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Abstract 
To bring speech recognition mainstream, researchers have 
been working on automatic grammar development tools. Most 
of the work focused on the modeling of sentence level 
commands for mixed-initiative dialogs. In this paper we 
describe a novel approach that enables the developers with 
little grammar authoring experience to construct high 
performance speech grammars for alphanumeric concepts, 
which are often needed in the more commonly used directed 
dialog systems in practice. A developer can simply write down 
a regular expression for the concept and the algorithm 
automatically constructs a W3C grammar with appropriate 
semantic interpretation tags. While the quality of the grammar 
is ultimately determined by the way in which the regular 
expression is written, the algorithm relieves the developers 
from the difficult tasks of optimizing grammar structures and 
assigning appropriate semantic interpretation tags, thus it 
greatly speeds up grammar development and reduces the 
requirement of expertise. Preliminary experimental results 
have shown that the grammar created with this approach 
consistently outperformed the general alphanumeric rules in 
the grammar library. In some cases the semantic error rates 
were cut by more than 50%. 

1. Introduction 
With the steady improvements over the past two decades, 
speech recognition technology is on the verge of becoming 
mainstream in the real world. To catalyze this process, 
researchers have been working on language learning tools that 
facilitate the rapid development of speech-enabled dialogs and 
applications [1-5]. 

Most of the researches, if not all of them, focused on the 
learning of the spoken language understanding models for the 
sentence level commands that are often observed in the mixed-
initiative dialogs. While they were good at modeling the 
commands that contain multiple phrasal semantic units (slots), 
for example, a “ShowFlight” command like “List the flights 
from Seattle to Boston on Tuesday that costs no more than 
$400” in the domain of Air Travel Information System, they 
seldom studied the acquisition of the phrasal model for the 
low level concepts like date, time, credit card number, flight 
number, etc. Instead, they resorted to grammar libraries and 
database entries (e.g., city names from an application 
database) for solutions.  

On the other hand, a majority of the spoken language systems 
deployed so far are system-initiative, directed dialog systems. 
In such systems, most of the grammar development efforts are 

devoted to the low level concepts. Hence the aforementioned 
example-based learning tools are less attractive to the dialog 
system developers in this reality. While the grammar libraries 
and database entries are viable solutions, they did not solve the 
problem completely --- grammar library developers cannot 
foresee all possible domain specific concepts and pre-build 
grammars for them; the orthographic form of the database 
entries are often not sufficient to serve as the speech 
recognition grammar. For example, a proper speech 
recognition grammar needs to model a variety of expressions 
for an alphanumeric string like the parts number “ABB123” in  
a database --- to name a few, “A B B one two three”, “A 
double B one twenty three.”  

According to the feedback that we received from the speech 
application developers, grammar development for the 
alphanumeric concepts like parts number and driver license 
number is one of the most challenging tasks. Often they started 
with a single state finite state model that loops over the 
alphanumeric alphabet, as illustrated by the diagram below: 

zero

nine
A

Z...

...

 
The simple grammar was quickly found improper by the 
developers due to the following reasons: 

1. The grammar does not capture the specificity of the target 
sub-languages. Therefore, the perplexity of the model is 
much higher than it should be. For example, if it is 
known that the parts number always starts with letter ‘B’, 
the grammar should explicitly model the constraint so 
that recognition errors that confuse ‘E’ with ‘D’, ‘E’, ‘G’,  
and ‘P’ will never occur. 

2. The simple grammar does not model the diversity of 
linguistic expressions for digit strings. It has been shown 
in the previous example that the string “123” can be read 
in many ways different from what were modeled by the 
simple grammar. 

3. Special characters like ‘-’ and ‘*’ often appear in the 
sequence.  The general alphanumeric grammar needs to 
be customized in such cases. 

Hence developers often write their own grammar for specific 
alphanumeric concepts. The process is tedious and error-
prone. Unlike the grammar library, the grammars authored by 
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the less experienced developers are often not optimized, thus 
have poor performance when used by the decoder. 

In this paper, we propose a novel solution to the grammar 
authoring problems for the domain specific alphanumeric 
concepts. A speech recognition grammar can be automatically 
constructed upon a developer’s input of the regular expression 
for an alphanumeric concept. 

2. Creating Recognition Grammar from 
Regular Expressions 

2.1. Regular Expressions 

W3C standard has the following formal definition for regular 
expressions [6]: 
regExp ::= branch ( '|' branch )* 
branch ::= pieces* 
piece  ::= atom quantifier? 
atom   ::= char|charClass|('(' regExp ')') 
 
According to this definition, a regular expression consists of 
one or multiple alternates (branches). Each branch consists of 
a sequence of pieces. Each piece is an atom that is optionally 
quantified. The quantifier specifies the repetition of the atom. 
It can be a number (e.g. {3}), a number range (e.g. {0-3}) or a 
reserved character (e.g. ‘+’ for more than once, ‘*’ for zero or 
more times). The atom can be a character, a character class 
(e.g. [A-Z] for all uppercase letters, \d for the ten digits), or 
recursively a parenthesized regular expression. 

A regular expression with recursive regular expression atoms 
can be converted to one without the recursive atoms. For 
example, “(\d{3} | [A-Z]){2}C” defines the same language as 
“\d{3}[A-Z]C | \d{6}C | [A-Z]\d{3}C | [A-Z]{2}C” does. In 
this work we require the use of the regular expressions without 
recursive regular expression atoms.  

2.2. The Conversion Algorithm 

The pseudo-code in Figure 1 shows the algorithm that creates 
a W3C speech recognition grammar from a regular expression. 

The code assumes that the regular expression objects have the 
methods to access their components. For example, the method 
pieces() returns the list of pieces in branch, a branch in a 
regular expression. It represents the right hand side of a rule as 
an array of rule_token’s. Each rule_token is a tuple 
(symbol, min, max) that specifies that symbol repeats from 
min to max times in the rewriting rule. 

The first (main) function calls the second function to create the 
rules for each branch of the input regular expression, and adds 
rules that rewrite the root symbol to the symbols for the 
branches.  The second function calls the third function to 
create the rules for each piece in a branch, and add the rule 
that rewrites the branch symbol to the piece sequence. The 
third function (line 22-41) creates the rules for a piece. It first 
checks the character set defined by the atom of the piece. If it 
is the digit set, it ruleref’s to the library grammar rule of fixed 
length digit sequences (line 26-34.) Otherwise it creates a rule 
that covers all the elements of the character set (line 36-37) 
and calls the function create_repeats for the repetition of 
the character set. That function in turn creates the prefixed 
grammar rules for 0 time occurrence (line 48-52); one time 

occurrence (line 54-57); more than one occurrence (line 58-
80) --- note how it models the expressions like “double zero” 
in line 64-70; and more than two occurrences (line 72-80). 

1. create_regexp_grammar(regexp, gram) { 
2.   foreach branch in (regexp.branches()) { 
3.     string symbol =  
4.       create_branch_grammar(branch, gram); 
5.     rule_token token(symbol,1,1);               
6.     array RHS = (token); 
7.     gram.add_rule(gram.root(), RHS); 
8.   } 
9. } 
10. create_branch_grammar(branch, gram) { 
11.   array RHS = (); 
12.   foreach piece in (branch.pieces()) { 
13.     string symbol =  
14.       create_piece_grammar(piece, gram);  
15.     rule_token token(symbol,1,1);                 
16.     RHS.add(token); 
17.   } 
18.   string LHS=new_symbol(); 
19.   gram.add_rule(LHS, RHS); 
20.   return LHS; 
21. } 
22. create_piece_grammar(piece, gram) { 
23.   atom unit = piece.atom(); 
24.   pair (min, max) = piece.quantity(); 
25.   set charset = unit.CharSet(); 
26.   if (charset == {0, …, 9}) { 
27.     string LHS=new_symbol(); 
28.     for (int i=min; i<=max; i++) { 
29.       string ref = ruleref(lib, digit_i); 
30.       array RHS=(rule_token(ref, 1, 1)); 
31.       gram.add_rule(LHS, RHS); 
32.     } 
33.     return LHS; 
34.   } 
35.   else { 
36.     string charset_nt = 
37.       create_charset_grammar(charset,gram); 
38.     return  
39.       create_repeats(charset_nt, min, max); 
40.   } 
41. } 
42. create_repeats(symbol, min, max) { 
43.   if (hash[symbol, min, max] != null) 
44.     return hash(symbol, min, max); 
45.   string LHS = new_symbol(); 
46.   hash[symbol, min, max] = LHS; 
47.   array RHS=(); 
48.   if (min == 0) { 
49.     rule_token token(symbol, 0, 0); 
50.     RHS.add(token); 
51.     gram.add_rule(LHS, RHS); 
52.   } 
53.   if (max <= 0) return LHS 
54.   rule_token token(symbol, 1, 1); 
55.   RHS = (token); 
56.   if (min <= 1) 
57.     gram.add_rule(LHS, RHS); 
58.   if (max >= 2) { 
59.     string rest1=  
60.       create_repeats(symbol, min-1, max-1); 
61.     rule_token rest1_token(rest1, 1, 1); 
62.     RHS.add(rest1_token); 
63.     gram.add_rule(LHS, RHS); 
64.     RHS = (rule_token(“double”, 1, 1)); 
65.     RHS.add(token); 
66.     string rest2=  
67.       create_repeats(symbol, min-2, max-2); 
68.     rule_token rest2_token(rest2, 1, 1); 
69.     RHS.add(rest2_token); 



70.     gram.add_rule(LHS, RHS); 
71.   } 
72.   if (max >= 3) { 
73.     RHS = (rule_token(“triple”, 1, 1)); 
74.     RHS.add(token); 
75.     string rest3=  
76.       create_repeats(symbol, min-3, max-3); 
77.     rule_token rest3_token(rest3, 1, 1); 
78.     RHS.add(rest2_token); 
79.     gram.add_rule(LHS, RHS); 
80.   } 
81.   return LHS; 
82. } 
83. create_charset_grammar(charset,gram) { 
84.   string LHS=new_symbol(); 
85.   array RHS=(); 
86.   foreach ch in (charset) { 
87.     switch (ch) { 
88.     case ‘0’: RHS=(rule_token(“zero”,1,1)); 
89.               gram.add_rule(LHS, RHS); 
90.               RHS=(rule_token(“oh”,1,1)); 
91.               gram.add_rule(LHS, RHS); 
92.               break; 
93.     case ‘1’: …… 
94.   } 
95.   return LHS; 
96. } 

Figure 1. The pseudo-code that constructs a grammar 
from the regular expression regexp. 

Not explicitly shown in Figure 1, the algorithm automatically 
attaches semantic interpretation tags to the rule tokens, so the 
recognition outputs are appropriately normalized. 

3. Experimental Results 
We conducted speech recognition experiments with the 
grammars for three different alphanumeric concepts: social 
security number (SSN), license plate number (LPN), and 
Washington State driver license number (WADL). The 
regular expressions that were used to generate the recognition 
grammars are listed in Table 1. 
 
Concept Regular Expression 
SSN \d{3}-\d{2}-\d{4} 
LPN \d[A-Z]{3}\d{3} 
WADL [A-Z]{2}[A-Z*]{3}[A-Z][A-Z*]\d{3}[A-Z]{2} 

Table 1. Regular expressions used to generate the 
W3C speech recognition grammar. 

220 samples were generated randomly for each concept from 
these regular expressions, except for the WADL. The 
Washington State driver license number starts with the five 
initial letters of a person’s last name (filled with ‘*’ if the last 
name is shorter than five), followed by the first initial and the 
middle initial (‘*’ if no middle initial), and then three digits 
and two letters. We randomly picked 220 last names from the 
US Census Bureau’s 1990 census [7], took the first five 
letters from each name and appended it with a string 
randomly generated according to the regular expression “[A-
Z][A-Z*]\d{3}[A-Z]{2}.” 

Speech data was collected from eleven subjects. The subjects 
were Microsoft employees, including five speech researchers, 
four software engineers/testers and two administrative staffs.   
Seven of the subjects are native US English speakers, among 
them two are females. The rest four non-native speakers are 

all males. The subjects were instructed to read out the 
numbers in the normal way they speak in daily life. 20 
utterances per concept were collected from each subject. 

Microsoft Yakima, the speech engine that ships with several 
Microsoft products, was used in the experiments, together 
with its default speaker independent acoustic model. For each 
concept, we used as the baseline the general fixed-length 
alphanumeric grammar from the grammar library provided in 
the Microsoft Speech SDK, with the modifications that add 
the words “dash”, “hyphen” for the character ‘-’ and 
“asterisk”, “star” for the character ‘*’ in the vocabulary. The 
same grammar library also contains the rule USSocialSecurity 
(Lib/SSN). We used it as an alternative (presumably better) 
baseline for the SSN task. The recognition outputs were then 
compared with the original numbers used for data collection. 
The statistics of character error rates and semantic error rates 
were collected --- a recognition hypothesis is considered a 
semantic error if one or more character errors occur. 

Table 2 shows the error rates of the three different grammars 
for the SSN task. Compared with the library SSN grammar, 
the grammar generated from the regular expressions cut the 
semantic error rate by more than 60% when it is compared 
with the fixed length alphanumeric grammar, and over 40% 
when it is compared with the library SSN grammar. The 
alphanumeric grammar has the highest error rates because it 
doesn’t cover the digit sequences that were read as a number. 
Lib/SSN has the error rate comparable to that of RE/SSN on 
nonnative speakers, but much higher error rates on the native 
speakers. This is due to the fact that one native speaker 
consistently read out the hyphens explicitly in the social 
security numbers, which is not modeled by Lib/SSN, and it is 
not as straightforward to add the hyphen to Lib/SSN as we 
extended the alphanumeric grammar. This demonstrates that 
generating grammar from regular expressions provides an 
effective alternative of a customized grammar when the 
existing library grammar fails to model some users’ peculiar 
utterances. 

 AN9-11 Lib/SSN RE/SSN 
CER 11.1% 9.1% 0.6% Native 

Speakers SER 18.6% 18.6% 4.3% 
CER 29.4% 4.6% 3.9% Nonnative 

Speakers SER 58.8% 28.8% 28.8% 
CER 17.8% 7.5% 1.8% Overall 
SER 33.2% 22.3% 13.2% 

Table 2. Character error rate (CER) and semantic 
error rate (SER) for the SSN recognition task. AN9-11 
is the grammar for the alphanumeric string of length 9 
to 11 (with the optional ‘-’ in the SSN). Lib/SSN is the 
SSN grammar in the grammar library. RE/SSN is 
generated from the regular expression in Table 1. 

Table 3 compares the license plate number grammar created 
from the regular expression (RE/LPN) with baseline grammar. 
Because RE/PLN modeled the diversity of digit sequence 
expressions and the constraints on the locations where a digit 
or a letter is expected, it cut the error rate by more than 50%. 
The location constraints significantly reduce the fan-out at 
each grammar state (hence the perplexity) and eliminate the 
frequently observed confusion between ‘8’ and ‘A’.  



 AN-7 RE/LPN 
CER 6.5% 2.6% Native 

Speakers SER 34.3% 14.3% 
CER 18.4% 9.1% Nonnative 

Speakers SER 71.3% 37.5% 
CER 10.8% 4.9% Overall SER 47.7% 22.7% 

Table 3. Character error rate (CER) and semantic 
error rate (SER) for the license plate number 
recognition task. AN-7 is the grammar for the 
alphanumeric string of length 7. RE/LPN is generated 
from the regular expression in Table 1. 

 AN-12 RE/WADL 
CER 17.0% 14.3% Native 

Speakers SER 72.1% 47.9% 
CER 37.7% 39.7% Nonnative 

Speakers SER 97.5% 90.0% 
CER 24.5% 23.6% Overall SER 81.4% 63.2% 

Table 4. Character error rate (CER) and semantic 
error rate (SER) for the Washington State driver 
license number task. AN-12 is the grammar for the 
alphanumeric string of length 12. RE/WADL is 
generated from the regular expression in Table 1. 

Table 4 lists the error rates of the two WADL grammars. The 
grammar created from the regular expression again has better 
accuracy. However, both grammars have a very high error rate. 
Preliminary error analysis shows that the high error rates can 
be attributed to the following two reasons: 

1. More (9) letters exist in a WADL number, and letters are 
acoustically more confusable than digits. Error analysis 
shows that the most confusable letters are ‘S’ vs. ‘F’, and 
then the E-class letters B, D, E, G, P, and T. This also 
explains why LPN has higher error rate than SSN. 

2. WADL numbers often contain pronounceable substrings 
(last names or last name prefixes). Many subjects (often 
speech researchers who tried to break the system) opted 
to pronounce the name instead of spelling out the letters.  
About 8% of the data was read out with the substring 
pronunciation, which is completely uncovered by either 
grammar.   

4. Discussion and Future Work 
While the algorithm in Figure 1 relieves developers from the 
difficult tasks of optimizing the grammar structure for high 
performance (partially prefixing a grammar while retaining 
readability) and assigning appropriate semantic interpretation 
tags to grammar rule tokens for output normalization, it does 
not guarantee to output high quality grammars. In fact, the 
baseline alphanumeric grammars used in the experiments can 
also be generated from the regular expression “[A-Z0-9]{n}” 
(with the extra modeling of “double” and “triple” phrases). 
The quality of the grammar is determined ultimately by the 
way in which the regular expressions are written. Here are two 
major guidelines for writing regular expressions that can result 
in high quality grammar: 

1. Natural grouping. The regular expressions should group 
the substrings in the natural way that people normally do.  

For example, the SSN regular expression in Table 1 is 
more suitable than “\d{9}”, which creates the grammar of 
nine digit sequence for SSN.  

2. Specific modeling. Use the specific character set that can 
occur at a position in an alphanumeric string rather than 
using its supersets. If it is known to be a digit, don’t use 
[A-Z0-9]. If only ‘S’ can occur at a position, don’t use 
the letter set [A-Z]. In doing so the recognizer will not 
confuse it with an ‘F’. In the extreme case when an 
alphanumeric concept has finite instances, the regular 
expressions can be just the one with these instances as its 
branches. 

As illustrated by the poor accuracy of the WADL task, the 
confusable letter sets and the substring pronunciation are the 
two major remaining problems in the alphanumeric concept 
modeling. As future work, we would like to study the role that 
character n-gram can play in confusable letter disambiguation, 
and investigate statistical models that can automatically learn 
the pronounceable substrings. 

5. Conclusions 
We have shown that quality speech recognition grammar can 
be constructed automatically for alphanumeric concepts from 
appropriate regular expressions. It relieves developers from 
the difficult tasks of optimizing grammar structures and 
assigning appropriate semantic interpretation tags, thus it 
greatly speeds up the grammar development for developers 
with little speech recognition grammar authoring experience. 
The approach is complementary to the researches that facilitate 
the grammar development via language learning algorithms. 
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