
Creating Speech Recognition Grammars from Regular
Expressions for Alphanumeric Concepts

Ye-Yi Wang1 and Yun-Cheng Ju2
1Speech Technology Group, Microsoft Research

2.Net Speech Group
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA

{yeyiwang,yuncj}@microsoft.com

Abstract
To bring speech recognition mainstream, researchers have
been working on automatic grammar development tools. Most
of the work focused on the modeling of sentence level
commands for mixed-initiative dialogs. In this paper we
describe a novel approach that enables the developers with
little grammar authoring experience to construct high
performance speech grammars for alphanumeric concepts,
which are often needed in the more commonly used directed
dialog systems in practice. A developer can simply write down
a regular expression for the concept and the algorithm
automatically constructs a W3C grammar with appropriate
semantic interpretation tags. While the quality of the grammar
is ultimately determined by the way in which the regular
expression is written, the algorithm relieves the developers
from the difficult tasks of optimizing grammar structures and
assigning appropriate semantic interpretation tags, thus it
greatly speeds up grammar development and reduces the
requirement of expertise. Preliminary experimental results
have shown that the grammar created with this approach
consistently outperformed the general alphanumeric rules in
the grammar library. In some cases the semantic error rates
were cut by more than 50%.

1. Introduction
With the steady improvements over the past two decades,
speech recognition technology is on the verge of becoming
mainstream in the real world. To catalyze this process,
researchers have been working on language learning tools that
facilitate the rapid development of speech-enabled dialogs and
applications [1-5].

Most of the researches, if not all of them, focused on the
learning of the spoken language understanding models for the
sentence level commands that are often observed in the mixed-
initiative dialogs. While they were good at modeling the
commands that contain multiple phrasal semantic units (slots),
for example, a “ShowFlight” command like “List the flights
from Seattle to Boston on Tuesday that costs no more than
$400” in the domain of Air Travel Information System, they
seldom studied the acquisition of the phrasal model for the
low level concepts like date, time, credit card number, flight
number, etc. Instead, they resorted to grammar libraries and
database entries (e.g., city names from an application
database) for solutions.

On the other hand, a majority of the spoken language systems
deployed so far are system-initiative, directed dialog systems.
In such systems, most of the grammar development efforts are

devoted to the low level concepts. Hence the aforementioned
example-based learning tools are less attractive to the dialog
system developers in this reality. While the grammar libraries
and database entries are viable solutions, they did not solve the
problem completely --- grammar library developers cannot
foresee all possible domain specific concepts and pre-build
grammars for them; the orthographic form of the database
entries are often not sufficient to serve as the speech
recognition grammar. For example, a proper speech
recognition grammar needs to model a variety of expressions
for an alphanumeric string like the parts number “ABB123” in
a database --- to name a few, “A B B one two three”, “A
double B one twenty three.”

According to the feedback that we received from the speech
application developers, grammar development for the
alphanumeric concepts like parts number and driver license
number is one of the most challenging tasks. Often they started
with a single state finite state model that loops over the
alphanumeric alphabet, as illustrated by the diagram below:

zero

nine
A

Z...

...

The simple grammar was quickly found improper by the
developers due to the following reasons:

1. The grammar does not capture the specificity of the target
sub-languages. Therefore, the perplexity of the model is
much higher than it should be. For example, if it is
known that the parts number always starts with letter ‘B’,
the grammar should explicitly model the constraint so
that recognition errors that confuse ‘E’ with ‘D’, ‘E’, ‘G’,
and ‘P’ will never occur.

2. The simple grammar does not model the diversity of
linguistic expressions for digit strings. It has been shown
in the previous example that the string “123” can be read
in many ways different from what were modeled by the
simple grammar.

3. Special characters like ‘-’ and ‘*’ often appear in the
sequence. The general alphanumeric grammar needs to
be customized in such cases.

Hence developers often write their own grammar for specific
alphanumeric concepts. The process is tedious and error-
prone. Unlike the grammar library, the grammars authored by

International Conference on Spoken Language Processing, pp. 2161–2164, Jeju, Korea, 2004

the less experienced developers are often not optimized, thus
have poor performance when used by the decoder.

In this paper, we propose a novel solution to the grammar
authoring problems for the domain specific alphanumeric
concepts. A speech recognition grammar can be automatically
constructed upon a developer’s input of the regular expression
for an alphanumeric concept.

2. Creating Recognition Grammar from
Regular Expressions

2.1. Regular Expressions

W3C standard has the following formal definition for regular
expressions [6]:
regExp ::= branch ('|' branch)*
branch ::= pieces*
piece ::= atom quantifier?
atom ::= char|charClass|('(' regExp ')')

According to this definition, a regular expression consists of
one or multiple alternates (branches). Each branch consists of
a sequence of pieces. Each piece is an atom that is optionally
quantified. The quantifier specifies the repetition of the atom.
It can be a number (e.g. {3}), a number range (e.g. {0-3}) or a
reserved character (e.g. ‘+’ for more than once, ‘*’ for zero or
more times). The atom can be a character, a character class
(e.g. [A-Z] for all uppercase letters, \d for the ten digits), or
recursively a parenthesized regular expression.

A regular expression with recursive regular expression atoms
can be converted to one without the recursive atoms. For
example, “(\d{3} | [A-Z]){2}C” defines the same language as
“\d{3}[A-Z]C | \d{6}C | [A-Z]\d{3}C | [A-Z]{2}C” does. In
this work we require the use of the regular expressions without
recursive regular expression atoms.

2.2. The Conversion Algorithm

The pseudo-code in Figure 1 shows the algorithm that creates
a W3C speech recognition grammar from a regular expression.

The code assumes that the regular expression objects have the
methods to access their components. For example, the method
pieces() returns the list of pieces in branch, a branch in a
regular expression. It represents the right hand side of a rule as
an array of rule_token’s. Each rule_token is a tuple
(symbol, min, max) that specifies that symbol repeats from
min to max times in the rewriting rule.

The first (main) function calls the second function to create the
rules for each branch of the input regular expression, and adds
rules that rewrite the root symbol to the symbols for the
branches. The second function calls the third function to
create the rules for each piece in a branch, and add the rule
that rewrites the branch symbol to the piece sequence. The
third function (line 22-41) creates the rules for a piece. It first
checks the character set defined by the atom of the piece. If it
is the digit set, it ruleref’s to the library grammar rule of fixed
length digit sequences (line 26-34.) Otherwise it creates a rule
that covers all the elements of the character set (line 36-37)
and calls the function create_repeats for the repetition of
the character set. That function in turn creates the prefixed
grammar rules for 0 time occurrence (line 48-52); one time

occurrence (line 54-57); more than one occurrence (line 58-
80) --- note how it models the expressions like “double zero”
in line 64-70; and more than two occurrences (line 72-80).

1. create_regexp_grammar(regexp, gram) {
2. foreach branch in (regexp.branches()) {
3. string symbol =
4. create_branch_grammar(branch, gram);
5. rule_token token(symbol,1,1);
6. array RHS = (token);
7. gram.add_rule(gram.root(), RHS);
8. }
9. }
10. create_branch_grammar(branch, gram) {
11. array RHS = ();
12. foreach piece in (branch.pieces()) {
13. string symbol =
14. create_piece_grammar(piece, gram);
15. rule_token token(symbol,1,1);
16. RHS.add(token);
17. }
18. string LHS=new_symbol();
19. gram.add_rule(LHS, RHS);
20. return LHS;
21. }
22. create_piece_grammar(piece, gram) {
23. atom unit = piece.atom();
24. pair (min, max) = piece.quantity();
25. set charset = unit.CharSet();
26. if (charset == {0, …, 9}) {
27. string LHS=new_symbol();
28. for (int i=min; i<=max; i++) {
29. string ref = ruleref(lib, digit_i);
30. array RHS=(rule_token(ref, 1, 1));
31. gram.add_rule(LHS, RHS);
32. }
33. return LHS;
34. }
35. else {
36. string charset_nt =
37. create_charset_grammar(charset,gram);
38. return
39. create_repeats(charset_nt, min, max);
40. }
41. }
42. create_repeats(symbol, min, max) {
43. if (hash[symbol, min, max] != null)
44. return hash(symbol, min, max);
45. string LHS = new_symbol();
46. hash[symbol, min, max] = LHS;
47. array RHS=();
48. if (min == 0) {
49. rule_token token(symbol, 0, 0);
50. RHS.add(token);
51. gram.add_rule(LHS, RHS);
52. }
53. if (max <= 0) return LHS
54. rule_token token(symbol, 1, 1);
55. RHS = (token);
56. if (min <= 1)
57. gram.add_rule(LHS, RHS);
58. if (max >= 2) {
59. string rest1=
60. create_repeats(symbol, min-1, max-1);
61. rule_token rest1_token(rest1, 1, 1);
62. RHS.add(rest1_token);
63. gram.add_rule(LHS, RHS);
64. RHS = (rule_token(“double”, 1, 1));
65. RHS.add(token);
66. string rest2=
67. create_repeats(symbol, min-2, max-2);
68. rule_token rest2_token(rest2, 1, 1);
69. RHS.add(rest2_token);

70. gram.add_rule(LHS, RHS);
71. }
72. if (max >= 3) {
73. RHS = (rule_token(“triple”, 1, 1));
74. RHS.add(token);
75. string rest3=
76. create_repeats(symbol, min-3, max-3);
77. rule_token rest3_token(rest3, 1, 1);
78. RHS.add(rest2_token);
79. gram.add_rule(LHS, RHS);
80. }
81. return LHS;
82. }
83. create_charset_grammar(charset,gram) {
84. string LHS=new_symbol();
85. array RHS=();
86. foreach ch in (charset) {
87. switch (ch) {
88. case ‘0’: RHS=(rule_token(“zero”,1,1));
89. gram.add_rule(LHS, RHS);
90. RHS=(rule_token(“oh”,1,1));
91. gram.add_rule(LHS, RHS);
92. break;
93. case ‘1’: ……
94. }
95. return LHS;
96. }

Figure 1. The pseudo-code that constructs a grammar
from the regular expression regexp.

Not explicitly shown in Figure 1, the algorithm automatically
attaches semantic interpretation tags to the rule tokens, so the
recognition outputs are appropriately normalized.

3. Experimental Results
We conducted speech recognition experiments with the
grammars for three different alphanumeric concepts: social
security number (SSN), license plate number (LPN), and
Washington State driver license number (WADL). The
regular expressions that were used to generate the recognition
grammars are listed in Table 1.

Concept Regular Expression
SSN \d{3}-\d{2}-\d{4}
LPN \d[A-Z]{3}\d{3}
WADL [A-Z]{2}[A-Z*]{3}[A-Z][A-Z*]\d{3}[A-Z]{2}

Table 1. Regular expressions used to generate the
W3C speech recognition grammar.

220 samples were generated randomly for each concept from
these regular expressions, except for the WADL. The
Washington State driver license number starts with the five
initial letters of a person’s last name (filled with ‘*’ if the last
name is shorter than five), followed by the first initial and the
middle initial (‘*’ if no middle initial), and then three digits
and two letters. We randomly picked 220 last names from the
US Census Bureau’s 1990 census [7], took the first five
letters from each name and appended it with a string
randomly generated according to the regular expression “[A-
Z][A-Z*]\d{3}[A-Z]{2}.”

Speech data was collected from eleven subjects. The subjects
were Microsoft employees, including five speech researchers,
four software engineers/testers and two administrative staffs.
Seven of the subjects are native US English speakers, among
them two are females. The rest four non-native speakers are

all males. The subjects were instructed to read out the
numbers in the normal way they speak in daily life. 20
utterances per concept were collected from each subject.

Microsoft Yakima, the speech engine that ships with several
Microsoft products, was used in the experiments, together
with its default speaker independent acoustic model. For each
concept, we used as the baseline the general fixed-length
alphanumeric grammar from the grammar library provided in
the Microsoft Speech SDK, with the modifications that add
the words “dash”, “hyphen” for the character ‘-’ and
“asterisk”, “star” for the character ‘*’ in the vocabulary. The
same grammar library also contains the rule USSocialSecurity
(Lib/SSN). We used it as an alternative (presumably better)
baseline for the SSN task. The recognition outputs were then
compared with the original numbers used for data collection.
The statistics of character error rates and semantic error rates
were collected --- a recognition hypothesis is considered a
semantic error if one or more character errors occur.

Table 2 shows the error rates of the three different grammars
for the SSN task. Compared with the library SSN grammar,
the grammar generated from the regular expressions cut the
semantic error rate by more than 60% when it is compared
with the fixed length alphanumeric grammar, and over 40%
when it is compared with the library SSN grammar. The
alphanumeric grammar has the highest error rates because it
doesn’t cover the digit sequences that were read as a number.
Lib/SSN has the error rate comparable to that of RE/SSN on
nonnative speakers, but much higher error rates on the native
speakers. This is due to the fact that one native speaker
consistently read out the hyphens explicitly in the social
security numbers, which is not modeled by Lib/SSN, and it is
not as straightforward to add the hyphen to Lib/SSN as we
extended the alphanumeric grammar. This demonstrates that
generating grammar from regular expressions provides an
effective alternative of a customized grammar when the
existing library grammar fails to model some users’ peculiar
utterances.

 AN9-11 Lib/SSN RE/SSN
CER 11.1% 9.1% 0.6% Native

Speakers SER 18.6% 18.6% 4.3%
CER 29.4% 4.6% 3.9% Nonnative

Speakers SER 58.8% 28.8% 28.8%
CER 17.8% 7.5% 1.8% Overall
SER 33.2% 22.3% 13.2%

Table 2. Character error rate (CER) and semantic
error rate (SER) for the SSN recognition task. AN9-11
is the grammar for the alphanumeric string of length 9
to 11 (with the optional ‘-’ in the SSN). Lib/SSN is the
SSN grammar in the grammar library. RE/SSN is
generated from the regular expression in Table 1.

Table 3 compares the license plate number grammar created
from the regular expression (RE/LPN) with baseline grammar.
Because RE/PLN modeled the diversity of digit sequence
expressions and the constraints on the locations where a digit
or a letter is expected, it cut the error rate by more than 50%.
The location constraints significantly reduce the fan-out at
each grammar state (hence the perplexity) and eliminate the
frequently observed confusion between ‘8’ and ‘A’.

 AN-7 RE/LPN
CER 6.5% 2.6% Native

Speakers SER 34.3% 14.3%
CER 18.4% 9.1% Nonnative

Speakers SER 71.3% 37.5%
CER 10.8% 4.9% Overall SER 47.7% 22.7%

Table 3. Character error rate (CER) and semantic
error rate (SER) for the license plate number
recognition task. AN-7 is the grammar for the
alphanumeric string of length 7. RE/LPN is generated
from the regular expression in Table 1.

 AN-12 RE/WADL
CER 17.0% 14.3% Native

Speakers SER 72.1% 47.9%
CER 37.7% 39.7% Nonnative

Speakers SER 97.5% 90.0%
CER 24.5% 23.6% Overall SER 81.4% 63.2%

Table 4. Character error rate (CER) and semantic
error rate (SER) for the Washington State driver
license number task. AN-12 is the grammar for the
alphanumeric string of length 12. RE/WADL is
generated from the regular expression in Table 1.

Table 4 lists the error rates of the two WADL grammars. The
grammar created from the regular expression again has better
accuracy. However, both grammars have a very high error rate.
Preliminary error analysis shows that the high error rates can
be attributed to the following two reasons:

1. More (9) letters exist in a WADL number, and letters are
acoustically more confusable than digits. Error analysis
shows that the most confusable letters are ‘S’ vs. ‘F’, and
then the E-class letters B, D, E, G, P, and T. This also
explains why LPN has higher error rate than SSN.

2. WADL numbers often contain pronounceable substrings
(last names or last name prefixes). Many subjects (often
speech researchers who tried to break the system) opted
to pronounce the name instead of spelling out the letters.
About 8% of the data was read out with the substring
pronunciation, which is completely uncovered by either
grammar.

4. Discussion and Future Work
While the algorithm in Figure 1 relieves developers from the
difficult tasks of optimizing the grammar structure for high
performance (partially prefixing a grammar while retaining
readability) and assigning appropriate semantic interpretation
tags to grammar rule tokens for output normalization, it does
not guarantee to output high quality grammars. In fact, the
baseline alphanumeric grammars used in the experiments can
also be generated from the regular expression “[A-Z0-9]{n}”
(with the extra modeling of “double” and “triple” phrases).
The quality of the grammar is determined ultimately by the
way in which the regular expressions are written. Here are two
major guidelines for writing regular expressions that can result
in high quality grammar:

1. Natural grouping. The regular expressions should group
the substrings in the natural way that people normally do.

For example, the SSN regular expression in Table 1 is
more suitable than “\d{9}”, which creates the grammar of
nine digit sequence for SSN.

2. Specific modeling. Use the specific character set that can
occur at a position in an alphanumeric string rather than
using its supersets. If it is known to be a digit, don’t use
[A-Z0-9]. If only ‘S’ can occur at a position, don’t use
the letter set [A-Z]. In doing so the recognizer will not
confuse it with an ‘F’. In the extreme case when an
alphanumeric concept has finite instances, the regular
expressions can be just the one with these instances as its
branches.

As illustrated by the poor accuracy of the WADL task, the
confusable letter sets and the substring pronunciation are the
two major remaining problems in the alphanumeric concept
modeling. As future work, we would like to study the role that
character n-gram can play in confusable letter disambiguation,
and investigate statistical models that can automatically learn
the pronounceable substrings.

5. Conclusions
We have shown that quality speech recognition grammar can
be constructed automatically for alphanumeric concepts from
appropriate regular expressions. It relieves developers from
the difficult tasks of optimizing grammar structures and
assigning appropriate semantic interpretation tags, thus it
greatly speeds up the grammar development for developers
with little speech recognition grammar authoring experience.
The approach is complementary to the researches that facilitate
the grammar development via language learning algorithms.

6. References
[1] R. Pieraccini and E. Levin, "A Learning Approach to

Natural Language Understanding." In the
Proceedings of 1993 NATO ASI Summer School,
Bubion, Spain, 1993.

[2] S. Miller, R. Bobrow, R. Ingria, and R. Schwartz,
"Hidden Understanding Models of Natural
Language." In the Proceedings of the 31st Annual
Meeting of the Association for Computational
Linguistics, New Mexico State University, 1994.

[3] Y.-Y. Wang and A. Acero, "Combination of CFG and N-
gram Modeling in Semantic Grammar Learning." In
the Proceedings of Eurospeech 2003, Geneva,
Switzerland, 2003.

[4] Y. He and S. Young, "Hidden Vector State Model for
Hierarchical Semantic Parsing." In the Proceedings
of ICASSP 2003, Hong Kong, China, 2003.

[5] J. Glass and E. Weinstein, "SPEECHBUILDER:
Facilitating Spoken Dialogue System Development."
In the Proceedings of Eurospeech 2001, Aalborg,
Denmark, 2001.

[6] http://www.w3.org/TR/xmlschema-2/#regexs.
[7] http://www.census.gov/genealogy/www/freqnames.html.

