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The fundamental problem of communication is that of
reproducing at one point either exactly or approximately
a message selected at another point.

{ Claude Shannon, 1948.

1. I nt roduct ion

The f̄ty ¯ve year old history of error correct ing codes
began with Claude Shannon's path-breaking paper en-
t it led `A Mathemat ical T heory of Communicat ion' in
the Bell Systems Technical Journal in 1948. The paper
set up a well dē ned goal { that of achieving a per-
formance bound set by the noisy channel coding theo-
rem, proved in t he paper. Whereas the goal appeared
elusive twenty ¯ve years ago, today, there are pract i-
cal codes and decoding algorithms that come close to
achieving it . I t is int erest ing to note that al l known
coding schemest hat approach thegoal can beviewed as
codes on graphswith associated iterat ivedecoding algo-
rithms. Themain ideasunderlying codeson graphswere
introduced by Robert Gallager in his PhD thesiswrit ten
about forty yearsago. Gallager's thesis was far ahead of
his t imeand displayed remarkable prescience. However,
given the l imited computing power avai lable then, Gal-
lager 's codes werenot considered pract ical. A landmark
paper by R M Tanner presented algebraic methods for
construct ing graphs on which e± cient decoding could
be implemented. A signi¯cant leap forward towards the
goal set by Shannon was in the early 1990's with the
discovery of turbo codes by C Berrou and A Glavieux
and P T hit imajshima, who obtained excel lent pract i-
cal performance. However, at that t ime there was st il l
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no explanat ion for this phenomenon. A few years lat er
D J C MacK ay and R M Neal showed that Gallager
type codes were competit ive with turbo codes. Around
the same time, M Sipser and D Spielman used graphs
known as `expander graphs' to achieve remarkable per-
formance with moderate decoder complexity. We now
know that there isa unifying view of al l thesecodes{ the
representat ion of systems on graphs and using approxi-
mate inferencealgorithmsfor decoding. In the¯rst part
of this ar t icle we will introduce the low density pari ty
check codes of Gallager and explain a simple algorithm
presented by him for iterat ive decoding.

The theory of error correct ing codes is concerned with
the development of solut ions to the following problem.
We have a sender who wishes t o transmit a message
(a sequence of digits) to a receiver through a channel
which serves as the medium of transmission. Typically
this channel is not ent irely reliable (that is, the channel
isnoisy) which leads to thepossibili ty of thereceiver not
receiving the actual message but a corrupted version of
i t . Some examples of a noisy channel are:

² a telephone cable over which two modems com-
municate digital information which is a®ected by
cross-talk from other lines.

² the radio communicat ion link from a satell ite to
Earth with noise in the form of background radi-
at ion from terrestrial and cosmic sources.

² a disk drive where defects may cause the head to
report wrong values for binary digits.

Therefore the quest ion to ask is: \ Is it possible to en-
sure reliable transmission inspite of errors introduced
by the noisy channel?" . This problem was studied by
Shannon and led to the not ion of channel coding where
the message bits sent by the receiver are `padded' with
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The February 2002 issue of Resonance was dedi-
cated to Claude Shannon, referred by many as the
‘father of information theory’ and many consider
the appearance of his paper ‘A mathematical theory
of communication’ in 1948 as heralding the begin-
ning of the Information Age (see the Article-In-A-
Box by Priti Shankar in that issue). To a good
measure both these attributes apply to Raj Chandra
Bose (1901-1987) often referred to as the ‘father of
experimental design.’ Shannon’s theorem on the
possibility of information transmission over a noisy
channel with as low an error as desired was an
‘existential’ result but not a ‘constructive’ one. The
construction of such a code evolved from the work
of Raj Chandra Bose culminating in the construc-
tion of Bose–Chaudhuri–Hocquenghem (BCH) er-
ror correcting codes in 1960. Variations of these
codes are the ones in wide use today for all modes
of digital information transmission. Bose used to
describe these codes as “a technique which will
make errors in transmission of information so in-
frequent that it will be surprising if there was one
error in hundred years of transmissional communi-
cation.’’ It is interesting to note that Joseph George
Caldwell has made the following comment – “It is
obvious why Bose was never awarded a Nobel
Prize (for the BCH codes, for solving Euler’s con-
jecture, or as father of the mathematical basis for
experimental design) since he was a mathemati-
cian.’’

Raj Chandra Bose was born on June 29, 1901 in
India and had his school education in Delhi. After
obtaining a master’s degree in applied mathematics
from the University of Delhi, Bose moved to
Calcutta and got his master’s degree in pure math-
ematics from the Calcutta University. It is interest-
ing that he got master’s degree in applied as well as
pure mathematics and is indicative of the fact that
his later research work encompassed both these
aspects of mathematics. His first job was at Ashutosh
College, an Undergraduate college in Calcutta.
Here he started working on geometry and produced
several papers on hyperbolic geometry. He shifted

to the Department of Pure Mathematics at Calcutta
University a couple of years later.

In 1932-33 P C Mahalnobis, founder of the Indian
Statistical Institute (ISI) (See Resonance Vol.4,
No.6), was able to get Bose interested in statistical
problems. Bose’s papers in statistics started ap-
pearing from the very first issue of Sankhya,
Indian Journal of Statistics. Soon he was making
important contributions to statistics along with
inspiring and guiding many students. In 1949 he
moved to University of North Carolina at Chapel
Hill, USA. He built a strong school of statistics
there which is flourishing even today. In 1971 he
accepted an offer from Colorado State University
at Fort Collins where he remained till the end.

Raj Chandra Bose made many significant contri-
butions to several topics in mathematics and stat-
istics. The proof of falsity of a conjecture of Euler
about the non-existence of two mutually orthogo-
nal latin squares of order 2 modulo 4 by Bose and
his co-workers, Parker and Shrikhande made it to
the front page of the Sunday Edition of the New
York Times of April 26, 1959! This result earned
them the nickname ‘Euler Spoilers.’

He was an inspiring teacher and many of his
students went on to make remarkable contribu-
tions to mathematics and statistics. He had a flair
for languages and could recite verses in Arabic,
Bengali, Persian, Sanskrit and Urdu. One of his
friends said of Bose “... he was a great conversa-
tionalist in spite of the fact that he would hardly
allow anybody else to speak!’’

PS: In spite of his extraordinary achievements,
biographical details of R C Bose’s life are hard to
locate. I would be grateful for any references from
readers.

C S Yogananda
Indian Institute of Science, Bangalore

Raj Chandra Bose (1901-87)
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Figure 1. A typical error
control scheme.
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redundant check bits so as to protect them from errors
introduced by the channel. This process of coding is
shown in Figure 1 where the original message is trans-
formed (encoded) to a codeword by an encoder and this
codeword is sent through the channel. At the receiv-
ing end of the channel there is a decoder which remaps
(decodes) the channel output back to a message that is
read by thereceiver. Theset of al l t ransformed messages
forms the code. T heart of error control coding involves
thedesign of encodersand decoders that increase the re-
liabili ty of t ransmission over noisy channels while ensur-
ing that the amount of redundancy added to messages
is not too large. Shannon proved the remarkable result
that there exist codes for which the decoder can cor-
rect an arbitrary number of errors with high probability
as long as the amount of redundancy in the codeword
is greater than a certain value, which is now called t he
Shannon limit of t he channel.

Among the earl iest discovered codes that approach t he
Shannon limit were the low density par i ty check (LDPC)
codes. T he term low density arises from theproperty of
the parity check matr ix dē ning the code. We will now
dē ne thismatrix and the role that i t plays in decoding.

2. L inear Codes

The par ity check matrix is one way of dē ning a linear
block code. Linear block codes are a very important
class of codes in the algebraic theory of coding. T he
symbols that are t ransmitted over the channel are from
a ¯nite ¯eld. An encoder for a block code is a funct ion
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G =
·

0 1 1 0
1 0 0 1

¸

Figure 2. A generator ma-
trix for (4,2) linear block
code.

for convert ing a sequence of message digits u, of length
k, into a transmit ted sequence c of length n cal led a
codeword, where n is greater than k. In an (n; k) linear
block codeC, the extra n ¡ k digits are l inear funct ions
of the original k digit s and these are cal led par ity check
digits. Apart from n and k, another important parame-
ter for a code is d, the minimum distance of the code.
The distance between two codewords (also called the
Hamming distance) is dē ned to be t he number of po-
sit ions in which t hese codewords di®er. The minimum
distance of a code is the minimum of distances over all
pairs of codewords. For a linear code theminimum dis-
tance turns out to be the minimum number of non-zero
components in any codeword. The minimum distance
of a code plays an important role in its error correct -
ing abil ity. I t is easily shown that a code of minimum
distance d can correct up to bd¡ 1

2 c errors where a sin-
gle error is a digit of the transmit ted codeword t hat is
erroneously received. An (n; k) l inear code can be rep-
resented compact ly by a k £ n matrix as follows. The n
digit t ransmit ted sequence c can be obtained from the
k digit message sequence u by a linear operat ion,

c = uG; (1)

where G is the generator matrix of the code and the
encoding operat ion in (1) uses modulo-2 arit hmetic for
a binary code (0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 +
1 = 0). The rows of the generator matrix are linearly
independent over the¯eld over which thecode isdē ned.
The generator mat rix for the (4;2) linear binary block
code with codewords f (0000); (0110); (1001); (1111)g is
shown in Figure 2.

An alternateway of specifying thecode C is by an (n ¡
k) £ n parity check matrix H of C which enjoys the
following property:

H cT = 0; 8c 2 C:
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Figure 3. The graph repre-
senting the (4,2) linear block
code.
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Thus whereas the generator matrix dē nes the vector
subspace which is the code, the parity check matrix de-
¯nes the ort hogonal subspace. For the (4;2) code that
we considered earl ier, the parity check matrix is the
sameas thegenerator matrix G shown in Figure2. Such
codes are referred t o as self dual codes. Each row of the
parity check matrix can be thought of as a constraint
that the digits of the codeword must sat isfy. Thus a
codeword is a vector whose digits simultaneously sat-
isfy al l the n ¡ k constraints imposed by the linearly
independent rows of the parity check matrix.

This constraint system of equat ions dē ned by the par-
ity check matrix may be depicted pictorially by way of
a bipart i tegraph, where nodes arepart it ioned into vari-
able nodes which represent codeword components, and
constraint nodes that represent parity check constraints.
There is an edge (u; v) from a variable node u to a con-
straint node v if and only if the variable u part icipates
in the constraint v. For example, the (4; 2) code would
have four variables (call them x1; x2;x3 and x4) and two
constraints which are x2 + x3 = 0 and x1 + x4 = 0. The
bipart i te graph B for t his code is shown in Figure 3.
Given a received sequence y , the problem of decoding
over a graph B is essent ially that of e± cient ly ¯nding a
sequence (wit h minimal distance from y) whose compo-
nents simultaneously sat isfy al l the constraints in B.

3. Solv ing L inear Equat i ons

Let us now digress from the problem of codes and de-
coding, and turn our attent ion t o solving linear syst ems
of equat ions. Suppose we were required to solve a sys-
tem of m linear equat ions in n unknowns. The standard
method of solving them would be to use the ever pop-
ular Gaussian eliminat ion method. But this would re-
quire O(n3) (that is, t ime cubic in the sizeof the input)
computat ions. However, i f wewere given the valuesof a
subset of thevariablesand were required to ¯nd sat isfy-



55RESONANCE  September  2003

GENERAL   ARTICLE

ing values for the remaining variables, we might be able
to carry out t he task more e± cient ly as the fol lowing
example i llustrates. Consider t he fol lowing linear sys-
tem of 3 equations in 5 unknowns and assume that all
ari thmet ic is performed modulo 2.

x1 + x2 = 0 (2)
x3 + x4 + x5 = 0 (3)
x1 + x4 + x5 = 0: (4)

Suppose we know that x1 = 1 and x4 = 1. Subst i tut ing
for these variables in the above equat ions, we have

1+ x2 = 0 (5)
x3 + 1+ x5 = 0 (6)
1 + 1+ x5 = 0: (7)

Shift ing known values to the right we obtain

x2 = 1 (8)
x3 + x5 = 1 (9)

x5 = 0: (10)

From (8) and (10), x2 = 1 and x5 = 0 and again subst i-
tut ing these values in the equat ions results in

x3 = 1: (11)

Thus we have obtained the remaining values using no
linear algebra. I t might appear that we were just lucky
and cases il lustrated by theexampleaboveareextremely
rare. However it turnsout that in thecontext of coding
we can ensure by a proper choice of the code that this
desirablephenomenon happenswith high probabil ity. In
fact, this idea of `iterat ively' solving linear equat ions is
fundamental to the decoding of LDPC codes. In order
to explain the decoding procedure for LDPC codes, we
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Figure 4. The graph for the
code represented by H.
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will also be required to ¯x thenot ion of a channel model.
The channel model that we will consider is the Binary
Erasure Channel (BEC) which is the simplest model of
a communicat ion channel. The input to the channel
are binary digits f 0; 1g and given an input, say a, the
output of this channel is either a (remains unchanged)
or? (is erased). We are now in a posit ion to explain the
decoding procedurefor an LDPC code. Wewill mot ivate
the general idea by closely examining t he linear system
of equat ions that we considered earlier in this sect ion.
The equat ions 2, 3 and 4 can writ ten in matrix form as

H =

0

B
@

1 1 0 0 0
0 0 1 1 1
1 0 0 1 1

1

C
A

and this forms the parity check matrix of our code. The
graph for this code is shown in Figure 4. Let y =
(1; ?; ?; 1; ?) be the received word or the output of the
transmit ted codeword over a BEC. Since y is a code-
word it must sat isfy the equat ion H yT = 0. Denot ing
the erased digits at posit ions 2, 3 and 5 by x2, x3 and
x5 we have

0

B
@

1 1 0 0 0
0 0 1 1 1
1 0 0 1 1

1

C
A (1; x2; x3; 1; x5)T = 0:

Therefore the problem of decoding has been reduced to
that of solving the above system of equat ions, and our
earlier discussions show how t his t ask may be accom-
plished iterat ively.

Thus, from the solut ion (x2; x3; x5) = (1; 1; 0), the de-
coder outputs (1; 1; 1; 1; 0) as its est imate of the t rans-
mit ted codeword. Therefore the problem of decoding
over the BEC may be cast as theproblem of solving lin-
ear systemsof equat ionswith unknowns for erased posi-
t ions. This system of equat ions is guaranteed to have at
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least one solut ion as the transmit ted codeword sat is̄ es
these equat ions. But how e± cient is this procedure? In
order to answer this, we model the decoding procedure
as a message passing scheme between the left and right
part i t ions of the bipart ite graph represent ing t he code.
This is the topic of the next sect ion.

4. A Simple M essage Passing D ecoder

Wewil l now describe theMessagePassingdecoder (MP-
Decoder) which essent ial ly mimics the procedure given
in Sect ion 3 for solving linear equat ions and makesuseof
thegraph given in Figure4 for this purpose. Recall that
thenodeson theleft represent variablesand thoseon the
right represent constraints. Init ial ly all thevariables are
associated with the received sequence components and
each constraint node is associated with a value 0. Each
left node that is associat ed with a non-erasure (that is,
only variables not having value?) propagates its value
along all its edges. At the right, each constraint node
computes and stores themodulo-2 sum of its local value
with thevaluesreceived along itsedges. Theseedgesare
then disassociated from thegraph (shown in Figure5 by
dashed edges).

Then each check nodeof degree onesendsback thecom-
puted value to itsneighbour which takes thisvalue. This
is shown in Figure 6 and the iterat ions are repeated t il l
the values of al l left var iable nodes are known as shown
in Figure 7. As every iterat ion involves the delet ion of
at least one edge, the decoding complexity will be O(e)
steps where e is the number of edges in the bipart ite
graph represent ing the code. In case of LDPC codes,
which have sparse par ity check matrices, the edge car-
dinal ity of the graph represent ing the code is linear in
the number of nodes, thereby implying that the MP-
Decoder for these codes has l inear t ime decoding com-
plexity. Gallager also analysed theprobabil ity of decod-
ing error, that is, the l ikelihood that the MP-Decoder

Figure 5. The graph ob-
tained after first iteration of
the MP-Decoder.

Figure 6. The graph ob-
tained after second itera-
tion of the MP-Decoder.
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fails to output thecorrect answer. This was done in the
context of a Binary Symmet ric Channel (BSC) model.
T he input and output alphabets for this model consist
of binary digits (f 0; 1g), and the e®ect of noise on a
transmit ted bit causes it to ° ip1. Let us now seehow an
MP-Decoder could be designed for this channel model.
Given a received sequence, the MP-Decoder computes
all the constraint equat ions. I f all of t hem are sat is-
¯ed, then the received sequence is a codeword and the
decoder exitssuccessfully, else, thedecoder ° ips all vari-
ableswhich part icipatein moreunsat i s̄ ed than sat is̄ ed
equat ions and the whole process is repeat ed with these
new values. As is the case with LDPC codes, the con-
straint equat ionswill consist of asmall constant fract ion
of variables. Therefore it is reasonable to assume that
toggling a variable that occurs in more unsat i s̄ ed than
sat i s̄ ed equat ions will result in an increase in the total
number of sat is̄ ed equat ions.

To understand this better , let us now examine a spe-
cial case. Consider a variable x2 whose parity check set
contains more than one error. Assume for the moment,
that the bipart it e graph represent ing the code can be
unrolled to get a t ree rooted at x2 as shown in Figure 8
(Note that this need not always be true, as the bipart ite
graph might contain cycles).

1 In contrast to the BEC, the BSC
model does not accommodate
erasures.

Figure 7. The final stage of
the MP-Decoder.

Figure 8. Unrolling a bipar-
tite graph representing the
code.
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The odd levels of the tree represent the variables while
theeven levels represent the constraint equat ions. Since
x2 's parity-check set contain more than one error many
variables in the third level of the t ree are also errors.
But assuming that variables lower down thet reecontain
fewer errors, theerror-freevariables and their constraint
equat ions can help in correct ing the variables higher up
the tree. This is propagated up the t ree wit h each it-
erat ion of the MP-decoder and t hus ¯nally x2 gets cor-
rected.

Recent ly M Luby, M Mitzenmacher, M A Shokrollahi
and D A Spielman have used ideas from low-density
parity check codes to construct encoding and decoding
schemes for correct ion of erasures represent ing packet
losseson networks. Thecodes are derived from cascades
of sparsebipart ite graphs using novel ideas for const ruc-
t ion of the graphs in each of the layers. A message
consist ing of 640000 packets is encoded into a vector of
1280000 packets, and each packet consist s of 256 bytes.
(i.e. each message symbol is represented by 256 bytes).
Luby and others [7] were able to obtain throughputs
of roughly 280Mbit / s on a DEC-alpha machine with
300MHz and a 64-Mbyte RAM, and reach rates just be-
low channel capacity, or in other words, come very close
to the goal set by Shannon. It is interest ing t hat the
seeds of t hese ideas were sown forty years ago!

In the second part of this art icle we wil l carry out a
formal analysisof the Gallager algori thm and introduce
a probabil ist ic version.
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We know very little, and yet it is astonishing
that we know  so much, and still more
astonishing that so little knowledge
can give us so much power.

Bertrand  Russell (1872-1970)
 English philosopher, mathematician


