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ABSTRACT 

In this paper we propose a semantically structured language 
(SSLM) model that significantly reduces the authoring load 
required over the traditional manually derived grammar when 
developing a spoken language system. At the same time, the 
SSLM results in an understanding error rate which is roughly 
half as large as that of the manually authored grammar. The 
proposed model combines the advantages of both statistical 
word n-grams and context-free grammars. When the SSLM 
directly acts as the recognizer’s language model there’s a 
significant reduction in understanding error rate over the case 
where it is applied only at the output of a recognizer driven by 
an word n-gram language model. 

1. INTRODUCTION 

In recent years, speech recognition systems have been used in 
interactive voice response systems, desktop dictation, car 
navigation and many other application domains. In these cases, 
the speech recognizer is simply one (albeit an important one) 
component within a spoken language system. In the last decade 
the availability of high powered affordable personal computers 
has fueled the progress of speech recognition technology. 
Despite this progress, state-of-the-art machine speech 
recognition still underperforms human recognition. While the 
mathematical models used in the recognition process are pretty 
powerful, they typically make assumptions that speech scientists 
know are too simplistic. Moreover, the loose coupling typically 
done between the recognition and understanding phases is also 
probably suboptimal. In this paper we propose a semantically 
structured language model that combines language modeling 
with understanding. 

Language models for speech recognition typically belong to two 
categories: word ngrams and context free grammars (CFG). 
These two models differ in many areas: their application areas, 
generalization capabilities, coverage characteristics, authoring 
load, and semantic content. It would be desirable to come up 
with a model that combines the advantages of both. Prior work 
in such area includes a model that allows CFG fragments to 
behave like words in a statistical n-gram [7], a syntactically 
structured language model [1] and the Hidden Understanding 
Model [5] among others. 

The paper organization is as follows. Section 2 reviews the 
language models used in speech recognition whereas Section 3 
describes the main algorithm in the paper, the semantically 
structured language model. Experimental results are shown in 
Section 4. 

2. REVIEW OF LANGUAGE MODELING 
FOR SPEECH RECOGNITION 

Speech recognition is the problem of assigning a word sequence 
W to an acoustic signal X. Most often this is done by finding the 
word sequence Ŵ  that maximizes the posterior probability: 
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where we have used Bayes rule to decompose the posterior 
into ( | )p X W , the acoustic model, and ( )p W , the language 
model. The main mission of the speech recognizer is to search 
all possible word sequences and select the one with highest 
probability. 

The acoustic model is normally based on a generative model, 
typically using Hidden Markov Models (HMM). Because of the 
incorrect assumptions of this modeling technique, this acoustic 
probability value tends to be much less reliable than the 
language model probability. Because of that, Eq (1) is often 
modified to be 
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W
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where 1/ LWλ =  and LW, the language weight, is larger than 1 
to reflect the lower weighting to the acoustic model. 

The job of the language model is to assign a probability to a 
word sequence. There are two different types of language 
models used in speech recognition depending on the 
application: word n-grams and context free grammars (CFG). 

2.1. N-grams 

We can use conditional probabilities to express ( )P W  as 
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The so-called word n-grams assume that the probability of a 
word depends exclusively on the past 1n −  words. Word 
trigrams are the most likely used language model for speech to 
text applications: 
 1 2 1 2 1( | , , , ) ( | , )n n n n np w w w w p w w w− − −…  (4) 

These probabilities can be estimated from a text corpus through 
maximum likelihood 
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where 2 1( , , )n n nC w w w− −  represents the number of times the 
sequence 2 1( , , )n n nw w w− −  appeared in the corpus. For a typical 
vocabulary size of 100,000 this would require estimating 1015 
values. Even on corpora with billions of words, many such 
trigrams would not be present and thus would be assigned a zero 
probability according to Eq. (5) and thus can never be 
hypothesized by the recognizer. It is also possible 

2 1( , ) 0n nC w w− − =  for some bigrams under which, Eq. (5) is not 
defined. Because of these reasons, smoothing techniques are 
needed that reserve some of the probability mass estimated by 
the ML estimate and distribute it across unseen n-grams to avoid 
a 0 value: 
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where 2 1( , )n nw wγ − −  is the scaling factor to make the conditional 
distribution sum up to 1 and 2 1( | , )d n n np w w w− −  is a discounted 
version of Eq. (5) where the counts used are reduced by some 
amount to free probability mass for smoothing. 

Word trigrams are the choice of language models for speech 
dictation systems. On the other hand, the use of word n-grams 
often results in errors that are ungrammatical, as proper 
grammar cannot be enforced by simply looking at the last two 
words: agreement, anaphora and all the basic relationships in 
natural language have dependencies that go beyond two words. 
Moreover, the use of word n-grams results in errors that are 
often nonsensical, since semantics also have a dependency that 
goes beyond the last two words. Finally, such system offer poor 
generalization. Shortly after a toddler is taught that “dove” is a 
bird, she has no problem in using the word dove properly in 
many contexts that she hasn’t heard before; yet training n-gram 
models require seeing all those n-grams before. Despite all these 
deficiencies, they work reasonably well and remain the method 
of choice for most systems. 

2.2. Context Free Grammars 

Context-free grammars (CFG) are the language model of choice 
for most of today’s interactive voice response applications 
through the telephone. CFGs are used in command-and-control 
(C&C) scenarios where the goal is to convert a speech signal 
into a particular command with possible slots or variables. Often 
the full power of CFGs is not needed, so Finite State Grammars 
(FSG) are used instead because of their computational 
advantages. 

One simple example of a CFG used in an interactive voice 
response system (IVR) to capture an affirmative or negative 
response is as follows: 
<Affirmative> -> Yes 
<Affirmative> -> Yeah 
<Affirmative> -> Sure 
<Affirmative> -> Yes, please 
<Negative>    -> No 
<Negative>    -> No thanks 
<Negative>    -> No way 

<Negative>    -> Nope 

In this case, the recognizer can convert the speech signal into 
text (any of the 8 text strings above can be recognized). In 
addition, the recognizer also returns the rule that resulted in the 
highest probability. Such rule contains semantic information 
that allows an application to reason or act upon it. In the 
example above it lets the application determine the next branch 
in the dialog. 

CFGs also offer good generalization. For example, the following 
CFG 
<ShowFlight> • Flghts from <city> to <city> 
<city> • Seattle | Denver | New York 

can be modified to show flights to many other cities by simply 
adding more city names into the second rule. 

CFGs are built by hand, and thus are labor intensive. Although 
we have listed many possible ways of saying yes/no in the above 
grammar, we haven’t covered all. Creating a grammar that 
covers most ways users’ responses is a difficult problem. For a 
real application such grammars can be quite complicated. 

Table 1 shows a comparison between CFGs and n-grams. The 
last column shows the desirability of a hybrid model that 
combines the advantages of both approaches. Such model, a 
semantically structured language model (SSLM) is the object of 
this paper. 
 CFG n-gram SSLM 
Application C&C Speech-text both 
Generalization good poor good 
Build process manually from corpus from corpus 
Weights no statistical statistical 
Semantic yes no yes 
Coverage poor good good 

Table 1. Comparison between CFG and n-gram language 
models, with the proposed SSLM. 

3. SEMANTICALLY STRUCTURED 
LANGUAGE MODELS 

In this section we define a semantically structured language 
model that not only provides a probability for a word string W 
as in Eq. (3), but also provides semantics S: 
 ( , ) ( ) ( | )P W S P S p W S=  (7) 

We propose to model semantics S as a set of labels (one per 
word) out of a discrete alphabet with M symbols: 
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Finally, we model word strings given semantics as a conditional 
ngram: 

                                                                 
1  We chose bigram for Eq. (9) and the rest of this work but a 
longer range n-gram is also possible. 
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where we assumed that the word n-gram depends only on the 
semantic label of the current word: 
 2 1 2 1( | , ) ( | , )

nn n n n n n iP w w w S P w w w S− − − −  (11) 

Next we show in more detail what the model looks like. First we 
define semantic schema, then explain the network topology and 
finally the learning algorithm. 

3.1. Semantic Schema 

Domain semantics are defined through a semantic schema. 
Below is a simplified example of a semantic class in a schema 
that defines the semantics for the air traffic information system 
(ATIS) domain [3]. 
<task name=”ShowFlight”> 
   <slot type=”City” name=”ACity”/> 
   <slot type=”City” name=”DCity”/> 
</task> 
<task name=”GroundTransport”> 
   <slot type=”City” name=”City”/> 
   <slot type=”TransType” name=”TType”/> 
</task> 

The schema simply states that the application supports two types 
of information queries: those for flight information (the 
ShowFlight task) and those for ground transportation 
information (the GroundTransport task). To evaluate a flight 
information query, both the departure city (DCity) and the 
arrival city (ACity) slots are needed. The type of a slot specifies 
the requirement for its “fillers”. For both DCity and ACity slots, 
the filler must be an object of the type “City”. In this case the 
semantic values for “City” would be defined by the application 
backend which, in the case of ATIS, would be the 3-letter 
airport code. As we can see, the semantic labels of Eq. (8) could 
be hierarchical as both DCity and ACity refer to another type. 

3.2. Network Topology 

The next step is to automatically generate the network topology 
from the semantic schema. The semantic constraints in the 
schema are incorporated in the understanding grammar with the 
HMM illustrated in Figure 1. The top level HMM has two 
branches to the ShowFlight and GroundTransport sub-networks. 
The transition weights on the branches are the probabilities for 
the two tasks. 

The ShowFlight network at the bottom of Figure 1 models the 
linguistic expressions that users may use to issue a ShowFlight 
command. It starts with a command part (e.g., “Show me 
flights”), followed by the expressions for the slots. Each slot is 
bracketed by a preamble and a post-amble, which serve as the 
linguistic context for the slot. For example, the word “from” is a 
preamble for the DCity slot: it signals that the city following it 
is likely to be a departure city. The command, preambles and 
post-ambles in Figure 1 are modeled with word n-grams as 
shown by Eq. (11). 

The slots are inter-connected and the connections are weighted 
by a slot bigram probability, as in Eq. (9). Such bigrams, if 
properly estimated, can allow us to determine that “2pm” is an 

arrival time in “arriving in Seattle at 2pm” and a departure time 
in “departing Seattle at 2pm” even though the preamble “at” is 
the same in both cases. 

 
 

 
 

Figure 1. The HMM structure generated automatically from 
the semantic schema. The upper network is the top level 
grammar that has two sub-networks. The lower network shows 
the details of the ShowFlight network. The rectangular blocks 
are modeled with CFG rules; the rounded rectangular blocks 
are modeled with n-grams. 

3.3. Semantic Entity Grammars and User Modeling 

The network corresponding to semantic entities could be 
modeled by a unigram on the possible realizations of each entity 
with an additional output symbol1. For example, to have the 
grammar accept “Seattle”, we need to add this to the unigram 
and add an output symbol on that arc with the value SEA, its 
airport code. We may need to add more than one arc per 
semantic value (LAX could be referred to both as “Los 
Angeles” or “LA”). Although a unigram suffices for many 
entities, some entities require a more sophisticated network. We 
could choose uniform probabilities or we could use a unigram 
that reflects the general population or some personalized 
unigram that matches a user best. 

Probabilities for the unigram can be learned from usage data. 
It’s likely a given user is not going to inquire about many cities. 
In [13] we studied the use of personalization in an email 
dictation application and observed a very significant reduction 
in perplexity when these unigram probabilities were learned 
from the user’s sent and received emails. Learning parameters of 
a grammar from non-text data can be very advantageous as it 
can complement unavailable text/speech data. Aging [13], using 
an exponential distribution, was also found to be useful in 
tracking time-varying distributions. 

Date and time are two such examples where, due to the 
complexity of the grammar, we model them as true CFGs. Since 
                                                                 
1 An alternate representation that retains all the required 
information that avoids the output symbol is possible by simply 
preserving the complete parse tree. But the idea of output 
symbol has already been standardized by the W3C [10] so we 
will use that in our work. 



they are fairly general purpose, they are provided as a library 
grammar. 

3.4. Learning Algorithm 

Sections 3.1, 3.2 and 3.3 completely specify the form of the 
semantically structured language model and in this section we 
cover the training process. 

The model parameters are trained with partially labeled training 
data as is illustrated below. 
<ShowFlight text=”Show flights from Seattle to 
Boston”> 
    <DCity text=”Seattle”/> 
    <ACity text=”Boston”/> 
</ShowFlight> 

where we note that this labeling does not require a parse tree nor 
ordering information. 

Since the composite model is essentially an HMM (or an HMM 
with CFGs in some arcs), no closed form solution is available 
for estimating the model parameters and an iterative algorithm, 
the EM algorithm [9] is used. 

The ngrams in command, preambles and post-ambles are 
initialized to be the same distribution, in our case a uniform 
distribution over the vocabulary size. We could have chosen to 
use a standard dictation language model, or a model created 
from example sentences from the domain if they are available.  

During the E-step we find all possible alignments of words to 
nodes in the network with their corresponding posterior 
probabilities, so the alignments are treated as hidden variables. 

In the M-step we update all the corresponding (fractional) 
counts to obtain the updated n-grams 2 1( | , )n n n iP w w w S− − . Slot 
bigrams in Eq. (9) are updated similarly. In doing the M-step we 
need to observe that the typical problems of data sparseness 
described in Section 2.1 are even more prominent now because 
the data is fragmented into several n-grams and because in 
practice the amount of data available to train these models is 
much smaller than for general dictation. Standard techniques 
modified to deal with fractional counts [9] can be used in this 
case to smooth such estimates. 

 
Figure 2. Dynamic Programming Trellis showing the Viterbi 
interpretation as a solid path. Other paths with lower 
probability are not shown, yet they are also used in the EM 
algorithm. 

At runtime we used the Viterbi path to find the most likely 
semantic labels. The Viterbi path for the input “Show flights 
from Seattle to Boston” is shown in Figure 2. A simple pruning 
mechanism was used such that at each column of the trellis, no 
transition would be made out of a node if its score is smaller 
than a threshold minus the maximum score in the same column. 

This pruning results in no measurable drop in accuracy but 
speed the process considerably. 

3.5. Semantic Synchronous Understanding 

Semantic Synchronous Understanding [6] is a process under 
which we run the SSLM directly in the speech recognizer and 
update the semantic values being popped up during the search 
using the sequential probability ratio (SPR) test: 
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where the thresholds A and B are chosen given an operating 
point in the ROC curve determined by the probabilities of false 
detection FP  and false rejection MP : 
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where we have to note that some choices of operating points 
would result in larger latencies (possibly having to wait until the 
end of utterance) to avoid semantic pruning errors. In practice, a 
compromise between a small increase in FP  and MP  can be 
tolerated for faster system’s response where the system can spot 
semantic labels even before the user has finished speaking. This 
results in a highly interactive feeling. 

A side benefit of semantic synchronous understanding is its 
robustness: it allows us to have an automatic garbage model 
without any explicit models. If the posterior probability of the 
best semantic label is not high enough, it could be ignored. This 
means extraneous lexical terms, as well as noises, can be 
rejected. 

Once we combine the effects of the language weight, the 
sequential probability ratio is given by: 
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4. EXPERIMENTAL RESULTS 

We conducted experiments with the ATIS3 data [3]. We 
constructed the semantic schema for ATIS by abstracting the 
CMU Phoenix grammar for ATIS [10]. We used 1700 sentences 
for training and the ATIS3 1993 set A test data for testing Both 
training and test sentences were annotated according to the 
schema. Since some tasks in the test data do not get any training 
samples we augmented the training set with nine additional 
sentences fabricated to give sufficient coverage. 

For convenience we chose to use a simpler evaluation metric 
than the one used in [10], which required principles of 
interpretation and a SQL database. We studied the topic 
classification (henceforth Task ID) and slot identification 
(henceforth Slot ID) performance. Task ID accuracy was 
measured by comparing the parser/DP decoder found top level 
semantic class with the corresponding manual label. In slot ID 
evaluation, slots were extracted from a semantic parse tree by 

ShowFlight 
ShowFlightCmd 
PreDCity 
City 
PostDCity 
PreACity 
City 
PostDCity 

Show  flights  from  Seattle    to   Boston 



listing all the paths from the root to the pre-terminals, and the 
resulting list was compared with that of the manual annotation. 
Hence a task ID error makes all the slots in the parse tree be 
counted as errors. The total insertion-deletion-substitution error 
rates are reported for slot ID. We chose the CMU system as a 
reference because it was the best performing system in the ATIS 
evaluations. 

4.1. Text evaluations 

Table 2 compares the error rates between the CFG and the 
combined models. For reference, we also list the error rates of 
the Naïve Bayes n-gram (n=1, 2) classifiers for task ID [2]. We 
can observe that task classification with statistical classifiers, 
both the Naïve Bayes and the SSLM, is more accurate than with 
the manually derived CFG. But Naïve Bayes classifiers can only 
do task classification and cannot extract slots. The SSLM with 
bigrams can essentially cut the slot error rate in half over the 
manually derived grammar. The fact that the bigram SSLM had 
lower task error rate than the unigram version suggests that 
correctly identifying slot also helps improve task classification. 

 Task ID Slot ID 
Unigram Classifier 3.7% --- 
Bigram Classifier 3.2% --- 
Manual CFG 5.5% 9.9% 
SSLM/Unigrams 3.7% 7.5% 
SSLM/Bigrams 2.3% 5.1% 

Table 2. Task classification and slot ID error rates for text 
input for the manual CFG, Naïve Bayes classifiers (both 
unigram and bigram) [2] and the SSLM (both with unigrams 
and bigrams). Slot error rates are not available with Naïve 
Bayes classifiers. The Manual CFG was the one used in the 
CMU system [10]. 

We also investigated the effect of the amount of training data on 
the understanding accuracy (Figure 3 and Figure 4). The error 
rate drops very rapidly as training data increases. 
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Figure 3. Task ID error vs. amount of training data. The 
dashed curve represents the learned CFG; the solid curve 
represents the SSLM. The horizontal line represents manually 
authored grammar. 

SSLM has also been used to develop grammars for MiPad [8], a 
multimodal personal information manager running on a 
PocketPC. Both for ATIS and for MiPAD, SSLM not only 
significantly reduced the human involvement, but also achieved 
better understanding accuracy. 
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Figure 4. Slot error rate (ins-del-sub) vs. amount of training 
data. The dashed curve represents the learned CFG; the solid 
curve represents the SSLM. The horizontal line represents 
manually authored grammar. 

The topology of the new SSLM is a generalization of that of the 
n-gram classifier for low resolution understanding (task 
classification), when no property pre-terminals will be 
introduced. Also, the SSLM runs considerably faster than the 
manually derived CFG and faster than a robust parser [8] for the 
same domain. 

4.2. Speech Evaluations 

Two SSLM models were trained. In the first model the bigrams 
were not smoothed. In the second model, the bigrams were 
smoothed with the uniform distribution with deleted 
interpolation [4]. The test data perplexity of the trigram model is 
15.4. For the smoothed SSLM model, the test data perplexity is 
16.2 when the likelihood of a sentence is summed over all 
possible paths in the network. We call it the Baum-Welch 
perplexity. When the likelihood of a sentence is only calculated 
over the Viterbi path, the resulting Viterbi perplexity is 24.1. 

The third language model was a standard word trigram built 
from 5800 sentences from the class A (utterances that can be 
understood without context) of the ATIS2 and ATIS3 training 
data. The vocabulary of the model contained 780 words. 

We used the three language models for speech recognition. The 
recognizer was built using HTK [12]. When we used the 
standard word trigram to drive the recognizer, the one-best 
result was then fed to the SSLM. When using the SSLM only 
one-pass recognition and understanding was done. Table 3 
shows the results. 
 n-gram unsmoothed 

SSLM 
Smoothed 

SSLM 
Transcription 

WER 6.0% 9.2% 7.6% --- 
Task ID 6.8% 4.9% 3.8% 2.3% 
Slot ID 9.0% 10.3% 8.8% 5.1% 

Table 3. Recognition word error rate, task classification error 
rate and slot identification error rate of the trigram model, the 
unsmoothed SSLM model and the smoothed SSLM model. The 
results were obtained with the HTK decoder 

Even though the word error rate is over 25% higher than the 
trigram model, the SSLM model achieved a task classification 
error rate that is less than half than that of the trigram model, but 
only a slightly lower slot identification error rate. We noticed 
that the understanding error rate reduction was even bigger as 



the word error rates for all the three models became higher when 
a larger vocabulary was used.  

The recognition errors for the SSLM typically occur in the 
command, preamble and post-amble parts. The sparseness of the 
training data for a pre-terminal makes the recognition of words 
underneath the pre-terminal less accurate. Perhaps the choice of 
a different smoothing (such as backing off to a word trigram) 
would have alleviated this problem and will be explored in the 
future. However, since the understanding model is robust, a 
word error inside this pre-terminal doesn’t matter too much as 
long as it will not flip to another pre-terminal. An example of 
this is given below: 

Reference find me a flight that flies from Memphis to 
Tacoma 

Trigram find me a flight that flies from Memphis to 
Tacoma 

SSLM find me a flight the flights from Memphis to 
Tacoma 

Here although “that flies” was misrecognized as “the flights” 
with the SSLM model, it did not change its status as the 
preamble of a flight slot. The meaning was not affected at all.  

On the other hand, the trigram model lacks the stricter 
constraints imposed by the rules in CFG library, therefore the 
content of a slot can often get recognized incorrectly. This will 
cause slot ID errors. Since the task ID also depends on the 
correct slot information, this may adversely affect the task ID 
accuracy too. Below is the example of this case.  

Reference list the originating cities for Alaska airlines 
Trigram list the originating is the cities for last the 

airlines 
SSLM list the originating fit cities for Alaska 

airlines 
The optimal language model weight for the SSLM model is 26, 
which is much higher than that for the trigram model (16). This 
is because the language model probability mass is split and 
distributed over multiple ambiguous paths in the SSLM state 
space, while with the trigram model a word sequence 
corresponds to a single language model state sequence. 
Therefore the language model score in a path in the SSLM state 
space needs to be boosted. 

The decoder using the n-gram model ran much faster than the 
SSLM language model. We are currently optimizing the model 
structure to make it work faster with speech decoders. We 
believe that the proper optimization, together with the advances 
in CFG decoding technology and the continuing growth of 
computing power, will make this model ready for practical use. 

5. DISCUSSION 

Our proposed SSLM model resembles the Hidden 
Understanding Model (HUM) [5] as the “indicators” in HUM 
functions similarly as our preambles and both were modeled 
with n-grams. The major difference is that SSLM does not try to 
learn everything from data and rather SSLM takes advantage of 
grammar library and thus the semantic structure exposed to the 
developer is much simpler. For example, it is up to the library 
grammar to figure out what type of Date the word “Friday” is, 

while the HUM requires developers explicitly annotate it as 
DayOfWeek. For the same reason, SSLM requires much less 
training data to get satisfactory accuracy. The grammar libraries 
used in ATIS were finite state but our SSLM will accommodate 
CFGs and thus is a composite of HMM and CFG; while HUM is 
purely an HMM. The inclusion of post-ambles in our model 
makes it more precise --- a preamble-only model will not 
account for the words appearing after the last slot. Modeling in 
finer granularity also makes the model generalize better. The 
introduction of post-ambles in our model results in 
segmentation ambiguities. So the EM algorithm with are used to 
estimate the n-gram parameters, while HUM uses direct ML 
estimation without any hidden variables.  

In conclusion, the proposed SSLM drastically reduces the 
authoring load of creating a speech understanding system while 
at the same time results in a more accurate, usable system. 
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