation. Because all nodes inO are initially both BLL with respect to their distinguished
states and BLTSP with respect to their distinguished states, precondition (3)always holds and the
lemma follows.�

Appendix D. Main Results

In this appendix, we prove Lemma 17 and Lemma 5 using results established in theprevious ap-
pendices.

Lemma 52 Let G be any Bayesian network in which all local distributions are BLL, and let X be
any root node inG . If X and Y are d-connected by an/0-active path inG , then p(y0|x0) > p(y0|x1).

Proof: From Lemma 50, we can apply Algorithm UPS toG and nodeY, and every node in the
resulting modelGT will be BLL. Furthermore, we know from Lemma 20 thatX is a root-node
parent ofY, and that all other nodesZ in GT are also root-node parents ofY. Expressing the
difference of interest usingGT :

p(y0|x0)− p(y0|x1) =

[

∑
z

pT(y0|x0,z)pT(z|x0)

]

−

[

∑
z

pT(y0|x1,z)pT(z|x0)

]

.

Because all nodes inZ are d-separated fromX in GT wheneverY is not in the conditioning set we
have

p(y0|x0)− p(y0|x1) = ∑
z

p(z)
[

pT(y0|x0,z)− pT(y0|x1,z)
]

.

Every difference in the sum above is guaranteed to be greater than zeroby definition of BLL.�

Theorem 53 Let G be a Bayesian network in which all conditional distributions are BLL and
BLTSP, and leto be a set of observations for nodesO. If for every O∈ O that has at least one
parent not inO, the observation ino for O is the distinguished state o0, then if there is aO-active
path between X and Y inG , then p(y0|x0,o0) > p(y0|x1,o0).

1326

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

Proof: Without loss of generality, assume thatX is not a descendant ofY in G . LetUAnc(X) denote
the set of unobserved nodes inG for which there is a directed path toX though unobserved nodes.
In other words,UAnc(X) is the set of ancestors ofX if we were to remove all of the nodes inO
from G . We prove the theorem by induction on the size ofUAnc(X).

For the basis, we consider the case when|UAnc(X)| = 0. From Lemma 51, we can use Algo-
rithm ONE to convertG into a Bayesian network containing only unobserved nodes and for which
every node is BLL. Furthermore, becauseX has no unobserved parents inG , we can assume by
Lemma 24 thatX is a root node in the resulting modelGT . Because there is aO-active path be-
tweenX andY in G , there must be a/0-active path betweenX andY in GT . Thus the base case
follows from Lemma 52.

For the induction hypothesis, we assume the theorem is true whenever|UAnc(X)| is less than
k, and we consider the case when|UAnc(X)| = k. Let Z be any element ofUAnc(X) for which no
parent ofZ is also inUAnc(X); that is,Z is a root-node ancestor ofX in the graph that results from
removingO from G . BecauseZ 6∈O, we know that the theorem holds if

p(z0|x0,o0)p(y0|x0,z0,o0) + p(z1|x0,o0)p(y0|x0,z1,o0)

>

p(z0|x1,o0)p(y0|x1,z0,o0) + p(z1|x1,o0)p(y0|x1,z1,o0).

We conclude from Proposition 29—usingα1 = p(z0|x0,o0), α2 = p(z0|x1,o0), and f i j =
p(y0|xi ,zj ,o0)—that the following four conditions are sufficient to establishp(y0|x0,o0) ≥
p(y0|x1,o0):

1. p(z0|x0,o0)≥ p(z0|x1,o0) (i.e.,α1≥ α2)

2. p(y0|x0,z0,o0)≥ p(y0|x0,z1,o0) (i.e., f 00≥ f 01)

3. p(y0|x0,z1,o0)≥ p(y0|x1,z1,o0) (i.e., f 01≥ f 11)

4. p(y0|x0,z0,o0)≥ p(y0|x1,z0,o0) (i.e., f 00≥ f 10)

and that either of the following two conditions is sufficient to rule out equality,and thus establish
the lemma:

5.
(

p(y0|x0,z0,o0) > p(y0|x0,z1,o0)
)

∧
(

p(z0|x0,o0) > p(z0|x1,o0)
)

(i.e.,(α1 > α2)∧ (f 00 > f 01))

6. p(y0|x0,z0,o0) > p(y0|x1,z0,o0) (i.e., f 00≥ f 10).

We consider two cases: inG , eitherX andY are d-separated byO∪ {Z} or they are not d-
separated byO∪{Z}.

SupposeX andY are d-separated byO∪{Z}. We can immediately conclude that equality holds
for both (3) and (4). BecauseX andY are not d-separated byO, we conclude both thatZ andY are
d-connected givenO and thatY andZ are d-connected givenO∪X. From this first d-connection
fact and the fact that|UAnc(Z)| = 0, we conclude that (1) is a strict inequality by the base case of
the induction. From the second d-connection fact, and because the preconditions of the theorem are
not violated by addingX = x0 to the observation set, we conclude that (2) is also a strict inequality
by again deferring to the base case of the induction. Thus, all inequalities (1)-(4) hold, with (1)

1327

CHICKERING, HECKERMAN AND MEEK

and (2) holding as strict inequalities. Because condition (5) is simply the conjunction of the strict
versions of (2) and (1), the theorem follows.

SupposeX andY are not d-separated byO∪ {Z}. In this case, the two d-connection facts
from the previous case may or may not hold. If either or both of them hold, we can show that the
corresponding inequality is strict using the same argument as above. If either or both of them do
not hold, we conclude that equality holds for the corresponding inequality. Thus, we know that (1)
and (2) both hold, although we have no guarantees on strictness. Because all of the parents ofZ are
necessarily in the conditioning set, the preconditions of the theorem are notviolated by adding either
z= z0 or z= z1 to the conditioning set. Because the result of either addition reduces|UAnc(X)| by
one, we conclude by induction that both (3) and (4) are strict inequalities.Thus, all inequalities
(1)-(4) hold. Because condition (6) is simply the strict version of (4), thetheorem follows.�

Theorem 53 is closely related to existing results in the QBN literature. In particular, Theorem 4
from Druzdzel and Henrion (1993) implies that in a graph satisfying the non-strict versions of BLL
and BLTSP, our Theorem 53 holds except with the conclusion thatp(y0|x0,o0)≥ p(y0|x1,o0).

We now prove the main results of the appendices. We re-state the corollary here, adopting our
convention of usingG to denote both the structure and the parameters of a Bayesian network.
Lemma 17Let G be a Bayesian network in which all local distributions are both BLL and BLTSP.
Then the joint distribution represented byG is perfect with respect to the structure ofG .
Proof: Let p(·) denote the joint distribution defined byG . Becausep(·) is defined by a Bayesian
network, we know it factors according to the structure ofG , and thus we need only show thatp(·)
is faithful with respect to the structure ofG . To demonstrate thatp(·) is faithful, we consider an
arbitrary d-connection fact inG and prove that there is a corresponding dependence inp(·). Let X
andY be any pair of nodes inG that are d-connected by some setO in G . From Theorem 53, we
know that for the observationO = o0, we havep(y0|x0,o0) > p(y0|x1,o0), and thusp(·) is faithful.
�

We now prove Lemma 5; this lemma provides a method for constructing BLL and BLTSP
distributions.
Lemma 5LetG be a Bayesian network, let rY denote the number of states of node Y, letPaY denote
the set of parents of node Y inG , let NNZ(paY) denote the number of non-zero elements in the set
paY, and letαX be a constant satisfying0 < αX < 1. If all of the local distributions are defined as

p(y|paY) =







αF(paY)
X if y = 0
1

(rY−1)

(

1−αF(paY)
X

)

otherwise,
(42)

where
F(paY) = 2−2−NNZ(paY),

then the distribution defined byG is perfect with respect to the structure ofG .
Proof: Given Lemma 17, we need only show thatp(y|paY) is BLL and BLTSP. For every variable
in G , we define the distinguished state to be state zero, and we order the states such that state zero is
greatest and all non-zero states are equal. Thus, according to the definition of BLL (Definition 40)
and the definition of BLTSP (Definition 41), we need to show thatp(y|paY) is binary-like, lattice
with respect toy = 0, and totally strictly positive with respect toy = 0.

Due to the definition ofF in Equation 42, it follows immediately from Definition 39 that
p(y|paY) is binary-like. We now show thatp(y|paY) is lattice with respect toy = 0. From Equation

1328

LARGE-SAMPLE LEARNING OF BAYESIAN NETWORKS ISNP-HARD

42, this follows as long as

α2−(1
2)

NNZ(pa1
Y)

> α2−(1
2)

NNZ(pa2
Y)

whenpa1
Y andpa2

Y are identical except thatpa1
Y contains one extra zero in some position. Due to the

fact thatα < 1, the above condition is equivalent toNNZ(pa1
Y) < NNZ(pa2

Y) (simplify by taking the
logarithm baseα, then subtracting constants, then multiplying by -1, and then taking the logarithm
base1

2; the direction of the sign above thus changes three times). Becausepa1
Y contains exactly one

more zero than doespa2
Y, NNZ(pa1

Y) = NNZ(pa2
Y)+1 and we conclude thatp(y|paY) is lattice with

respect toy = 0.
Finally, we show thatp(y|paY) is totally strictly positive with respect toy = 0. For an arbitrary

pair of parents{Xi ,Xj} ⊆ PaY, let X i j denote the remaining parents. That is,

PaY = {Xi ,Xj}∪X i j .

From Definition 27 (and the example that follows it), it suffices to show that

p(y = 0|x0
i ,x

0
j ,xi j) p(y = 0|x1

i ,x
1
j ,xi j) > p(y = 0|x0

i ,x
1
j ,xi j) p(y = 0|x1

i ,x
0
j ,xi j).

Lettingni j denote the number of non-zero elements inxi j and plugging in Equation 42 yields

α2−(1
2)

ni j +2

α2−(1
2)

ni j
> α2−(1

2)
ni j +1

α2−(1
2)

ni j +1

.

Taking the logarithm (baseα) of both sides (which reverses the sign of the inequality becauseα < 1),
subtracting 4 from both sides, and then dividing both sides by−1

2
ni j (which reverses the sign of the

inequality once again) leaves
(

1
2

)2

+1 >
1
2

+
1
2
,

which clearly holds.�

References

Bouckaert, R. R. (1995).Bayesian Belief Networks: From Construction to Inference. PhD thesis,
Utrecht University, The Netherlands.

Chickering, D. M. (1995). A transformational characterization of Bayesian network structures. In
Hanks, S. and Besnard, P., editors,Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence,Montreal, QU, pages 87–98. Morgan Kaufmann.

Chickering, D. M. (1996). Learning Bayesian networks is NP-Complete.In Fisher, D. and Lenz,
H., editors,Learning from Data: Artificial Intelligence and Statistics V, pages 121–130. Springer-
Verlag.

Chickering, D. M. (2002). Optimal structure identification with greedy search. Journal of Machine
Learning Research, 3:507–554.

Dasgupta, S. (1999). Learning polytrees. In Laskey, K. and Prade, H., editors,Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence,Stockholm, Sweden, pages 131–
141. Morgan Kaufmann.

1329

CHICKERING, HECKERMAN AND MEEK

Druzdzel, M. J. and Henrion, M. (1993). Efficient reasoning in qualitative probabilistic networks. In
Proceedings of the Eleventh Annual Conference on Artificial Intelligence(AAAI-93),Washington,
D.C., pages 548–553.

Garey, M. and Johnson, D. (1979).Computers and intractability: A guide to the theory of NP-
completeness. W.H. Freeman.

Gavril, F. (1977). Some NP-complete problems on graphs. InProc. 11th Conf. on Information
Sciences and Systems,Johns Hopkins University, pages 91–95. Baltimore, MD.

Howard, R. and Matheson, J. (1981). Influence diagrams. InReadings on the Principles and
Applications of Decision Analysis, volume II, pages 721–762. Strategic Decisions Group, Menlo
Park, CA.

Karlin, S. and Rinott, Y. (1980). Classes of orderings of measures andrelated correlation inequali-
ties. i. multivariate totally positive distributions.Journal of Multivariate Analysis, 10:467–498.

Meek, C. (1997).Graphical Models: Selecting causal and statistical models. PhD thesis, Carnegie
Mellon University.

Meek, C. (2001). Finding a path is harder than finding a tree.Journal of Artificial Intelligence
Research, 15:383–389.

Nielsen, J. D., Kŏcka, T., and Pẽna, J. M. (2003). On local optima in learning Bayesian networks.
In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence,Acapulco,
Mexico, pages 435–442. Morgan Kaufmann.

Pearl, J. (1988).Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA.

Spirtes, P., Glymour, C., and Scheines, R. (2000).Causation, Prediction, and Search (second
edition). The MIT Press, Cambridge, Massachussets.

Srebro, N. (2001). Maximum likelihood bounded tree-width Markov networks. In Breese, J. and
Koller, D., editors,Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intel-
ligence,Seattle, WA, pages 504–511. Morgan Kaufmann.

Wellman, M. P. (1990). Fundamental concepts of qualitative probabilistic networks. Artificial
Intelligence, 44:257–303.

1330

