
A SEMANTICALLY STRUCTURED LANGUAGE MODEL

Alex Acero, Ye-Yi Wang and Kuansan Wang

Speech Technology Group
Microsoft Research, One Microsoft Way, Redmond, WA 98052

{alexac, yeyiwang, kuansanw}@microsoft.com

ABSTRACT

In this paper we propose a semantically structured language
(SSLM) model that significantly reduces the authoring load
required over the traditional manually derived grammar when
developing a spoken language system. At the same time, the
SSLM results in an understanding error rate which is roughly
half as large as that of the manually authored grammar. The
proposed model combines the advantages of both statistical
word n-grams and context-free grammars. When the SSLM
directly acts as the recognizer’s language model there’s a
significant reduction in understanding error rate over the case
where it is applied only at the output of a recognizer driven by
an word n-gram language model.

1. INTRODUCTION

In recent years, speech recognition systems have been used in
interactive voice response systems, desktop dictation, car
navigation and many other application domains. In these cases,
the speech recognizer is simply one (albeit an important one)
component within a spoken language system. In the last decade
the availability of high powered affordable personal computers
has fueled the progress of speech recognition technology.
Despite this progress, state-of-the-art machine speech
recognition still underperforms human recognition. While the
mathematical models used in the recognition process are pretty
powerful, they typically make assumptions that speech scientists
know are too simplistic. Moreover, the loose coupling typically
done between the recognition and understanding phases is also
probably suboptimal. In this paper we propose a semantically
structured language model that combines language modeling
with understanding.

Language models for speech recognition typically belong to two
categories: word ngrams and context free grammars (CFG).
These two models differ in many areas: their application areas,
generalization capabilities, coverage characteristics, authoring
load, and semantic content. It would be desirable to come up
with a model that combines the advantages of both. Prior work
in such area includes a model that allows CFG fragments to
behave like words in a statistical n-gram [7], a syntactically
structured language model [1] and the Hidden Understanding
Model [5] among others.

The paper organization is as follows. Section 2 reviews the
language models used in speech recognition whereas Section 3
describes the main algorithm in the paper, the semantically
structured language model. Experimental results are shown in
Section 4.

2. REVIEW OF LANGUAGE MODELING
FOR SPEECH RECOGNITION

Speech recognition is the problem of assigning a word sequence
W to an acoustic signal X. Most often this is done by finding the
word sequence Ŵ that maximizes the posterior probability:

[]

ˆ arg max (|) arg max () (|)

arg max ln () ln (|)
W W

W

W p W X p W p X W

p W p X W

= =

= +
 (1)

where we have used Bayes rule to decompose the posterior
into (|)p X W , the acoustic model, and ()p W , the language
model. The main mission of the speech recognizer is to search
all possible word sequences and select the one with highest
probability.

The acoustic model is normally based on a generative model,
typically using Hidden Markov Models (HMM). Because of the
incorrect assumptions of this modeling technique, this acoustic
probability value tends to be much less reliable than the
language model probability. Because of that, Eq (1) is often
modified to be

 []ˆ arg max ln () ln (|)
W

W p W p X Wλ= + (2)

where 1/ LWλ = and LW, the language weight, is larger than 1
to reflect the lower weighting to the acoustic model.

The job of the language model is to assign a probability to a
word sequence. There are two different types of language
models used in speech recognition depending on the
application: word n-grams and context free grammars (CFG).

2.1. N-grams

We can use conditional probabilities to express ()P W as

 1 2

1 2 1 3 1 2 1 2 1

() (, , ,)
() (|) (|) (| , , ,)

N

N N

P W p w w w
p w p w w p w w w p w w w w −

=

=

…
…

 (3)

The so-called word n-grams assume that the probability of a
word depends exclusively on the past 1n − words. Word
trigrams are the most likely used language model for speech to
text applications:
 1 2 1 2 1(| , , ,) (| ,)n n n n np w w w w p w w w− − −… (4)

These probabilities can be estimated from a text corpus through
maximum likelihood

 Special Workshop in Maui, Maui, Hawaii, 2004

 2 1
2 1

2 1

(, ,)(| ,)
(,)

n n n
n n n

n n

C w w wp w w w
C w w

− −
− −

− −

= (5)

where 2 1(, ,)n n nC w w w− − represents the number of times the
sequence 2 1(, ,)n n nw w w− − appeared in the corpus. For a typical
vocabulary size of 100,000 this would require estimating 1015
values. Even on corpora with billions of words, many such
trigrams would not be present and thus would be assigned a zero
probability according to Eq. (5) and thus can never be
hypothesized by the recognizer. It is also possible

2 1(,) 0n nC w w− − = for some bigrams under which, Eq. (5) is not
defined. Because of these reasons, smoothing techniques are
needed that reserve some of the probability mass estimated by
the ML estimate and distribute it across unseen n-grams to avoid
a 0 value:

2 1

2 1 2 1

2 1 1 2 1

(| ,)
(| ,) (, ,) 0

(,) (|) (, ,) 0

n n n

d n n n n n n

n n n n n n n

p w w w
p w w w if C w w w

w w p w w if C w w wγ

− −

− − − −

− − − − −

>
=  =

 (6)

where 2 1(,)n nw wγ − − is the scaling factor to make the conditional
distribution sum up to 1 and 2 1(| ,)d n n np w w w− − is a discounted
version of Eq. (5) where the counts used are reduced by some
amount to free probability mass for smoothing.

Word trigrams are the choice of language models for speech
dictation systems. On the other hand, the use of word n-grams
often results in errors that are ungrammatical, as proper
grammar cannot be enforced by simply looking at the last two
words: agreement, anaphora and all the basic relationships in
natural language have dependencies that go beyond two words.
Moreover, the use of word n-grams results in errors that are
often nonsensical, since semantics also have a dependency that
goes beyond the last two words. Finally, such system offer poor
generalization. Shortly after a toddler is taught that “dove” is a
bird, she has no problem in using the word dove properly in
many contexts that she hasn’t heard before; yet training n-gram
models require seeing all those n-grams before. Despite all these
deficiencies, they work reasonably well and remain the method
of choice for most systems.

2.2. Context Free Grammars

Context-free grammars (CFG) are the language model of choice
for most of today’s interactive voice response applications
through the telephone. CFGs are used in command-and-control
(C&C) scenarios where the goal is to convert a speech signal
into a particular command with possible slots or variables. Often
the full power of CFGs is not needed, so Finite State Grammars
(FSG) are used instead because of their computational
advantages.

One simple example of a CFG used in an interactive voice
response system (IVR) to capture an affirmative or negative
response is as follows:
<Affirmative> -> Yes
<Affirmative> -> Yeah
<Affirmative> -> Sure
<Affirmative> -> Yes, please
<Negative> -> No
<Negative> -> No thanks
<Negative> -> No way

<Negative> -> Nope

In this case, the recognizer can convert the speech signal into
text (any of the 8 text strings above can be recognized). In
addition, the recognizer also returns the rule that resulted in the
highest probability. Such rule contains semantic information
that allows an application to reason or act upon it. In the
example above it lets the application determine the next branch
in the dialog.

CFGs also offer good generalization. For example, the following
CFG
<ShowFlight> • Flghts from <city> to <city>
<city> • Seattle | Denver | New York

can be modified to show flights to many other cities by simply
adding more city names into the second rule.

CFGs are built by hand, and thus are labor intensive. Although
we have listed many possible ways of saying yes/no in the above
grammar, we haven’t covered all. Creating a grammar that
covers most ways users’ responses is a difficult problem. For a
real application such grammars can be quite complicated.

Table 1 shows a comparison between CFGs and n-grams. The
last column shows the desirability of a hybrid model that
combines the advantages of both approaches. Such model, a
semantically structured language model (SSLM) is the object of
this paper.
 CFG n-gram SSLM
Application C&C Speech-text both
Generalization good poor good
Build process manually from corpus from corpus
Weights no statistical statistical
Semantic yes no yes
Coverage poor good good

Table 1. Comparison between CFG and n-gram language
models, with the proposed SSLM.

3. SEMANTICALLY STRUCTURED
LANGUAGE MODELS

In this section we define a semantically structured language
model that not only provides a probability for a word string W
as in Eq. (3), but also provides semantics S:
 (,) () (|)P W S P S p W S= (7)

We propose to model semantics S as a set of labels (one per
word) out of a discrete alphabet with M symbols:

1 2
(, , ,)

Ni i iS S S S= … (8)

and model ()P S as an n-gram1:

1

1 1
1

() () (|)
N

i i
i

P S P S P S S
−

+
=

= ∏ (9)

Finally, we model word strings given semantics as a conditional
ngram:

1 We chose bigram for Eq. (9) and the rest of this work but a
longer range n-gram is also possible.

1 2

1 2

1 2 1 2 1

(|) (, , , |)

(|) (| ,) (| ,)
n

n

n

i i n n n i
i

P W S P w w w S
P w S P w w S P w w w S− −

∀

=

∏
…

… (10)

where we assumed that the word n-gram depends only on the
semantic label of the current word:
 2 1 2 1(| ,) (| ,)

nn n n n n n iP w w w S P w w w S− − − − (11)

Next we show in more detail what the model looks like. First we
define semantic schema, then explain the network topology and
finally the learning algorithm.

3.1. Semantic Schema

Domain semantics are defined through a semantic schema.
Below is a simplified example of a semantic class in a schema
that defines the semantics for the air traffic information system
(ATIS) domain [3].
<task name=”ShowFlight”>
 <slot type=”City” name=”ACity”/>
 <slot type=”City” name=”DCity”/>
</task>
<task name=”GroundTransport”>
 <slot type=”City” name=”City”/>
 <slot type=”TransType” name=”TType”/>
</task>

The schema simply states that the application supports two types
of information queries: those for flight information (the
ShowFlight task) and those for ground transportation
information (the GroundTransport task). To evaluate a flight
information query, both the departure city (DCity) and the
arrival city (ACity) slots are needed. The type of a slot specifies
the requirement for its “fillers”. For both DCity and ACity slots,
the filler must be an object of the type “City”. In this case the
semantic values for “City” would be defined by the application
backend which, in the case of ATIS, would be the 3-letter
airport code. As we can see, the semantic labels of Eq. (8) could
be hierarchical as both DCity and ACity refer to another type.

3.2. Network Topology

The next step is to automatically generate the network topology
from the semantic schema. The semantic constraints in the
schema are incorporated in the understanding grammar with the
HMM illustrated in Figure 1. The top level HMM has two
branches to the ShowFlight and GroundTransport sub-networks.
The transition weights on the branches are the probabilities for
the two tasks.

The ShowFlight network at the bottom of Figure 1 models the
linguistic expressions that users may use to issue a ShowFlight
command. It starts with a command part (e.g., “Show me
flights”), followed by the expressions for the slots. Each slot is
bracketed by a preamble and a post-amble, which serve as the
linguistic context for the slot. For example, the word “from” is a
preamble for the DCity slot: it signals that the city following it
is likely to be a departure city. The command, preambles and
post-ambles in Figure 1 are modeled with word n-grams as
shown by Eq. (11).

The slots are inter-connected and the connections are weighted
by a slot bigram probability, as in Eq. (9). Such bigrams, if
properly estimated, can allow us to determine that “2pm” is an

arrival time in “arriving in Seattle at 2pm” and a departure time
in “departing Seattle at 2pm” even though the preamble “at” is
the same in both cases.

Figure 1. The HMM structure generated automatically from
the semantic schema. The upper network is the top level
grammar that has two sub-networks. The lower network shows
the details of the ShowFlight network. The rectangular blocks
are modeled with CFG rules; the rounded rectangular blocks
are modeled with n-grams.

3.3. Semantic Entity Grammars and User Modeling

The network corresponding to semantic entities could be
modeled by a unigram on the possible realizations of each entity
with an additional output symbol1. For example, to have the
grammar accept “Seattle”, we need to add this to the unigram
and add an output symbol on that arc with the value SEA, its
airport code. We may need to add more than one arc per
semantic value (LAX could be referred to both as “Los
Angeles” or “LA”). Although a unigram suffices for many
entities, some entities require a more sophisticated network. We
could choose uniform probabilities or we could use a unigram
that reflects the general population or some personalized
unigram that matches a user best.

Probabilities for the unigram can be learned from usage data.
It’s likely a given user is not going to inquire about many cities.
In [13] we studied the use of personalization in an email
dictation application and observed a very significant reduction
in perplexity when these unigram probabilities were learned
from the user’s sent and received emails. Learning parameters of
a grammar from non-text data can be very advantageous as it
can complement unavailable text/speech data. Aging [13], using
an exponential distribution, was also found to be useful in
tracking time-varying distributions.

Date and time are two such examples where, due to the
complexity of the grammar, we model them as true CFGs. Since

1 An alternate representation that retains all the required
information that avoids the output symbol is possible by simply
preserving the complete parse tree. But the idea of output
symbol has already been standardized by the W3C [10] so we
will use that in our work.

they are fairly general purpose, they are provided as a library
grammar.

3.4. Learning Algorithm

Sections 3.1, 3.2 and 3.3 completely specify the form of the
semantically structured language model and in this section we
cover the training process.

The model parameters are trained with partially labeled training
data as is illustrated below.
<ShowFlight text=”Show flights from Seattle to
Boston”>
 <DCity text=”Seattle”/>
 <ACity text=”Boston”/>
</ShowFlight>

where we note that this labeling does not require a parse tree nor
ordering information.

Since the composite model is essentially an HMM (or an HMM
with CFGs in some arcs), no closed form solution is available
for estimating the model parameters and an iterative algorithm,
the EM algorithm [9] is used.

The ngrams in command, preambles and post-ambles are
initialized to be the same distribution, in our case a uniform
distribution over the vocabulary size. We could have chosen to
use a standard dictation language model, or a model created
from example sentences from the domain if they are available.

During the E-step we find all possible alignments of words to
nodes in the network with their corresponding posterior
probabilities, so the alignments are treated as hidden variables.

In the M-step we update all the corresponding (fractional)
counts to obtain the updated n-grams 2 1(| ,)n n n iP w w w S− − . Slot
bigrams in Eq. (9) are updated similarly. In doing the M-step we
need to observe that the typical problems of data sparseness
described in Section 2.1 are even more prominent now because
the data is fragmented into several n-grams and because in
practice the amount of data available to train these models is
much smaller than for general dictation. Standard techniques
modified to deal with fractional counts [9] can be used in this
case to smooth such estimates.

Figure 2. Dynamic Programming Trellis showing the Viterbi
interpretation as a solid path. Other paths with lower
probability are not shown, yet they are also used in the EM
algorithm.

At runtime we used the Viterbi path to find the most likely
semantic labels. The Viterbi path for the input “Show flights
from Seattle to Boston” is shown in Figure 2. A simple pruning
mechanism was used such that at each column of the trellis, no
transition would be made out of a node if its score is smaller
than a threshold minus the maximum score in the same column.

This pruning results in no measurable drop in accuracy but
speed the process considerably.

3.5. Semantic Synchronous Understanding

Semantic Synchronous Understanding [6] is a process under
which we run the SSLM directly in the speech recognizer and
update the semantic values being popped up during the search
using the sequential probability ratio (SPR) test:

, ...,1

, ...,1

accept
(|) : reject
(' |)

otherwise defer

t

t

A
P S x xSPR B
P S x x







>
= < (12)

where the thresholds A and B are chosen given an operating
point in the ROC curve determined by the probabilities of false
detection FP and false rejection MP :

1 ,

1
M M

F F

P PA B
P P
−

≤ ≥
−

 (13)

where we have to note that some choices of operating points
would result in larger latencies (possibly having to wait until the
end of utterance) to avoid semantic pruning errors. In practice, a
compromise between a small increase in FP and MP can be
tolerated for faster system’s response where the system can spot
semantic labels even before the user has finished speaking. This
results in a highly interactive feeling.

A side benefit of semantic synchronous understanding is its
robustness: it allows us to have an automatic garbage model
without any explicit models. If the posterior probability of the
best semantic label is not high enough, it could be ignored. This
means extraneous lexical terms, as well as noises, can be
rejected.

Once we combine the effects of the language weight, the
sequential probability ratio is given by:

[]

[]

1

1

(,..., | ,) (|) ()
()

(,..., | ,) (|) ()

max

max

t

t
S S

p x x W S P W S P S
L S

p x x W S P W S P S
W

W

λ

λ

′≠

=
′ ′ ′∑

 (14)

4. EXPERIMENTAL RESULTS

We conducted experiments with the ATIS3 data [3]. We
constructed the semantic schema for ATIS by abstracting the
CMU Phoenix grammar for ATIS [10]. We used 1700 sentences
for training and the ATIS3 1993 set A test data for testing Both
training and test sentences were annotated according to the
schema. Since some tasks in the test data do not get any training
samples we augmented the training set with nine additional
sentences fabricated to give sufficient coverage.

For convenience we chose to use a simpler evaluation metric
than the one used in [10], which required principles of
interpretation and a SQL database. We studied the topic
classification (henceforth Task ID) and slot identification
(henceforth Slot ID) performance. Task ID accuracy was
measured by comparing the parser/DP decoder found top level
semantic class with the corresponding manual label. In slot ID
evaluation, slots were extracted from a semantic parse tree by

ShowFlight
ShowFlightCmd
PreDCity
City
PostDCity
PreACity
City
PostDCity

Show flights from Seattle to Boston

listing all the paths from the root to the pre-terminals, and the
resulting list was compared with that of the manual annotation.
Hence a task ID error makes all the slots in the parse tree be
counted as errors. The total insertion-deletion-substitution error
rates are reported for slot ID. We chose the CMU system as a
reference because it was the best performing system in the ATIS
evaluations.

4.1. Text evaluations

Table 2 compares the error rates between the CFG and the
combined models. For reference, we also list the error rates of
the Naïve Bayes n-gram (n=1, 2) classifiers for task ID [2]. We
can observe that task classification with statistical classifiers,
both the Naïve Bayes and the SSLM, is more accurate than with
the manually derived CFG. But Naïve Bayes classifiers can only
do task classification and cannot extract slots. The SSLM with
bigrams can essentially cut the slot error rate in half over the
manually derived grammar. The fact that the bigram SSLM had
lower task error rate than the unigram version suggests that
correctly identifying slot also helps improve task classification.

 Task ID Slot ID
Unigram Classifier 3.7% ---
Bigram Classifier 3.2% ---
Manual CFG 5.5% 9.9%
SSLM/Unigrams 3.7% 7.5%
SSLM/Bigrams 2.3% 5.1%

Table 2. Task classification and slot ID error rates for text
input for the manual CFG, Naïve Bayes classifiers (both
unigram and bigram) [2] and the SSLM (both with unigrams
and bigrams). Slot error rates are not available with Naïve
Bayes classifiers. The Manual CFG was the one used in the
CMU system [10].

We also investigated the effect of the amount of training data on
the understanding accuracy (Figure 3 and Figure 4). The error
rate drops very rapidly as training data increases.

0

5

10

15

0 500 1000 1500
Number of training sentences

Ta
sk

 ID
 E

rr
or

 R
at

e
(%

)

Figure 3. Task ID error vs. amount of training data. The
dashed curve represents the learned CFG; the solid curve
represents the SSLM. The horizontal line represents manually
authored grammar.

SSLM has also been used to develop grammars for MiPad [8], a
multimodal personal information manager running on a
PocketPC. Both for ATIS and for MiPAD, SSLM not only
significantly reduced the human involvement, but also achieved
better understanding accuracy.

0
5

10
15
20
25
30

0 500 1000 1500
Number of training sentences

Sl
ot

 E
rr

or
 R

at
e

(%
)

Figure 4. Slot error rate (ins-del-sub) vs. amount of training
data. The dashed curve represents the learned CFG; the solid
curve represents the SSLM. The horizontal line represents
manually authored grammar.

The topology of the new SSLM is a generalization of that of the
n-gram classifier for low resolution understanding (task
classification), when no property pre-terminals will be
introduced. Also, the SSLM runs considerably faster than the
manually derived CFG and faster than a robust parser [8] for the
same domain.

4.2. Speech Evaluations

Two SSLM models were trained. In the first model the bigrams
were not smoothed. In the second model, the bigrams were
smoothed with the uniform distribution with deleted
interpolation [4]. The test data perplexity of the trigram model is
15.4. For the smoothed SSLM model, the test data perplexity is
16.2 when the likelihood of a sentence is summed over all
possible paths in the network. We call it the Baum-Welch
perplexity. When the likelihood of a sentence is only calculated
over the Viterbi path, the resulting Viterbi perplexity is 24.1.

The third language model was a standard word trigram built
from 5800 sentences from the class A (utterances that can be
understood without context) of the ATIS2 and ATIS3 training
data. The vocabulary of the model contained 780 words.

We used the three language models for speech recognition. The
recognizer was built using HTK [12]. When we used the
standard word trigram to drive the recognizer, the one-best
result was then fed to the SSLM. When using the SSLM only
one-pass recognition and understanding was done. Table 3
shows the results.
 n-gram unsmoothed

SSLM
Smoothed

SSLM
Transcription

WER 6.0% 9.2% 7.6% ---
Task ID 6.8% 4.9% 3.8% 2.3%
Slot ID 9.0% 10.3% 8.8% 5.1%

Table 3. Recognition word error rate, task classification error
rate and slot identification error rate of the trigram model, the
unsmoothed SSLM model and the smoothed SSLM model. The
results were obtained with the HTK decoder

Even though the word error rate is over 25% higher than the
trigram model, the SSLM model achieved a task classification
error rate that is less than half than that of the trigram model, but
only a slightly lower slot identification error rate. We noticed
that the understanding error rate reduction was even bigger as

the word error rates for all the three models became higher when
a larger vocabulary was used.

The recognition errors for the SSLM typically occur in the
command, preamble and post-amble parts. The sparseness of the
training data for a pre-terminal makes the recognition of words
underneath the pre-terminal less accurate. Perhaps the choice of
a different smoothing (such as backing off to a word trigram)
would have alleviated this problem and will be explored in the
future. However, since the understanding model is robust, a
word error inside this pre-terminal doesn’t matter too much as
long as it will not flip to another pre-terminal. An example of
this is given below:

Reference find me a flight that flies from Memphis to
Tacoma

Trigram find me a flight that flies from Memphis to
Tacoma

SSLM find me a flight the flights from Memphis to
Tacoma

Here although “that flies” was misrecognized as “the flights”
with the SSLM model, it did not change its status as the
preamble of a flight slot. The meaning was not affected at all.

On the other hand, the trigram model lacks the stricter
constraints imposed by the rules in CFG library, therefore the
content of a slot can often get recognized incorrectly. This will
cause slot ID errors. Since the task ID also depends on the
correct slot information, this may adversely affect the task ID
accuracy too. Below is the example of this case.

Reference list the originating cities for Alaska airlines
Trigram list the originating is the cities for last the

airlines
SSLM list the originating fit cities for Alaska

airlines
The optimal language model weight for the SSLM model is 26,
which is much higher than that for the trigram model (16). This
is because the language model probability mass is split and
distributed over multiple ambiguous paths in the SSLM state
space, while with the trigram model a word sequence
corresponds to a single language model state sequence.
Therefore the language model score in a path in the SSLM state
space needs to be boosted.

The decoder using the n-gram model ran much faster than the
SSLM language model. We are currently optimizing the model
structure to make it work faster with speech decoders. We
believe that the proper optimization, together with the advances
in CFG decoding technology and the continuing growth of
computing power, will make this model ready for practical use.

5. DISCUSSION

Our proposed SSLM model resembles the Hidden
Understanding Model (HUM) [5] as the “indicators” in HUM
functions similarly as our preambles and both were modeled
with n-grams. The major difference is that SSLM does not try to
learn everything from data and rather SSLM takes advantage of
grammar library and thus the semantic structure exposed to the
developer is much simpler. For example, it is up to the library
grammar to figure out what type of Date the word “Friday” is,

while the HUM requires developers explicitly annotate it as
DayOfWeek. For the same reason, SSLM requires much less
training data to get satisfactory accuracy. The grammar libraries
used in ATIS were finite state but our SSLM will accommodate
CFGs and thus is a composite of HMM and CFG; while HUM is
purely an HMM. The inclusion of post-ambles in our model
makes it more precise --- a preamble-only model will not
account for the words appearing after the last slot. Modeling in
finer granularity also makes the model generalize better. The
introduction of post-ambles in our model results in
segmentation ambiguities. So the EM algorithm with are used to
estimate the n-gram parameters, while HUM uses direct ML
estimation without any hidden variables.

In conclusion, the proposed SSLM drastically reduces the
authoring load of creating a speech understanding system while
at the same time results in a more accurate, usable system.

6. REFERENCES
[1] Chelba C. “Exploiting Syntactic Structure for Natural

Language Modeling”. PhD Thesis. Johns Hopkins
University. 2000.

[2] Chelba C. et al. “Speech Utterance Classification”, in Proc.
of the Int. Conf. on Acoustics, Speech, and Signal
Processing. Hong Kong, Apr, 2003.

[3] Dahl D. et. al., "Expanding the scope of the ATIS Task: the
ATIS-3 Corpus," Human Language Technology Workshop,
1994.

[4] Jelinek, F. and E.L. Mercer. “Interpolated Estimation of
Markov Source Parameters from Sparse Data”, in Pattern
Recognition in Practice, D. Gelsema and L. Kanal, Editors.
1980, North-Holland.

[5] Miller, S. et al. "Hidden Understanding Models of Natural
Language". The 31st Annual Meeting of the Association
for Computational Linguistics. 1994. New Mexico State
University.

[6] Wang. K. “Semantic Synchronous Understanding for
Robust Spoken Language Applications”. IEEE Workshop
on Automatic Speech Recognition and Understanding. St.
Thomas, Dec 2003.

[7] Wang Y. et al. “A Unified Context-Free Grammar and N-
Gram Model for Spoken Language Processing”, in Proc. of
the Int. Conf. on Acoustics, Speech, and Signal Processing.
Istanbul, Turkey, June, 2000.

[8] Wang, Y. "Robust Spoken Language Understanding in
MiPad". Eurospeech. 2001. Aalborg, Denmark.

[9] Wang, Y. and A. Acero. "Concept Acquisition in Example-
Based Grammar Authoring". ICASSP. 2003. Hong Kong,
China.

[10] Ward, W. "Recent Improvements in the CMU Spoken
Language Understanding System". Human Language
Technology Workshop. 1994. Plainsboro, New Jersey.

[11] W3C Voice Browser working group. “Semantic
Interpretation for Speech Recognition: working draft”.
http://www.w3.org/TR/semantic-interpretation/. 2004.

[12] Young S. et al. The HTK Book for HTK Version 2.1.
Cambridge University, 1997

[13] Yu. D. et al. “Name Recognition with User Modeling”.
Proc. Eurospeech Conf. Geneva, Sep. 2003.

