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Abstract
In speech and language processing, information about the errors
made by a learning system is commonly used to assess and im-
prove its performance. Because of high computational complex-
ity, the context of the errors is usually either ignored, or exploited
in a simplistic form. The complexity becomes tractable, however,
for phone recognition because of the small lexicon. For phone-
based systems, an exhaustive modeling of local context is pos-
sible. Furthermore, recent research studies have shown phone
recognition to be useful for several spoken language processing
tasks. In this paper, we present a mechanism which learns pat-
terns of context-sensitive errors from ASR-output aligned with the
“true” phone transcriptions. We also show how this information,
encoded as a context-sensitive weighted transducer, can provide
a modest improvement to phone recognition accuracy even when
no transcriptions are available for the domain of interest.

1. Introduction
Understanding the pattern of errors typical for a learning sys-
tem provides insight into the learning process and can improve
its results [3, 7, 8]. In [3] atransformation-based error-driven
learningmethod was proposed that utilizes a confusion matrix to
perform tagging correction by learning a set of correction rules.
A similar approach was used in [7] to disambiguate the output
of a word recognizer. However, this method did not make use
of context and the size of ambiguity sets was restricted to two
words. Even though many error correction mechanisms do exploit
context [3, 5], they don’t estimate all context-sensitive confusion
probabilities, whose number for a lexicon of sizeN rises toN4
even if only the immediate left and right contexts are considered.
Instead they encode the context with a small number of features
[5]. The ambiguity sets are also typically downsized drastically.
Error correction with exhaustive local context modeling becomes
manageable, however, when dealing with phone-based systems,
where the lexicon size is�50 rather than thousands.

Recent work has demonstrated that phones are a serious al-
ternative to words in certain spoken language processing tasks
[10, 2]. In [2] phone recognition followed by topic classifica-
tion has been shown to produce classification rates comparable
to the traditional word-based approach; in our latest experiments
we also obtained similar results by using approximate matching
of acoustic morphemes, a technique first introduced in [6]. As a
result, the reliability of a phone recognizer becomes important. In
this paper we present a method for modeling the behavior of the
phone recognizer under the influence of local string context and
for using this information to improve phone recognition accuracy.

The application vehicle we chose for this work is telephony
speech services, where speech recognition components must be
adapted quickly to new or altered services, so it is desirable for
the developer not to rely on the availability of transcriptions for
training new tasks. In [2] a method for unsupervised training of

a phone recognizer was introduced which iteratively recognizes
the speech and re-estimates the language model. Here we focus
on the situation where transcriptions for some other domain are
available. We show how this additional data can be employed to
improve phone error rate in the domain of interest. To achieve
an improvement, we post-correct ASR-output, by passing it to a
transducer which performs a number of context-sensitive phone
corrections (substitutions, deletions, insertions).

The results of a cross-domain evaluation of this algorithm in-
dicate a 4% relative reduction in phone error rate, whereby the
effect is most prominent in the insertion rate which decreases by
14%.

2. Transductional model of ASR
Our goal is to develop a mechanism for describing ASR behav-
ior and improving its performance on speech data. Given a spo-
ken utteranceS, the phone recognizer outputs a phone sequenceSasr. Suppose now that there is an oracle telling us what the ideal
(undistorted) representation ofS should be; we call this phone
stringStrue. In this case we can describe ASR behavior in terms
of a transformation betweenStrue andSasr:ASR(Strue) = Sasr: (1)

On the other hand we might consider the inverse task of re-
covering the “true” phone stringStrue based on the recognized
stringSasr. In this case the transformation will be:ASR�1(Sasr) = Strue: (2)

Since the major part of the discussion in this section doesn’t
depend on which of these two ways is explored, we will use no-
tation input stringSI for the argument of the transformation and
output stringSO for its result, instead ofStrue andSasr.

Typically we distinguish among four basic types of phone
transformations: identity, substitution, deletion and insertion. We
call these transformationsphone mappings.

Suppose, we have reached positioni in the stringSI and pro-
ducedj � 1 phones in stringSO. Now the following phone map-
pings are possible:

1. identity: take phoneSIi as the next phone inSO (SOj :=SIi ) and advance by one position in both strings;

2. substitution: same as identity, but instead ofSIi emit some
other phone;

3. deletion: advance inSI without emitting anything toSO;

4. insertion: emit some phone toSO and advance in this
string, but not inSI.

If we introduce the empty symbol", all four mappings can
be written in the same way:a  b, wherea (the left sideof the
mapping) andb (its right side) may not be" at the same time.



One way to characterize ASR behavior is to estimate the
probabilities of such mappings. Each phone mapping produces
at most one phone in the output stringSO, leaving the previously
generated phones unchanged, but in the general case they depend
on the entire input string1 SI, which we call themapping context,
so that we can write the mapping in context asa  b=SI. If we
ignore the influence of context completely, then the result of esti-
mation will be a set of probabilitiesP (a bja) for each pair of
phones(a; b). This approximation assumes that the probability of
mappinga into b remains constant no matter where in the stringa occurs. Estimation of the well known confusion matrix relies
on this kind of approximation. However, this type of description
is not adequate, since recognition of a particular phone is signif-
icantly affected by its local neighborhood in the acoustic stream
[9].

This leads us to a less rough approximation with four phones
that have impact on the mapping probability: the input and output
phones of the mapping and also the two symbols adjacent to the
input phone inSI. Such mappings we will denotea  b=
 d,
with 
 as the left context ofa in SI andd its right context.

Now, if there areN phones in our lexicon, the set of esti-
mated probabilities will compriseO(N4) entries. In fact, if no
insertions were possible, we would only haveO(N3) distribu-
tions, with stochastic conditions:Xx P (a x=
 dj
ad) = 1:0; 8
; a; d: (3)

The presence of insertions makes the situation a little more com-
plicated. Let the input string beSI = a0a1 : : : aT�1aT and the
current position in this stringt. The next mapping will be either
substitution or deletion ofat in contextat�1 at+1 or insertion
in contextat at+1. Thus, at each point of time we not only have
competing mappings in the same context, but also competing con-
texts:Xx P (at  x=at�1 at+1jat�1atat+1) +Xx P (" x=at at+1jat�1atat+1) = 1:0: (4)

The problem with this formula is that we wish to avoid maintain-
ing statistics for insertions conditioned on two phones in the left
context (as opposed to only one inP (" x=at at+1jatat+1)).

Let �P (sd(
)=at�1 at+1jat�1atat+1) denote the probabil-
ity of doing insertion in contextat at+1 (i.e. not a substitution
or deletion ofat in contextat�1 at+1), givenat�1atat+1, and�P (ins =at at+1jatat+1) the probability of doing substitutions or
deletions ofat in contexty at+1 with an arbitraryy (i.e. not an
insertion in contextat at+1), givenatat+1. Then, we can split
(4) in two:Xx P (at  x=at�1 at+1jat�1atat+1) +�P (sd(at)=at�1 at+1jat�1atat+1) = 1:0; (5)Xx P (" x=at at+1jatat+1)+ �P (ins =at at+1jatat+1) = 1:0:

(6)
We will see in the next section how the probabilities participating
in these formulae can be estimated.

1An obvious extension is to make the mappings dependable on at least
some part ofSO as well.

3. Estimation and encoding of phone
mapping probabilities

3.1. Training phone mapping probabilities

In this section we show how to estimate the probabilities of phone
mappings in context so that the probability of a transformation of
the input corpus into the output corpus (both sequences of phone
strings) is maximized. We use the EM algorithm to estimate the
probabilities of phone mappings. During the expectation step we
update counters
 of occurrences of phone mappings in contexts.
The outline of the expectation step is presented below2:

FORALL a; b; 
; d : :(a = b = ")
(a b=
 dj
ad) := 0
IF a 6= "
THEN �
(sd(a)=
 dj
ad) := 0
ELSE �
(ins =
 dj
d) := 0

FOR t = 0 : : : T; v = 0 : : : V
s := �t�1;v�1P (at  bv=at�1 at+1jat�1atat+1)�t;v=�T;V
d := �t�1;vP (at  "=at�1 at+1jat�1atat+1)�t;v=�T;V
i := �t;v�1P (" bv=at at+1jatat+1)�t;v=�T;V
(at  bv=at�1 at+1jat�1atat+1) += 
s
(at  "=at�1 at+1jat�1atat+1) += 
d
(" bv=at at+1jatat+1) += 
i�
(sd(at)=at�1 at+1jat�1atat+1) += 
i�
(ins =at at+1jatat+1) += 
s + 
d
where forward and backward probabilities�t;v and�t;v are

obtained for each pair(t; v) successively. For instance, the itera-
tive formula for�s is:�t;v += �t�1;v�1 � P (at  bv=at�1 at+1jat�1atat+1)+ �t�1;v � P (at  "=at�1 at+1jat�1atat+1)+ �t;v�1 � P (" bv=at at+1jatat+1): (7)

During the maximization step, probabilities of all phone map-
pings are re-estimated:P (a b=
 dj
ad) := 
(a b=
 dj
ad)Px 
(a x=
 dj
ad)+�
(sd(a)=
 dj
ad) ;P (" b=
 dj
d) := 
(" b=
 dj
d)Px 
(" x=
 dj
d)+�
(ins =
 dj
d) :

(8)

3.2. Specificity versus robustness

Given the number of phones in our dictionaryN , we have to es-
timateN3 different context-dependent probability distributions
(or O(N4) context-dependent probabilities). Even with a mod-
erate number of phones used (in our experimentN = 43), the
amount of data practically available is not sufficient to estimate all
context-dependent probabilities reliably. To alleviate this prob-
lem, we interpolate among contexts with different degrees of
specificity. Consider phone mappings:a  x=
 d; for eachx
its probability can be computed as a linear combination:P (a x=
 d) = wfP (a x=
 d) + wlP (a x=
 �) +wrP (a x= � d) +wnP (a x= � �) + wz 1N ; (9)

withwf+wl+wr+wn+wz = 1:0 and wildcard “*” standing for
any symbol. In this case, before interpolation can be done, four
optimization processes must be performed in parallel. In our ex-
periments we used the following weights:wf = 0:5; wl = wr =0:2; wn = 0:09; wz = 0:01. Also, a subsequent probability nor-
malization is required to make sure the stochastic conditions are
not violated. Additionally, we do not allow the probabilities of
any mappings to fall below a certain small threshold.

2We assumeat = " 8t < 0; t > T .



b : b=P (b b=a a)" : b=P (" b=a b) " : a=P (" a=b a)" : b=P (" b=b a)
b : a=P (b a=a a)ab bab : "=P (b "=a a)" : a=P (" a=a b)

Figure 1: Simple coding of phone mapping probabilities as a
weighted FSM; fragment from an FSM for a two symbol alpha-
bet.

3.3. Encoding the probabilities as a transducer

After running the EM algorithm, the estimated probabilities of
the phone mappings in context are encoded as a transducer. Each
state of this transducer is marked by a pair of phones that can
follow each other in the corpus. Arcs connecting two statesab
andb
 sharing one middle phoneb perform substitutions ofb in
the contexta 
, and loops from the stateab perform insertions in
contexta b (see Figure 1). In fact, in our experiments we use a
somewhat more complex encoding which allows an insertion in
context to be more probable than its absence.

Depending on whether the transducer modelsASR orASR�1 we will call it the Distortion or the Correction Trans-
ducer.

4. Improving Phone Accuracy
In this section we show how the Correction Transducer obtained
in the way described above can be used to improve the phone
recognition accuracy. Suppose that we have two corpora from
different domains and that for one corpus transcriptions are avail-
able.

Since the task of manually producing phone transcriptions is
hardly feasible for large amounts of speech data, we resort to word
transcriptions created by human labelers and transduce them to
the phone level by taking the most probable dictionary pronunci-
ation for each word3. This is certainly different from employing
the ideal phone transcriptions but two factors justify our choice:
even human labelers have difficulty reaching a consensus when
asked to produce the phone transcription of a speech signal [4];
in our experiments the results of utterance classification on phone
transcriptions produced as just noted significantly outperformed
those obtained with ASR.

The training scheme along with the testing strategy (or appli-
cation at run-time) are presented in Fig. 2.

During the first step, the phone recognizer is trained on
the audio data from the training corpus (domain of interest).
Then, we recognize the training corpus from another domain,
for which manual transcriptions are available. Using the pairs
recognized-utterance/transcribed-utterance for the second do-
main, we train the Correction TransducerF representing trans-
formationASR�1. At run-time we recognize the incoming utter-
ance with the same recognizer obtaining phone stringS, and then
applyF as follows: Ŝ = S Æ F ; (10)S andŜ being linear FSM representations ofS and its corrected
versionŜ.

5. Experiments
For our experiments we used data from two telephony domains:

3In the reported experiments we use a TTS system to produce phone
transcriptions from word transcriptions.
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Figure 2:Training ASR and Correction Transducer and their role
in phone recognition.

1. Domain of interest: a corpus of prescription related re-
quests to a pharmaceutical company made over the phone:
P-train (�15K), P-test (5K). The latter provided with tran-
scriptions to measure the phone accuracy (see below).

2. Transcription Domain: HMIHY, a collection of utter-
ances made by callers to the AT&T Customer Service
number. Two subsets were distinguished: H-train (�25K
utterances) and H-test (�3K); transcriptions were avail-
able for both;

We used P-train to train a 5-gram phonotactic model for phone
recognition as described in [2]. After that, H-train utterances were
used to train the Correction/Distortion Transducers.

An informative intrinsic criterion of the goodness of phone
mapping probability estimators is the changes of the final forward
probability�T;V over iterations. Figure 3 shows how the average
length-normalized probability of transforming ASR-output into
transcriptions changes for the training (H-train) and test (H-test)
corpora. We see that, when context is taken into account, we are
able to model the ASR-behavior much more precisely than when
phone mappings are considered without regard to context4.

5.1. Diagnostic tool

The Distortion Transducer estimated as described in Section 3.1
can be used to illustrate the behavior of the phone recognizer and
exemplify typical mistakes it makes.

In Table 1 we present some of the most probable non-identity
phone mappings accounted for by this transducer (in ARPABET

symbols) :

phone mapping probability exampleax! ey=uw hh 0.88 speak to a humanax! ae=ng d 0.76 mailing addresst! d=r ih 0.59 startedk ! "=s t 0.86 askedih ! "=r d 0.78 hundred

Table 1: Some of the most probable (and frequent) phone trans-
formations from transcriptions to ASR-output.

4The test corpus is more challenging for ASR because it contains only
initial dialog utterances; these are much longer on average than the train-
ing corpus utterances which include many instances of short utterances
like “Yes” and “No”.
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Figure 3:Average length-normalized log-probability of the trans-
formation Transcription!ASR; cases of context-sensitive and
context-independent optimization.

We see that the ASR tends to confuse phonetically similar
phones liket andd, ax andae, and omit several other phones.
However this misrecognition is not persistent throughout differ-
ent contexts, but is often restricted to the cases of coarticulation
phenomena like undershoot, and is not present in the phonetically
simple cases. For instance, in contextiy aa (as in “AT&T-card”)k is recognized 100 percent of the time. For future studies, it may
also be interesting to compare the results obtained to recognition
mistakes made by humans [1].

5.2. Correcting ASR-output

Similar statistics can be collected when training the Correction
Transducer to reflect the inverse transformationASR�1. Exam-
ples of probable context-sensitive corrections are:th ! "=s p
(mostly noise removal) andsh ! s=eh 
h (as in “question”). In
the latter case it can be argued that the correction replaces one le-
gitimate pronunciation by another, simply standardizing it. This
normalization effect however is also of use; for example, it sim-
plifies the downstream classification task.

To assess the effect of correction we computed the phone
accuracy of P-test recognized with ASR trained on P-train be-
fore and after the composition with the Correction TransducerF
trained on H-train.

criterion before correction correction
correction w. context w/o context

substitutions 13.8% 13.2% 13.8%
deletions 8.7% 9.0% 8.7%
insertions 6.3% 5.4% 6.3%

phone error rate 28.8% 27.6% 28.7%

Table 2:Phone error rates before and after context-sensitive and
context-independent corrections.

From Table 2 we see that context-sensitive correction by com-
position has a positive impact on the substitution and insertion
rates. The overall phone error rate drops by 1.2 percent points
(a 4% relative improvement), whereas the impact of context-
independent correction is neglectable. However, this correction
mechanism fails to compensate for deletions made by the ASR.
This may be explained by the fact that our phone recognizer be-

haves in a “cautious” manner, skipping large chunks of the audio
signal (sometimes as large as the entire utterance) unless a reliable
recognition is possible. Another explanation is that the probabili-
ties of deletions and substitutions are conditioned on three phones,
whereas the insertion probabilities only on two (see Eq. (5), (6)),
which makes the estimation less specific.

Finally, to answer the question whether we would have been
able to use the available transcriptions more directly, we trained
the ASR phonotactic model on the same HMIHY-transcriptions
that were used to train the Correction Transducer and recognized
the P-test data with it. This resulted in a phone error rate of 29.8%
which is significantly higher than the one achieved using the strat-
egy outlined in Figure 2.

6. Conclusions
We presented a method for context-sensitive evaluation of the per-
formance of a phone recognizer. Unlike simple confusion matri-
ces, our method allows us to assess recognition performance not
only in terms of phone confusion pairs but also in terms of the
immediate left and right context of the phones. We showed how
this information can be used in an error correction task to im-
prove phone recognition accuracy, a task for which the traditional
context-independent confusion matrix provides no improvement
in accuracy. We observed that the type of correction employed is
especially effective for the purposes of insertion rate reduction.
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