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The fundamental problem of communication is that of
reproducing at one point either exactly or approximately
a message selected at another point.

{ Claude Shannon, 1948.
1. Introduction

The fty ve year old history of error correcting codes
began with Claude Shannon's path-breaking paper en-
titled "A Mathematical Theory of Communication' in
the Bell Systems Technical Journal in 1948. The paper
set up a well de ned goal { that of achieving a per-
formance bound set by the noisy channel coding theo-
rem, proved in the paper. Whereas the goal appeared
elusive twenty ~ ve years ago, today, there are practi-
cal codes and decoding algorithms that come close to
achieving it. It is interesting to note that al known
coding schemest hat approach the goa can beviewed as
codes on graphswith associated iterative decoding algo-
rithms. Themain ideas underlying codes on graphswere
introduced by Robert Gallager in his PhD thesiswritten
about forty yearsago. Gallager's thess was far ahead of
his time and displayed remarkable prescience. However,
given the limited computing power available then, Gal-
lager's codes were not considered practical. A landmark
paper by R M Tanner presented algebraic methods for
constructing graphs on which et cient decoding could
be implemented. A signi cant leap forward towards the
goal set by Shannon was in the early 1990's with the
discovery of turbo codes by C Berrou and A Glavieux
and P Thitimajshima, who obtained excellent practi-
cal performance. However, at that time there was ill
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no explanation for this phenomenon. A few years lat er
D J C MaKay and R M Neal showed that Gallager
type codes were competitive with turbo codes. Around
the same time, M Sipser and D Spielman used graphs
known as “expander graphs to achieve remarkable per-
formance with moderate decoder complexity. We now
know that thereisa unifying view of all these codes{ the
representation of systems on graphs and using approxi-
mate inference algorithmsfor decoding. Inthe rs part
of this article we will introduce the low density parity
check codes of Gallager and explain a simple algorithm
presented by him for iterative decoding.

The theory of error correcting codes is concerned with
the development of solutions to the following problem.
We have a sender who wishes to transmit a message
(a sequence of digits) to a receiver through a channel
which serves as the medium of transmission. Typically
this channel is not entirely reliable (that is, the channel
isnoisy) which leadsto the possibility of thereceiver not
receiving the actual message but a corrupted version of
it. Some examples of anoisy channel are:

2 a telephone cable over which two modems com-
municate digital information which is a®ected by
cross-talk from other lines.

2 the radio communication link from a satdlite to
Earth with noise in the form of badkground radi-
ation from terrestrial and cosmic sources.

2 a disk drive where defects may cause the head to
report wrong vaues for binary digits.

Therefore the question to ask is: \Is it possble to en-
sure reliable transmisson inspite of errors introduced
by the noisy channd?'. This problem was studied by
Shannon and led to the notion of channel coding where
the message bits sent by the receiver are ‘padded’ with
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Raj Chandra Bose (1901-87)

The February 2002 issue of Resonance was dedi-
cated to Claude Shannon, referred by many as the
‘father of information theory’ and many consider
the appearance of hispaper ‘ A mathematical theory
of communication’ in 1948 as heralding the begin-
ning of the Information Age (see the Article-In-A-
Box by Priti Shankar in that issue). To a good
measure both these attributes apply to Raj Chandra
Bose (1901-1987) often referred to as the ‘father of
experimental design.” Shannon’s theorem on the
possibility of informationtransmission over anoisy
channel with as low an error as desired was an
‘existential’ result but not a‘ constructive’ one. The
construction of such a code evolved from the work
of Rgj Chandra Bose culminating in the construc-
tion of Bose—Chaudhuri-Hocquenghem (BCH) er-
ror correcting codes in 1960. Variations of these
codes are the ones in wide use today for all modes
of digital information transmission. Bose used to
describe these codes as “a technique which will
make errors in transmission of information so in-
frequent that it will be surprising if there was one
error in hundred years of transmissional communi-
cation.”’ Itisinteresting to notethat Joseph George
Caldwell has made the following comment —“It is
obvious why Bose was never awarded a Nobel
Prize (for the BCH codes, for solving Euler’s con-
jecture, or as father of the mathematical basis for
experimental design) since he was a mathemati-
cian.”’

Raj Chandra Bose was born on June 29, 1901 in
India and had his school education in Delhi. After
obtaining amaster’ s degreein applied mathematics
from the University of Delhi, Bose moved to
Calcutta and got his master’s degree in pure math-
ematicsfromthe CalcuttaUniversity. Itisinterest-
ing that he got master’ sdegreein applied aswell as
pure mathematics and is indicative of the fact that
his later research work encompassed both these
aspectsof mathematics. Hisfirstjobwasat Ashutosh
College, an Undergraduate college in Calcutta.
Here he started working on geometry and produced
several papers on hyperbolic geometry. He shifted

tothe Department of Pure Mathematicsat Calcutta
University a couple of years later.

In 1932-33 P C Mahalnobis, founder of the Indian
Statistical Institute (1SI) (See Resonance Vol.4,
No.6), wasableto get Boseinterested in statistical
problems. Bose's papers in statistics started ap-
pearing from the very first issue of Sankhya,
Indian Journal of Statistics. Soon he was making
important contributions to statistics along with
inspiring and guiding many students. In 1949 he
moved to University of North Carolina at Chapel
Hill, USA. He built a strong school of statistics
there which is flourishing even today. In 1971 he
accepted an offer from Colorado State University
at Fort Collins where he remained till the end.

Raj Chandra Bose made many significant contri-
butions to several topicsin mathematics and stat-
istics. The proof of falsity of aconjecture of Euler
about the non-existence of two mutually orthogo-
nal latin squares of order 2 modulo 4 by Bose and
his co-workers, Parker and Shrikhande made it to
the front page of the Sunday Edition of the New
York Times of April 26, 1959! This result earned
them the nickname ‘Euler Spoilers.’

He was an inspiring teacher and many of his
students went on to make remarkable contribu-
tions to mathematics and statistics. He had aflair
for languages and could recite verses in Arabic,
Bengali, Persian, Sanskrit and Urdu. One of his
friends said of Bose “... he was a great conversa-
tionalist in spite of the fact that he would hardly
allow anybody else to speak!”’

PS: In spite of his extraordinary achievements,
biographical details of R C Bose's life are hard to
locate. | would be grateful for any referencesfrom
readers.

C S Yogananda
Indian Institute of Science, Bangalore
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Figure 1. A typical error

control scheme.
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redundant check hits so as to protect them from errors
introduced by the channd. This process of coding is
shown in Figure 1 where the original message is trans-
formed (encoded) to a codeword by an encoder and this
codeword is sent through the channel. At the receiv-
ing end of the channd thereis a decoder which remaps
(decodes) the channd output badk to a message that is
read by thereceiver. Thesa of al transformed messages
formsthe code Theart of error control coding involves
the design of encodersand decodersthat increasethere-
liability of transmission over noisy channels while ensur-
ing that the amount of redundancy added to messages
isnot too large. Shannon proved the remarkable result
that there exist codes for which the decoder can cor-
rect an arbitrary number of errors with high probability
as long as the amount of redundancy in the codeword
isgreater than a certain value, which is now called the
Shannon limit of the channel.

Among the earliest discovered codes that approach the
Shannon limit werethe low density parity check (LDPC)
codes. Theterm low density arises from the property of
the parity check matrix de ning the code. We will now
de nethismatrix and the rolethat it playsin decoding.

2. Linear Codes

The parity check matrix is one way of de ning a linear
block code Linear block codes are a very important
class of codes in the algebraic theory of coding. The
symbadsthat aretransmitted over the channel are from
a nite ed. An encoder for a block code is a function

Cuyc
!

52

=S

a . RESONANCE | September 2003



GENERAL | ARTICLE

for converting a sequence of message digits u, of length
k, into a transmitted sequence c of length n caled a
codeword, where n is greater than k. In an (n; k) linear
block codeC, theextran i k digitsare linear functions
of the original k digits and these are called parity check
digits. Apart from n and k, anothe important parame-
ter for a code is d, the minimum distance of the code.
The distance between two codewords (also called the
Hamming distance) is de ned to be the number of po-
stions in which these codewords di®er. The minimum
distance of a code is the minimum of distances over all
pairs of codewords. For a linear code the minimum dis-
tance turns out to be the minimum number of non-zero
components in any codeword. The minimum distance
of a code plays an important role in its error correct-
ing ability. It is easily shown that a code of minimum
distance d can correct up to b‘“z—‘c errors where a sin-
deerror is a digit of the transmitted codeword that is
erroneously received. An (n; k) linear code can be rep-
resented compactly by a k £ n matrix as follows. The n
digit transmitted sequence ¢ can be obtained from the
k digit message sequence u by a linear operation,

c= uG; (1)

where G is the generator matrix of the code and the
encoding operation in (1) uses modulo-2 arithmetic for
abinary code(0+0=0,0+1=1;, 1+ 0=1; 1+
1= 0). The rows of the generator matrix are linearly
independent over the eld over which thecodeisde ned.
The generatar matrix for the (4;2) linear binary block
code with codewords f (0000) ; (0110); (1001); (1111)g is
shown in Figure 2

An alternate way of specifying thecode Cisby an (nj
K) £ n parity check matrix H of C which enjoys the
following property:

Hc' = 0; 8¢c2 C

Figure 2. A generator ma-
trix for (4,2) linear block
code.
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Figure 3. The graph repre-
sentingthe(4,2)linear block
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Thus whereas the generator matrix de nes the vector
subspace which isthe code, the parity check matrix de-
" nes the orthogonal subspace. For the (4;2) code that
we considered earlier, the parity chedk matrix is the
same as the generator matrix G shown in Figure 2. Such
codes are referred to as self dual codes. Each row of the
parity check matrix can be thought of as a constraint
that the digits of the codeword must satisfy. Thus a
codeword is a vector whose digits smultaneoudy sat-
isfy all the nj k constraints imposed by the linearly
independent rows of the parity chedk matrix.

This congtraint system of equations de ned by the par-
ity check matrix may be depicted pictorially by way of
a bipartite graph, where nodes are partitioned into vari-
able nodes which represent codeword components, and
constraint nodes that represent parity check constraints.
Thereis an edge (u;Vv) from a variable node u to a con-
straint node v if and only if the variable u participates
in the constraint v. For example, the (4;2) code would
have four variables (call them x4; X5;X3 and x,) and two
constraintswhich arex, + x3= 0and x;+ x4 = 0. The
bipartite graph B for this code is shown in Figure 3.
Given a recelved sequence y, the problem of decoding
over a graph B is essentially that of ex dently nding a
sequence (with minimal distance from y) whose compo-
nents simultaneoudy satisfy all the constraints in B.

3. Solving Linear Equations

Let us now digress from the problem of codes and de-
coding, and turn our attention to solving linear systems
of equations. Suppose we were required to solve a sys
tem of m linear equations in n unknowns. The standard
method of solving them would be to use the ever pop-
ular Gaussian elimination method. But this would re-
quire O(n3) (that is, time cubic in the size of the input)
computations. However, if we were given the valuesof a
subset of thevariablesand wererequired to nd satisfy-
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ing values for the remaining variables, we might be able Suggested Reading

to carry out the task more et ciently as the following
example illustrates. Consider the following linear sys
tem of 3 equationsin 5 unknowns and assume that all
arithmetic is performed modulo 2.

X1+ Xo 0 (2
X3 + X4 + X5 =0 (3)
X1+ X4+ X5 = 0 (4

Suppose we know that x; = 1 and x4 = 1. Subgtituting
for these variablesin the above eguations, we have

1+x, = 0 (5
X3+ 1+ Xg = 0 (6)
1+1+ x5 = O (7

Shifting known values to the right we adbtain

X, = 1 (8
Xs+ X5 = 1 9
X5 = O (10)

From (8) and (10), x, = 1 and x5 = 0 and again substi-
tuting these values in the equations resultsin

X3 = L (11

Thus we have obtained the remaining values using no
linear algebra. It might appear that we were just lucky
and casesillustrated by theexample aboveare extremely
rare. However it turnsout that in the context of coding
we can ensure by a prope choice of the code that this
desirable phenomenon happens with high probability. In
fact, this idea of “iteratively' solving linear equations is
fundamental to the decoding of LDPC codes. In order
to explain the decoding procedure for LDPC codes, we
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will also berequiredto x thenotion of a channel model.
The channel model that we will consider is the Binary
Erasure Channd (BEC) which isthe simplest model of
a communication channel. The input to the channel
are binary digits f0;1g and given an input, say a, the
output of this channe is either a (remains unchanged)
or? (iserased). We are now in a pasition to explain the
decoding procedurefor an LDPC code. Wewill motivate
the general idea by closely examining the linear system
of equations that we considered earlier in this section.
The equations 2, 3 and 4 can written in matrix form as

0 1
11000
H=%0011 1%
10011

and this forms the parity check matrix of our code. The
graph for this code is shown in Figure 4. Let y =
(1;2?,1;,7?) be the received word or the output of the
transmitted codeword over a BEC. Sncey is a code-
word it must satisfy the equation Hy™ = 0. Denoting
the erased digits at positions 2, 3 and 5 by x,, X3 and
X5 we have

1
X (1 x2; x5, Lxs)" = O:

@

PO R
oo R
or o
PRk Oo
=)

Therefore the problem of decoding has been reduced to
that of solving the above system of equations, and our
earlier discussons show how this task may be accom-
plished iteratively.

Thus, from the sdution (X5; X3;X5) = (1;1;0), the de-
coder outputs (1;1;1;1;0) as its estimate of thetrans
mitted codeword. Therefore the problem of decoding
over the BEC may be cast as the problem of solving lin-
ear systemsof equationswith unknowns for erased pos-
tions. This system of equationsis guaranteed to have at
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least one sdlution as the transmitted codeword satis es
these equations. But how et cient isthis procedure? In
order to answer this, we model the decoding procedure
as a message passing scheme between the left and right
partitions of the bipartite graph representing t he code.
Thisisthetopic of the next section.

4. A Simple M essage Passing Decoder

We will now describe the Message Passing decoder (MP-
Decoder) which essentially mimics the procedure given
in Section 3 for solving linear equations and makes use of
the graph given in Figure 4 for this purpose. Recall that
thenodes on theleft represent variablesand thase onthe
right represent constraints. Initialy all the variables are
associated with the received sequence components and
each constraint node is associated with a value 0. Each
left node that isassodated with a non-erasure (that is,
only variables not having value?) propagates its value
along al its edges. At theright, each constraint node
computes and stores the modulo-2 sum of itslocal value
with the valuesreceived alongitsedges. Theseedgesare
then disassociated from the graph (shownin Figure 5 by
dashed edges).

Then each chedk node of degree one sends back the com-
puted valuetoits neighbour which takesthisvalue. This
is shown in Figure 6 and the iterations are repeated till
the values of al left variable nodes are known as shown
in Figure 7. As every iteration involves the deletion of
at least one edge, the decoding complexity will be O(e)
steps where e is the number of edges in the bipartite
graph representing the code. In case of LDPC codes,
which have sparse parity check matrices, the edge car-
dinality of the graph representing the code is linear in
the number of nodes, thereby implying that the MP-
Decoder for these codes has linear time decoding com-
plexity. Gallager also analysed the probability of decod-
ing error, that is, the likelihood that the MP-Decoder
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Figure 5. The graph ob-
tained after firstiteration of
the MP-Decoder.

Figure 6. The graph ob-
tained after second itera-
tion of the MP-Decoder.

D I"\. My
W

RESONANCE | September 2003 a .

57



GENERAL | ARTICLE

I_'\
[ L
-
[T
bl
'pl i
\
= i l"-.
i "._I \ ;
I l:-n_.-J'."..'l %
\ LR
*, ] -\-. ﬂ
"y i
oy
L WP
w
e’ A
L e b
LI
PR
f . -l
r
)
- '
L,
II-“.
' -
T
ST I
-
[} .F‘d
—a
o
0
L By

Figure 7. The final stage of
the MP-Decoder.

'In contrastto the BEC, the BSC
model does notaccommodate
erasures.

Figure 8. Unrolling a bipar-
tite graph representing the
code.

failsto output the correct answer. Thiswas donein the
context of a Binary Symmetric Channel (BSC) model.
The input and output alphabets for this model consist
of binary digits (f0; 1g), and the eRect of noise on a
transmitted bit causesit to °ip'. Let us now see how an
MP-Decoder could be designed for this channel model.
Given a received sequence, the MP-Decoder computes
all the congtraint equations. If all of them are satis
“ed, then the received sequence is a codeword and the
decoder exits successfully, else, the decode °ips all vari-
ableswhich participatein more unsatis ed than satis ed
equations and the whole process is repeat ed with these
new values. Asis the case with LDPC codes, the con-
straint equationswill consist of asmall constant fraction
of variables. Therefore it is reasonable to assume that
toggling a variable that occursin more unsatis ed than
satis ed equations will result in an increase in the total
number of satis ed equations.

To understand this better, let us now examine a spe-
cial case. Consder a variable x,; whose parity check set
contains more than one error. Assume for the moment,
that the bipartite graph representing the code can be
unrolled to g& atreerooted at x, as shown in Figure 8
(Notethat this need not always betrue, asthe bipartite
graph might contain cycles).
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The odd levels of the tree represent the variables while
the even levd srepresent the constraint equations. Since
X,'S parity-check set contain more than one error many
variables in the third level of the tree are also errors.
But assuming that variables|ower down thetree contain
fewer errors, the error-free variables and their constraint
equations can help in correcting the variables higher up
the tree. Thisis propagated up the tree with each it-
eration of the MP-decoder and thus nally x, gets cor-
rected.

Recently M Luby, M Mitzenmacher, M A Shokrollahi
and D A Spielman have used ideas from low-density
parity check codesto construct encoding and decoding
schemes for correction of erasures representing packet
losses on networks. The codes are derived from cascades
of sparse bipartite graphs using novel ideas for const ruc-
tion of the graphs in each of the layers. A message
consisting of 640000 packets is encoded into a vector of
1280000 packets, and each packet consists of 256 bytes.
(i.e. each message symbol is represented by 256 bytes).
Luby and others [7] were able to obtain throughputs
of roughly 280Mbit/s on a DEC-alpha machine with
300MHz and a 64-Mbyte RAM, and reach rates just be-
low channel capacity, or in other words, come very close
to the goal set by Shannon. It is interesting that the
seeds of t hese ideas were sown forty years ago!

In the second part of this article we will carry out a
formal analysisof the Gallager algorithm and introduce
a probabilistic version.

I s Weknow very little, and yet it is astonishing
- .;u_n"& : that we know so much, and still more
<£—-_ ™| astonishingthatsolittleknowledge
fuen, |, can give us so much power.

Bertrand Russell (1872-1970)
English philosopher, mathematician
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