
A Sparse Probabilistic Learning Algorithm for Real-Time Tracking

Oliver Williams
Department of Engineering
University of Cambridge

omcw2@cam.ac.uk

Andrew Blake
Microsoft Research Ltd.

Cambridge, UK

Roberto Cipolla
Department of Engineering
University of Cambridge

Abstract

This paper addresses the problem of applying powerful
pattern recognition algorithms based on kernels to efficient
visual tracking. Recently Avidan [1] has shown that object
recognizers using kernel-SVMs can be elegantly adapted to
localization by means of spatial perturbation of the SVM,
using optic flow. Whereas Avidan’s SVM applies to each
frame of a video independently of other frames, the benefits
of temporal fusion of data are well known. This issue is ad-
dressed here by using a fully probabilistic ‘Relevance Vec-
tor Machine’ (RVM) to generate observations with Gaus-
sian distributions that can be fused over time. To improve
performance further, rather than adapting a recognizer, we
build a localizer directly using the regression form of the
RVM. A classification SVM is used in tandem, for object
verification, and this provides the capability of automatic
initialization and recovery.

The approach is demonstrated in real-time face and ve-
hicle tracking systems. The ‘sparsity’ of the RVMs means
that only a fraction of CPU time is required to track at
frame rate. Tracker output is demonstrated in a camera
management task in which zoom and pan are controlled in
response to speaker/vehicle position and orientation, over
an extended period. The advantages of temporal fusion in
this system are demonstrated.

1. Introduction

Systems for tracking moving objects may be feature-
based or model-based. Feature-based tracking can rely on
persistence of image curves [10, 4] or image appearance
[8]. Likewise model-based tracking can use curves, either
in 3D [12] or in 2D [20], or appearance [2]. Furthermore,
statistically-based object recognizers using support vector
machines (SVMs) [13, 15] and boosting [18] have now be-
come fast enough to run at around video rate, despite having
to search each video frame. Most recently, the distinction
between localization and tracking has been broken down

still further by the introduction of ‘support vector tracking’
[1], and it is this paradigm that we seek to extend here.

1.1 The support vector tracker

The SVM is a powerful algorithm for binary classifica-
tion [5], in which the class of a test image-patch q is deter-
mined according to the sign of a classification function

f(q) =
N∑

i=1

yiαik(q,xi) + b (1)

in which xi, i ∈ [1, N] are vectors from a training set
with labels yi ∈ {−1,+1}, αi and b are real-valued coef-
ficients which must be determined by a learning algorithm,
and k(·, ·) is a ‘kernel’ function which computes a gener-
alised inner product. A great attraction of the SVM is the
‘sparsity’ conferred by the SVM training algorithm which
typically sets most of the αi to zero, leaving just a few ac-
tive terms in the sum (1), involving a subset of the xi which
are known as ‘support vectors’.

A classifier trained to recognize a particular class of ob-
ject, can be used for tracking such an object by applying
the classifier on each neighbourhood in a tessellation over
some configuration space such as the Euclidean similari-
ties (image translation, rotation and zoom). Such a search
is labour intensive and Avidan’s [1] support vector tracker
seeks to mitigate this (in the space of translations) by per-
turbing the classification function f in (1) with respect to
image translation. Given an object q, perturbation analy-
sis allows the translation Tu, by a vector u, to be found
such that the value f(Tu q) of the classification function is
maximized. The perturbed classification function, Avidan
shows, is expressed in terms of image gradient as

f(Tu q) = f(q + u · ∇q). (2)

Using (2) to compute approximately the displacement u
that maximizes the classification function f can save com-
putation by reducing the density of tessellation required to
achieve a given degree of tracking precision. In principle

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

this perturbation can be extended beyond the space of trans-
lations, for example to Euclidean similarities or affine trans-
formations, in which case the gradient operator ∇ in (2) is
extended to the full set of affine flow operators.

Translation error (pixels)
20 40 60 80 1000-20-40-60-80-100

3

1

2

0

-1

-2

-3

SV
M

Sc
or

e

Figure 1. Classification function of an SVM
trained for recognition. A maximum is present at
the true position, though the signal is noisy, produc-
ing additional local maxima.

1.2 Probabilistic support vector tracking

Avidan’s support vector tracker applies to each frame of
a video independently of other frames. However, the bene-
fits of temporal fusion [7] of data in visual tracking are well
known [4]: improved efficiency and enhanced ability to deal
with clutter in the background. Temporal fusion can be ac-
complished in an effective and principled way in a proba-
bilistic setting. Therefore we seek to place a probabilistic
construction on classifier output. One approach is to inter-
pret SVM classifier output in probabilistic terms [11, 14].
On the other hand the ‘Relevance Vector Machine’ (RVM)
[17] is a sparse classifier that is directly probabilistic. More-
over, it can be used for regression, as opposed to classifica-
tion. That fits exactly the problem addressed here, in which
regression onto the displacement u is required. This means
that instead of training a machine to recognize known ob-
jects verses non-objects, a machine is trained to estimate
the displacement of known objects alone. (Regression with
SVMs is possible but relatively awkward, and not known to
be susceptible to a probabilistic interpretation.) Therefore
the system developed and demonstrated in this paper has
the following distinctive properties.

• Fully probabilistic regression for displacement, using
RVMs

• Displacement is modelled as a Euclidean similarity
transformation

• Observations of displacement are fused temporally
with motion prediction

• Initialization and recovery are handled by an SVM for
object recognition running in tandem

• Tracking is efficient — better than real-time (i.e. leav-
ing processor cycles free for other processes) — and
this is demonstrated with a real time camera manage-
ment system for teleconferencing.

2. Motion classification

Support vector tracking [1] uses an SVM optimized for
recognition but for tracking it is motion, rather than clas-
sification, that is of primary interest. The SVM, with its
good generalizing ability, would give more satisfactory re-
sults if it were trained to discriminate motion rather than
object/non-object and, as a possibly easier generalization,
the resulting machines would have fewer support vectors,
making them more efficient.

2.1. Inferring state

The tracker follows a 2D image region containing an ob-
ject. Intensity changes within this region are assumed to
be due to motion only. Therefore, a four-dimensional state
vector is used describing a Euclidean similarity transforma-
tion:

X = [u, v, s, θ] ∈ GE(2) (3)

An observed image at time t, It, is a vectorized pixel ar-
ray that is some unknown function of the present state:
It = H(Xt). However, treating the state as the depen-
dent variable, Xt = H−1(It) , it should be possible to find
a regression inferring a state estimate, X̃ from a given im-
age. Several SVM are now required to cover all degrees of
freedom of allowed motion. The obvious configuration is
for one SVM to be assigned to each state space dimension.
For example, for x translation, the training set includes a
negative subset: images of the object translated right by 20
pixels, and a positive subset: images translated left 20 pix-
els. When a vector is tested, a score of +1/-1 would indicate
that our test region should move 20 pixels right/left to re-
align with the true location. Translation of magnitude less
than 20 pixels should yield a score between ±1, as Figure
2 shows. The same holds for vertical translation, rotation
and zoom. 20 pixels was chosen as a compromise: more
than this gives the tracker a larger capture range, but the
marginal response is less consistent; less than this gives a
small capture range leading to a less robust tracker.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

20 40 60 80 1000-20-40-60-80-100
Translation (pixels)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

∂
f
(T

u
q
)

∂
u

20 40 60 80 1000-20-40-60-80-100

0.5

1

1.5

2

0

-0.5

-1

-1.5

SV
M

Sc
or

e

Translation (pixels)

Figure 2. Advantages of an SVM trained for
displacement. (top) Avidan’s displacement esti-
mation: the derivative, with respect to translation,
of the classification function for the SVM of figure
1, shown for several test examples. (bottom) Clas-
sification function for an SVM trained specifically for
object displacement (as opposed to object identifica-
tion). Note the superior linearity of response in the
displacement-trained case.

2.2. Linear Regression

Given a vector of SVM scores, we want to infer the state
changes that created them. As the marginal response be-
tween the training sets is almost linear, it seems reasonable
to fit a straight line to this data. State estimates are therefore
made in two stages. The test region is passed to the SVMs
which give a vector of scores, this is then interpreted via a
multi-regressive function to yield the estimated change in
state, δX:

δX = Af(I) + b (4)

b ∈ R
4 A ∈ R

4×4

where f(I) is a vector of SVM scores like (1) and I is the
vectorized image patch given by the present estimate.

2.3. Tracking with motion SVMs

Four SVMs are trained to classify the sign of each of
the four dimensions of Euclidean similarity space. Each
SVM requires training data with wide variations in the cor-
responding dimension. In addition, there must also be some
variation in the other three dimensions in order to learn the
desired invariance to those dimensions.

Residual cross-talk between SVMs is attenuated by the
A matrix which is learned, together with b, by conventional
regression, after the SVMs have been fixed. For this, a fresh
training set is used, chosen uniformly at random from a hy-
percubic domain in the 4-dimensional state-space. In addi-
tion, the regression delivers a covariance matrix on δX so
that δX can be regarded as a random variable – observations
capable of statistical fusion.

Object localization experiments were performed with the
four SVMs, using the δX measure. Details of results are
omitted here, but our main conclusions are given as motiva-
tion for developing a more powerful approach later. Frame-
to-frame localization was frail with the 4-SVM approach
and the reasons seem to be as follows. Each SVM is trained
on data lying at the positive and negative extremes of vari-
ation of the relevant state space dimension. Probability
distributions obtained from regression underestimate uncer-
tainty: they reflect only the deviation from linearity of the
SVM, rather than the variability found over a fully repre-
sentative set of training examples.

3. Sparse probabilistic learning

The two-stage inference of SVM classification followed
by linear regression is effective only up to a point, and is
inelegant. It seems that some form of single stage regression
might be more powerful, both for dealing with the range
of variation of test examples, and for correctly modelling
statistical variability.

A single-stage, probabilistic, learning paradigm is re-
quired for regression. It is possible to perform regression
with an SVM; however, an approximation must be made
(ε-SVM [16]) in order to retain a sparse solution and, as
mentioned above (sec. 1.2), there have been some attempts
at making this probabilistic. There is however a clear
Bayesian formulation addressing all these issues.

3.1. The relevance vector machine

Tipping [17] proposed the relevance vector machine or
RVM to recast the main ideas behind SVMs in a Bayesian

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

context, and using mechanisms similar to Gaussian pro-
cesses [19]. The results have been shown to be as accurate
and sparse as SVMs yet fit naturally into a regression frame-
work and yield full probability distributions as their output.
A brief review of Tipping’s paper is presented here for those
unfamiliar with the work.

An RVM is trained with a training set consisting of a
vector of dependent variables, Y ∈ R

N and the associated
independent variable vectors xi i = 1 . . . N . Assuming that
the measured dependent variables in the training set, Y are
corrupted by Gaussian noise with variance σ2 the PDF can
be written:

p(Y|α,xi, σ
2) = (2πσ)−

N
2 exp

{
−‖Y − Kα‖2

2σ2

}
. (5)

Like the SVM, the RVM is a kernel method and as such
replaces instances of dot products between input vectors
with the value of a kernel function [6]. K is a ‘design ma-
trix’ containing the inter-training set kernel values, Kij =
k(xi,xj).

Treating α as a random variable, (5) is a likelihood func-
tion which could be maximized to find α. However, in order
to emulate the sparsity properties of SVMs, some of the αi

can be set to zero, allowing corresponding training vectors
to be discarded. This is expressed in a Bayesian context via
a Gaussian prior over α, pulling it towards zero:

α ∼ N (0,Σα) (6)

with hyperparameters θi such that Σα = diag(θ1, . . . , θN)
Now the posterior PDF for α is:

p(α|Y,xi, σ
2,Σα) ∝ N (α̂, Σ̂) (7)

where

α̂ =
1
σ2

Σ̂KTY and Σ̂−1 = Σ−1
α +

1
σ2

KTK

and the maximum a posteriori estimate, α̂ can be expressed
as a function of noise variance, σ2 and the variances over
the prior, θi which are unknown.

The best values for these hyperparameters are deter-
mined from the evidence,

p(Y|σ2,Σα) =
∫

RN

exp
{
− 1

2 (α − α̂)TΣ̂−1(α − α̂)
}
dα

= (2π)−N/2|S|−1/2 exp
{− 1

2Y
TS−1Y

}
(8)

where S = σ2I + KΣαKT

by optimization with respect to θi and σ2 (type-II maxi-
mum likelihood). As optimization proceeds, it is found that
some of the θi and corresponding αi tend to zero. This
is an indication that the associated training vectors are not

‘relevant’ (analogous to a non-support vector) and can be
‘pruned’ from the solution.

Common choices for the kernel function are the polyno-
mial kernel k(xi,xj) = (xT

i xj +1)d and the Gaussian RBF,
used here

k(xi,xj) = exp
(
−‖xi − xj‖2

2σ2
k

)
where ‖x‖2 ≡ 1

N

N∑
j=1

x2
j .

Being smooth and flexible it is a versatile kernel and has
proved empirically to be a good choice. Note that there is
now a further parameter to worry about: σk. If it is too
large it may not be possible to fit closely to the dependent
variables leading to a long training time and poor output.
Conversely, if σk is too small over fitting will occur around
each training example leading to a non-sparse solution with
equally poor characteristics. σk is chosen by hand with
σk = 0.15 being used throughout the experiments described
in sec. 5.

3.2. Inferring state with RVMs

The aim here is to obtain an RVM which, given a sub-
image excised from the input image frame according to the
current state estimate, will output an estimate of the error
in that estimate. To create a regression between erroneous
images and the errors that generated them demands a train-
ing set of (δXi, Ii) pairs (i ∈ [1, N]). These are created by
randomly perturbing several different images of the same
object (although for an object with rich features just one
image can suffice). In face tracking, it is useful to include
some training images with out-of-plane rotations, to make
the resulting tracker tolerant to such variations. Figure 3
shows some typical training examples.

This method normally provides good coverage of the
state space but with a smaller training set it may be pos-
sible that a quadrant of the 4D hypercube gets neglected.
Small training sets are desirable as they typically contain
fewer relevance vectors making evaluation faster at run-
time, however this can cause problems if the motion enters
a neglected part of state space. To reinforce smaller training
sets, extra examples are added, forced to lie in each quad-
rant (of which there are 16 in 4-space). Similar to the SVM

Figure 3. Training examples. Some typical ex-
amples used to train the relevance vector machines
on changes in translation, rotation and zoom.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

tracker described earlier, a vector of RVMs is required in or-
der to obtain a vector estimate as output. Each element has
one of the four state space dimensions as its dependent vari-
able but now they all use the same training set: a continuous
function is being estimated and there is no need to partition
examples into positive and negative. This still means that
the machine inferring x-translation, say, has been trained
on images perturbed in the other three dimensions too and
is insensitive to these.

An interesting question is: ‘what is special about those
training examples that are kept as “relevant”?’ Figure 4
shows a plot of the training examples used for a tracker
which, for clarity, follows x, y translation only. It can be
seen that those chosen as relevant are prototypical of x or
y translations being the most extreme examples. This is in
contrast to SVMs where the support vectors represent the
least prototypical — most marginal — examples in a train-
ing set.

x

y

0 5 10 15 20-5-10-15-20

0

5

10

15

20

-5

-10

-15

Figure 4. The relevance vectors span the state
space. As a tutorial example, this figure shows
the positions of examples used to train a tracker in a
space of 2D translations. Relevance vectors are indi-
cated for horizontal (x) translations (circles), vertical
(y) ones (squares).

4. Probabilistic state inference

To secure benefits of temporal fusion of data, observa-
tions must be obtained in a probabilistic setting. This is one
of the principal advantages of RVMs over SVMs: an RVM
gives not only an estimate of change in state, but also gen-
erates an output probability distribution.

4.1. Kalman filtering

For each state space dimension, an estimate is made
which is expressed in vector form as:

δX̃i = αTk (9)

where k is a vector defined so that k0 = 1, to allow for bias,
and each

kj = k(xj , I(X̃)) for j > 0. (10)

is a kernel function between the jth relevance vector and the
current image vector. From (7) α is Gaussian distributed as
N (α̂, Σ̂), making δX̃i also Gaussian, with mean α̂Tk and
variance

v = kTΣ̂k. (11)

This probabilistic output can be treated as an observation,
z, and incorporated into a Kalman-Bucy filter [9, 7].

For each iteration of the tracker we set up state equations
for the evolution of the state and the observation. The RVM
actually generates an estimate of the change in the current
state, and is hence an innovation, νk = zk − Xk, with
Gaussian distributed observation noise, vk ∼ N (0, Rk).
Here Rk is a diagonal covariance matrix, whose terms are
the scalar variances (11) v from each of the 4 RVMs for the
4 state space dimensions.

The dynamical process is modelled as a second order
auto-regressive process (ARP) [3], augmenting the state
equations to take account of the two previous observations.

p(X′
k+1|X′

k) =

exp
{− 1

2 (X′
k+1 − ΦX′

k)TQ−1
k (X′

k+1 − ΦX′
k)

}
,

(12)

where X′ is the augmented form of X for a second order
process. Dynamical coefficients Φ and Q are learned using
maximum likelihood from a sequence of parameters captur-
ing typical motions of the object in question [4].

4.2 Initialization and validation

For efficient operation, the RVM tracker exploits tem-
poral coherence fully. However, a robust tracking system
capable of operating for an indefinite period also needs a
recognition system, running in tandem, for initialization and
recovery. Here this takes the form of an SVM recognizer,
as in figure 1, operating in two distinct modes. During con-
tinuous tracking it is applied at the currently estimated state
to verify the state and the identity of the tracked object. For
efficiency, this test is made only every M frames (in ex-
periments here M = 4 has been successful). Absence of
verification triggers a search in which the SVM is applied
over a tessellation of neighbourhoods in the Euclidean simi-
larity space, and this continues until verification is obtained,

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

after which RVM tracking resumes. The same mechanism
is used to initialize from the first frame.

It is observed, from figure 1, that as estimated object
state strays from the true state, the SVM score degrades
progressively, and eventually changes sign, indicating that
the observation of the RVMs is invalid. Furthermore, if
the object changes in ways that are not modelled within
the state space (e.g. out of plane rotation), observations be-
come invalid. For initialization, the progressive degradation
of SVM score with displacement has a further significance:
the recovery search does not need to cover the state space in
excessive detail. The width of the peak in figure 1 indicates
the density of the required tessellation of SVM locations.

5. Results

The experiments conducted here all use only one initial
image region which was perturbed 45 times to create the
RVM training sets as described in section 3.2.

Figure 5 shows the estimates made by the RVM con-
cerned with x-translation. An image (not in the training set)
was displaced by a known number of pixels, and the RVMs’
posterior estimate of that change is plotted.

10 20 30 40-30-40
x position(pixels)

E
st

im
at

ed
x

po
si

tio
n

0-10-20

0

5

10

15

20

25

-5

-10

-15

Figure 5. RVM as a statistical observer of
state. An RVM trained for regression onto hor-
izontal translation delivers a linear mean-response
as shown, together with observation variance (up-
per and lower dotted curves: ±3 standard devia-
tions). Crosses indicate the training examples, with
relevance vectors marked with circles.

Figure 6 shows how advantageous it is to use probabilis-
tic inference. The sequence being tracked is one that be-
comes progressively more rapid, and without filtering the
errors grow to the point where lock is lost, and the tracker
requires reinitialization. With a Kalman filter in place the

error1 is an order of magnitude lower. Probabilistic infer-
ence has greatly increased both the stability and the robust-
ness of tracking. As temporal fusion has reinforced the out-
put, we can permit the RVMs to be more sparse by using
smaller training sets: the quality of the RVM posterior es-
timates is correlated with the number of relevance vectors.
This in turn leads to faster run-time evaluation of the RVMs
and a lower computational cost per frame.

0 50 100 150 200 250 300

0

10

20

30

40

50

60

-10

-20

-30
R

ot
at

io
n

es
tim

at
e

er
ro

r
Frame

No filtering

Kalman + dynamic model

Figure 6. Probabilistic inference improves
performance. This figure shows the error perfor-
mance of the RVM tracker with Kalman Filter (solid),
compared with raw, unfiltered RVM output (dashed).

Tracking might be considered redundant if it were possi-
ble to perform raw detection at frame rate. This is a popular
approach [13, 15, 18] but Figure 7 confirms the substan-
tial efficiency saving available by tracking over time. RVM
tracking consumes only 15ms of CPU time per frame, but
when brute-force SVM search is running consumption of
CPU time rises by a factor of about 70 to 1 second per
frame. (This data was gathered from code with no opti-
mizations using double-precision floating point arithmetic
throughout: it is anticipated this can be improved upon
greatly.)

Figure 8 contains snapshots of the tracking of a talk-
ing head and this leads naturally to an important video-
conferencing application, in which a close-up of the talker is
broadcast when addressing the camera, receding to a wide-
angle shot when the talker turns to a third party, or departs
altogether. The camera used to create these results is a
cheap, standard web cam with a plastic lens. Image patches
(I elsewhere in this document) are sub-sampled such that
N = 704 pixels are examined at each iteration and it is only
the intensity that is tested: no colour is employed. A movie-

1The ground-truth position was found by allowing this tracker to iterate
to convergence on each frame treated as a still. The results were then
inspected by hand.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

t = 0s t = 1.8s t = 18.8s t = 33.2s

t = 49.8s t = 80.7s t = 99.7s t = 110.4s

Figure 8. Long-term tracking behaviour. This figure shows that tracking continues robustly over an extended
period — 2 minutes in this example, but has run for several hours in experimental use.

0 10 20 30 40 50 60 70 80 90
101

102

103

Frame Number

C
PU

tim
e/

fr
am

e
(m

s)

Restarting

Figure 7. RVM tracking is highly efficient. The
graph shows milliseconds of CPU time required per
video frame (2.6 GHz Pentium 4). During continu-
ous tracking only around 15ms/frame of CPU time is
required, thanks to the exploitation of temporal co-
herence in the Kalman filter. This rises dramatically
to around 1s/frame when coherence is lost, in initial-
ization or recovery modes.

clip is available2 showing a teleconferencing application in
which the real-time tracking output is used to control zoom
and pan. This was captured using a hand-held DV camera.
This tracker is also capable of following a general object
undergoing 2D deformation, such as the car and a license
plate in figure 9.

2ftp://mi.eng.cam.ac.uk/pub/data/pancake.mpg

6. Discussion and conclusions

We have demonstrated a tracker using sparse probabilis-
tic regression by RVMs, with temporal fusion for high ef-
ficiency and robustness. Further robustness is obtained by
running, in tandem, an object-verification SVM which sim-
ply serves to validate observations during normal running,
but also for intensive object search during initialization and
recovery. Training, both of the SVM and RVM, is per-
formed from a single object instance perturbed to generate
a training set, and requires only a few minutes. The result
is a reliable real-time tracker which imposes a modest com-
putational load and, thanks to its recovery mechanism, runs
continuously. We have demonstrated real time operation
with a face-tracking camera-management system for tele-
conferencing. This is a general method for tracking and, to
illustrate this, tracking of cars has also been shown.

The probabilistic framework would also permit the re-
placement of the Kalman filter with a particle filter [4].
Particle filters are also popular for their robustness in the
presence of clutter, however the object specificity of an
SVM/RVM is already a powerful filter for clutter, so there
is some doubt whether a particle filter would add significant
power in practice.

Future work will address a number of issues:

• greater invariance to illumination changes could be ob-
tained by pre-processing of image intensities beyond
the simple intensity normalization used here;

• adaptive re-training in parallel with tracking;

• greater variation of view and articulation.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

Figure 9. Tracking cars Digital video recordings of a passing vehicle and a license plate. The tracker was trained
from a single frame and successfully follows the regions despite clutter and an unsteady camera.

References

[1] S. Avidan. Support vector tracking. In Proc. Conf. Computer
Vision and Pattern Recognition, Hawaii, 2001.

[2] M. Black and A. Jepson. Eigentracking: Robust matching
and tracking of articulated objects using a view-based rep-
resentation. In Proc. European Conf. on Computer Vision,
volume 1, pages 329–342, 1996.

[3] A. Blake and M. Isard. 3D position, attitude and shape input
using video tracking of hands and lips. In Proc. Siggraph,
pages 185–192, 1994.

[4] A. Blake and M. Isard. Active contours. Springer, 1998.
[5] C. Burges. A tutorial on support vector machines for pat-

tern recognition. Data Mining and Knowledge Discovery,
2:121–167, 1998.

[6] N. Cristianini and J. Shawe-Taylor. An introduction to sup-
port vector machines and other kernel-based methods. Cam-
bridge University Press, 2000.

[7] A. Gelb, editor. Applied Optimal Estimation. MIT Press,
Cambridge, MA, 1974.

[8] A. Jepson, D. Fleet, and T. El-Maraghi. Robust on-line ap-
pearance models for visual tracking. In Proc. Conf. Com-
puter Vision and Pattern Recognition, pages 415–422, 2001.

[9] R. Kalman. New methods in Wiener filtering. In Proc. of the
First Symposium on Engineering Applications of Random
Function Theory and Probability. John Wiley and Sons, Inc,
1963.

[10] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. In Proc. Int. Conf. on Computer Vision,
pages 259–268, 1987.

[11] J. Kwok. Moderating the outputs of support vector machine
classifiers. In IEEE Transactions on Neural Networks, vol-
ume 10, pages 1018–1031, September 1999.

[12] D. Lowe. Robust model-based motion tracking through the
integration of search and estimation. Int. J. Computer Vision,
8(2):113–122, 1992.

[13] E. Osuna, R. Freund, and F. Girosi. Training sup-
port vector machines: An application to face detection.

Proc. Conf. Computer Vision and Pattern Recognition, pages
130–136, 1997.

[14] J. Platt. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. In
A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers. MIT Press,
1999.

[15] S. Romdhani, P. Torr, B. Schölkopf, and A. Blake. Com-
putationally efficient face detection. In Proc. Int. Conf. on
Computer Vision, volume 2, pages 524–531, 2001.

[16] A. Smola and B. Schölkopf. A tutorial on support vector
regression. Technical report, NeuroCOLT, 1998.

[17] M. Tipping. The relevance vector machine. In S. Solla,
T. Leen, and K. Müller, editors, Advances in Neural In-
formation Processing Systems, volume 12, pages 652–658,
2000.

[18] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In Proc. Conf. Com-
puter Vision and Pattern Recognition, 2001.

[19] C. Williams. Prediction with gaussian processes: From lin-
ear regression to linear prediction and beyond. In M. Jordan,
editor, Learning and Inference in Graphical Models. Kluwer
Academic Press, 1998.

[20] A. Yuille and P. Hallinan. Deformable templates. In
A. Blake and A. Yuille, editors, Active Vision, pages 20–38.
MIT, 1992.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

