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Abstract. This paper proposes a number of type-system and language
extensions to natively support relational and hierarchical data within a
statically typed object-oriented setting. In our approach SQL tables and
XML documents become first class citizens that benefit from the full
range of features available in a modern programming language like C*
or Java. This allows objects, tables and documents to be constructed,
loaded, passed, transformed, updated, and queried in a unified and type-
safe manner.

1 Introduction

The most important current open problem in programming language research is
to increase programmers productivity, that is to make it easier and faster to write
correct programs [38]. The integration of data access in mainstream program-
ming languages is of particular importance — millions of programmers struggle
with this every day. Data sources and sinks are typically XML documents and
SQL tables, but they don’t merge nicely into a statically typed object-oriented
setting in which most production software is written.

This paper addresses how to integrate tables and documents into modern object-
oriented languages by providing a novel type-system and corresponding language
extensions.

1.1 The Need for a Unification

Distributed web-based applications are predominantly structured using a three-
tier model that most commonly consists of a middle tier containing the business
logic that extracts relational data from a data services tier and munches it into
hierarchical data that is displayed in the user interface tier. The middle tier is
often programmed in an object-oriented language such as Java or C*.

As a consequence, middle tier programs have to deal with relational data (SQL
tables), object graphs, and hierarchical data (HTML, XML). Unfortunately these
three different worlds are not very well integrated. As the following ADO.Net
based example shows, access to a database in this style involves sending a string
representation of a SQL query over an explicit connection via a stateful API and
then iterating over a weakly typed representation of the result set:



SqlConnection Conn = new SqlConnection(...);

SqlCommand Cmd = new SqlCommand("SELECT Name,HP FROM Pokedex",Conn) ;
Conn.0Open() ;

SqlDataReader Rdr = Cmd.ExecuteReader();

Creating HTML or XML documents is then done by emitting document frag-
ments in string form, without separating the model and presentation:

while (Rdr.Read()) {
Response.Write("<tr><td>");
Response.Write(Rdr.GetInt32(0));
Response.Write("</td><td>");
Response.Write(Rdr.GetString(1));
Response.Write("</td></tr>");

}

Communication between the different tiers using untyped strings is obviously
very brittle with lots of opportunities for errors and zero probability for static
checking. The cynical thing is that due to the poor integration, performance
suffers badly as well.

The next code fragment rewrites the same functionality using a hypothetical
language that unifies objects, tables and documents.

tr* pokemon =
select <tr>
<td>{Namel}</td><td>{HP}</td>
</tr>
from Pokedex;

Table t =

<table>
<tr><th>Name</th><th>HP</th></tr>
{pokemon}

</table>;

Response.Write(t);

In this case, strongly typed XML values are first-class citizens (i.e. the XML lit-
eral <table>...</table> has type static Table) and SQL-style select queries
are build-in. There is ample opportunity for static checking, and because the
SQL and XML type-systems are integrated into the language, the compiler can
do a better job in generating efficient code.

1.2 Growing a Language

It is easy to criticize the current lack of integration between tables, objects and
documents, but it is much harder to come up with a design that gracefully unifies



these separate worlds. No main-stream programming language has yet emerged
that realizes this vision [7].

Often language integration only deals with SQL or with XML, but usually not
with both [T226/T5IT9I2ITTI29]. Alternatively they start from a completely new
language such as XQuery, or XDuce or CDuce [6l24J44/T0]. Approaches based
on language binding using some kind of pre-compiler such as XSD.exe, Cas-
tor, or JAXB [31UT] do not achieve a real semantic integration. The impedance
mismatch between the different type-systems then leads to strange anomalies
or unnatural mappings. Another popular route to integrate XML and SQL is
by means of domain specific embedded languages [25] using functional language
such as Scheme or Haskell [35/36133134/300272004246|12] as the host. In our ex-
perience however, the embedded DSL approach does not scale very well, and it is
particularly difficult to encode the domain specific type-systems [40] and syntax
into the host language.

In his invited talk at OOPSLA98 [22], Guy Steele remarked that

... from now on, a main goal in designing a language should be to plan for
growth. The language should start small, and the language must grow
as the set of users grows.

This paper shows how to grow a modern object-oriented language (we take C*
as the host language, but the same approach will work with Java, Visual Basic,
C++, etc.) to encompass the worlds of tables and documents by adding new
types and expressions. In the remainder of this paper we will discuss:

Streams (Section [2) Streams are homogenous sequences of values of variable
length. A database table consists of zero or more tuples; in the document
world nodes can have zero or more sub-documents of the same kind, and in
the object world we often work with (lazy) streams of values.

Tuples (Section Tuples are heterogeneous sequences of values of fixed length.
As we have just noticed, a database table is a stream of tuples; in the
document world the sequence construct is used to model groups of sub-
documents that must be present in a particular order, and finally several
proposals have been made to extend Java and other object-oriented lan-
guages with tuples [43128].

Unions (Section [4]) Unions represent a choice between values of different type.
They play a very important role in semi-structured documents [8] and many
schemas use the choice construct to model alternatives. Union types also
occur naturally in the result-types of queries.

Content Classes (Section [5) Content classes are ordinary classes whose mem-
bers can be anonymous (unnamed). We use content classes to model top-level
elements and complex types in document schemas.

Queries (Section @ Finally we will extend our repertoire of accessors of our
new types to match the expressive power of XPath and SQL queries. These



accessors include implicit (homomorphic extension) and explicit (apply-to-
all) mapping over streams, filtering, transitive member access, and relational
select and join.

The growth of our experimental language is controlled by applying the following
design principles:

Denotables values should be (easily) expressible If programmers can de-
clare a variable of a certain type, it must be possible to write an expression
of that type in a convenient way.

Expressible values should be denotable If programmmers can write an ex-
pression of a certain type, it must be possible to declare a variable whose
static type precisely matches that of the expression.

No forced identity Programmers should never be forced to introduce either
nominal identity of types, or object identity of values (aliasing).

Orthogonality There should be no special cases that discriminate between
tables, documents and objects. Operations should work uniformly across the
three worlds.

Flexibility The new types should have rich subtyping relationships that ease
in writing type correct and evolvable software [9].

2 Streams

Streams are generically typed refinements of iterators, the pair of twin interfaces
IEnumerable and IEnumerator in Cﬁ7 or the corresponding Iterator interface
in Java. Iterators encapsulate the logic for enumerating elements of collections.

The foreach loop of C*f makes it very convenient to consume values of type
IEnumerable (future versions of Java will have a similar construct). For instance,
since type string implements the IEnumerable interface, we can iterate over
all the characters in a string using a simple foreach loop:

foreach(char ¢ in s) Console.WriteLine(c);

The foreach loop in C* is syntactic sugar for the following (simplified) while
loop that calls into the IEnumerable and IEnumerator interfaces:

IEnumerator e = ((IEnumerable)s).GetEnumerator();
while (e.MoveNext()) { char ¢ = (char)e.Current;
Console.WriteLine(c);

}

While consuming an iterator is easy, it is much more difficult to write a generator
that implements the IEnumerable (or the underlying IEnumerator) interface.
In order to implement the IEnumerable interface on type string for instance,



we have to manually create a state-machine that iterates over the individual
characters in the string via MoveNext and exposes the current character via the
Current property:

class string: IEnumerable {
IEnumerator GetEnumerator() { return new Chars(this); }

private class Chars : IEnumerator {
private string s; private int i = O; private char c;

Chars(string s) { this.s = s; }

public bool MoveNext() {
if (i < s.Length) {
c = s[i++]; return true;
} else {
return false;
}
}

public char Current { get { return c; } }
}
}

Note that this implementation does not correctly handle the extreme cases of
calling Current before the first call to GetNext and calling it after GetNext has
returned false.

In C* and Java iterators are denotable, but not easily expressible. Moreover, the
type IEnumerable is not very accurate since it does not convey the element type
of the iterator. In other words, iterators of a particular type are expressible, but
not precisely denotable.

We remedy both problems by introducing a new type of streams and a new
statement to generate streams:

— The type T'* denotes homogenous streams of arbitrary length with elements
of type T. Type T* is a subtype of both IEnumerable and IEnumerator.

— Stream generators are like ordinary methods except that they may yield
multiple values instead of returning a single time. The yield e statement
returns the value of expression e into the Current property of its corre-
sponding stream and suspends execution until MoveNext is called at which
time execution resumes. Upon termination of the iterator MoveNext returns
false.

Using streams and generators it becomes much simpler to enumerate all the
characters in a string. The helper method char* explode(string s) generates



the stream of the individual characters of string s. The GetEnumerator method
of class string then simply explodes itself:

class string: IEnumerable {
public IEnumerator GetEnumerator() { return this.explode(); }

private char* explode() {
int e = this.Length; for(int i = 0; i < e; i++) yield s[i];
};
}

In this case maintaining the state is implicit in the control-flow of the explode
function and in particular the borderline cases are handled correctly by defini-
tion.

Streams and generators are not new concepts. They are supported by a wide
range of languages in various forms [2II5I39I2882137], and in particular future
versions of C* will also support iterators. Our approach is a little different in
that:

We classify streams into a hierarchy of streams of different length (!, 7, +,
*, see below).

We automatically flatten streams of streams (see Section [2.2]).
— Our streams are covariant (see below).
— We identify the value null with the empty stream (see Section |2.1)).

To keep type-checking tractable, we restrict ourselves to the following four stream
types: T* denotes possibly empty and unbounded streams with elements of type
T, T+ denotes non-empty possibly unbounded streams with elements of type T,
T? denotes streams of at most one element of type T, and T'! denotes streams
with exactly one element of type T. We will use T'? to represent optional values,
where the nonexistence is represented by the value null and analogously we use
T'! to represent non-null values.

The different stream types form a natural subtype hierarchy, where subtyping
corresponds to stream inclusion:

T <. T+
T+ <. Tx*
T? <. Tx*

For instance the subtype relation T'! <: T+ reflects the fact that a stream of
exactly one element is also a stream of at least one element.



We embed non-stream types 7" into the hierarchy by placing them between non-
null values T'! and possibly null values T'7:

T <. T
T <. T?

This inclusion allows programmers to precisely state their intentions with respect
to null values: T'! means null is not allowed, 7?7 means null is expected, and
T means null is exceptional.

The next two rules reflect the facts that null (we use @7 for the null-type) is a
possible value of any reference type, but that value types are never null:

P7? <: T, T isareference type
T <: T', T isavalue type

Like arrays, streams are covariant. This means that subtyping on the element
types is lifted to subtyping on streams. The special case for the null type says
that possibly-null values can be null:

S < T
Sx <: Tx
07 <. T?

Let Button be a subtype of Control, then the first rule says that Button* is
a subtype of a stream of controls Control*. The second rule says for instance
that null can be assigned to a variable of type int?.

2.1 Nullness

The type T'! denotes streams with exactly one element, and since we identify
null with the empty stream, this implies that values of type T'! can never be
null. Dually, the type T? denotes streams with either zero (that is null) or
exactly one element.

Values of type T'? model the explicit notion of nullability as found in SQL by
providing a standard implementation of the null design pattern [23]; when a
receiver of type T? is null, accessing any of its members returns null instead
of throwing an exception as in C* or Java:

string? t = null;
int? n = t.Length; // n = null



In Objective-C [3] this is the standard behavior for any receiver object that can
be null. In section we show how member-access is lifted over streams in
general.

Being able to express that a value cannot be null via the type system allows
static checking for null pointers (see [I6JI8] for more examples). This turns
many (potentially unhandled) dynamic errors into compile-time errors.

One of the several methods in the .NET base class library that throws an
ArgumentNullException when its argument is null is the IPAddress.Parse
function. Consequently, the implementation of IPAddress.Parse needs an ex-
plicit null check:

public static IPAddress Parse(string ipString) {
if (ipString == null)
throw new ArgumentNullException("ipString");

}

Dually, clients of IPAddress.Parse must be prepared to catch and deal with a
possible ArgumentNullException. Nothing of this is apparent in the type of the
Parse method in C*. In Java at least the signature of Parse would show that it
possibly throws an exception.

It would be much cleaner if the type of IPAddress.Parse indicated that it
expects its string argument to be non-null:

public static IPAddress Parse(string! a);

Now, the type-checker statically rejects any attempt to pass a string that might
be null to IPAddress.Parse.

The proof obligation for returning a non-null stream 7! or T+ is similar to
proving the definite assignment rule in C* or Java. For statement blocks that
return or yield non-empty streams, each non-exceptional execution path should
return or yield at least one non-null value. The type-checker will therefore accept
the first definition of FromTo but will reject the second:

int+ FromTo(int s, int d, int e) {
yield s; while(s <= e) yield s += d;
}

// Type error

int+ FromTo(int s, int d, int e) {
while(s <= e){ yield s; s +=d; }

}

Non-empty streams T+ are implicitly convertible to possibly empty streams T'*;
we can forget the fact that a stream has at least one element. It is in general



not safe to downcast from a possibly empty stream 7T* to a non-empty stream
T+. At first sight we might think that testing if the stream contains at least
one non-null value would suffice. Alas this is not true. By cunningly using side-
effects, the generator function OnlyOnce() only yields 4711 the first time it is
evaluated and every subsequent evaluation produces an empty stream:

bool Done = false;
int* OnlyOnce() {
if (!Done){ Done = true; yield 4711; }

};
int+ xs = (int+)0nlyOnce(); // 1. cast succeeds
int+ xs = (int+)OnlyOnce(); // 2. cast fails

To prevent such loopholes, down casting from T* to T+ will only succeed if the
dynamic type of the underlying stream is T'+.

2.2 Flattening

We have to be very careful to ensure that every value in a (nested) stream is
yielded at most once, otherwise we might end up with a quadratic instead of
a linear number of yields when generating certain (recursive) streams [45)]. For
instance this happens if a nested stream like [[...[[[],0],1],...1,n-1] gets
recursively flattened into the non-nested stream [0,1,...,n-1] as in the next
example:

// Iota(n) generates the stream [0,1,..,n-1]
int* Iota(int n){
if (n>0){
foreach(int i in Tota(--n)) yield i;
yield n;
}
}

Note that we are forced to flatten the stream produced by the recursive invoca-
tion of ITota(n) to generate a stream of the required type int*. Apart from these
typing issues, there is absolutely no reason that the actual instance of a nested
stream should be flattened since we can easily iterate over the leaf elements (the
yield) of a nested stream.

So all that is required to type-check generators of nested streams is to flatten the
type of a stream, which again does not imply that the underlying implementation
of streams gets flattened as well. Table 2.2 gives the general flattening rules for
nested streams T% of all possible combinations of stream constructors: The rule
Tx+ = T+, for instance, reflects the fact that a non-empty stream of possibly
empty stream flattens into a non-empty stream, while T+* = T* reflects that a
possibly empty stream of non-empty streams flattens to a possibly empty stream.
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Fig. 1. Flattening rules for streams

Using the flattening rules, we can now write a linear time version of the Iota
function that returns a nested stream of streams of type intx*:

// Iota(n) generates the stream [[...[[[],0],1],...]1,n-1]
int* Iota(int n){
if (n>0){
yield Iota(--n); yield n;
}
}

3 Tuples

Tuples are heterogeneous sequences of optionally labelled values of fixed length.
Another way of viewing tuples is as anonymous structs whose members are
ordered, in particular tuples have no object identity.

The function DivMod returns the quotient and remainder of its arguments as a
tuple that contains two named integer fields sequence{int Div, Mod;}:

sequence{int Div, Mod;} DivMod(int x, int y) {
return new(Div = x/y, Mod = x%y);

}

The members of a tuple do not need to be labelled, for example, we can create
a tuple consisting of a labelled Button and an unlabelled string as follows:

sequence{Button b; string;} x = new(b=new Button(), "OK");
An unlabelled member of a nominal type is a shorthand for the same member

implicitly labelled with its type.

Tuples can be picked apart constant indexers, DivMod (47,11) [0] for instance
selects 47, or by named member access, provided of course that tuple has a
member m, for instance x.b.



3.1 Subtyping

Like streams, tuples are subject to a rich subtype hierarchy. The first subtype
relation for tuples formalizes the fact that labels are optional and that we can
forget them by upcasting:

sequence{...; T'm;...} <: sequence{...; T; ...}

Using this rule we see that we can assign DivMod (47,11) to a an unlabelled pair
of integers of type sequence{int; int;}.

We can forget the ordering, nesting, and labels of a tuple by upcasting a tuple
to a stream. The special cases give tighter types for the empty tuple (which gets
converted to the empty stream null) and singleton tuple (which gets converted
to its underlying value):

sequence{} <: 07
sequence{T} <: T
sequence{...; T; ...} <: choice{...; T ;...}*
Using the last conversion, we can enumerate the values of any tuple as a stream,

i.e. the tuple new(4711, true, ’z’, 3.14) can be converted into the stream
[4711, true, ’z’, 3.14] of type choice{int; bool; char; float}.

3.2 Non-Nullness for tuples

Even though tuples have no object identity, the fact that they are convertible to
streams makes them subtly different from nominal value types.

Suppose that we would add the rule that tuples are not null, i.e., sequence{ ...}
<:sequence{...}!. Then by applying this rule in combination with the single-
ton rule sequence{T} <: T we could assign the value null to a variable of
non-null type Button!:

// Type error

sequence{Button;} a = new(null);
sequence{Button;}! b = a;
Button! c =b; // ¢ = null

To maintain type-soundness soundness we have a weaker rule that states that
a tuple is non-null if it has at least one member that is non-null. This guaran-
tees that when the tuple is converted to a stream the resulting stream has the
right cardinality. For singleton sequences the conversion also holds in the reverse
direction:

sequence{...; T! m; ...} <: sequence{...; Tm; ...}!
sequence{T m; }! <: sequence{T! m;}



By applying this rule in combination with the fact that int <: int!, we can
show that the sequence of integers new(1) is convertible into a non-empty
stream of type sequence{int ; } <: sequence{int! ; } <: sequence{int; }!
<:int*x! <:int+.

3.3 Streams+Tuples = Tables

Relational data is stored in tables, which are sets of tuples. Sets can be rep-
resented by streams, thus streams and tuples together can be used to model
relational data.

The table below contains some basic facts about Pokemon characters such as
their name, their strength, their kind, and the Pokemon from which they evolved
(see http://www.pokemon.com/pokedex/ for more details about these interest-
ing creatures).

’ Name \HP\ Kind\ Evolved ‘
Meowth | 50 |[Normal
Rapidash | 70 | Fire Ponyta
Charmelon| 80 | Fire |Charmander
Zubat 40 | Plant
Poliwag | 40 | Water
Weepinbell| 70 | Plant | Bellsprout
Ponyta | 40 | Fire

Each row in this table is a value of type Pokemon and the table itself is modelled
as a variable Pokedex of type Pokemon*. The keyword type identifies the name
on the left with the type expression on the right. It is just an abbreviation
mechanism.

enum Kind {Water, Fire, Plant, Normal, Rock}

type Pokemon = sequencef{
string Name; int HP; Kind Kind; string? Evolved;

}
Pokemon* Pokedex;
The fact that basic Pokemon are not evolutions of other Pokemon shows up in

that the Evolved column has type string?.

Representing tables is necessary for the integration of relational data, but it is
not sufficient: we also have to provide operations that work on tables. We will
introduce such query expressions in Section



4 Unions

Union types often appear in content classes (see section below). The type
Address uses a union type choice{ string Street; int POBox; } to allow
either a member Street of type string or a member POBox of type int as part
of an Address:

class Address {
sequence{
choice{ string Street; int POBox; };
string City; string? State; int Zip;
string Country;
};
}

The second situation in which union types are used is in the result types of
generalized member access (see Section @ For example, when variable p has
type Pokemon, the expression p.* returns a stream containing all the members
of a Pokemon instance which has type choice{string; int; Kind; string?}x*.
Using the subtype rules for choice and streams given below, we can show that
this is isomorphic to choice{string; int; Kind;}*.

We can inject any type T into a union containing that type; singleton labelled
tuples are injected into labelled unions:

T <: choice{T; ...}
sequence{T m} <: choice{T m; ...}

Except for boxing, choice{...} <: object, there is no implicit elimination rule
for union types. In other words, choice{T ; S} is an upperbound for S and T,
but not a least upperbound. The reason is that we do not consider Control and
choice{Button; Control;} to be isomorphic, which would be the case with a
least upperbound interpretation.

Choice types are idempotent (duplicates are removed), and associative and com-
mutative (nesting and order of members are ignored):

choice{...;F; F; ...} = choice{ ...; F; ...}
choice{...; choice{...}; ...} = choice{...; ...; ...}
choice{...; F'; G; ...} = choice{...; G; F; ...}



Streams distribute over unions. Non-nullness and possibly nullness distribute in
both ways, and any inner streams gets absorbed by an outer + or *:

choice{...; T;...}!' = choice{...;T! ;... }!
choice{...; T;...}? = choice{...;T7 ;...}7
choice{...; T"; ...}+ = choice{...; T;...}+
choice{...;T%; ...}* = choice{...; T;...}*

where ¢ is any stream functor.

The flattening and distribution rules allow us to normalize streams of choices:
inner stream functors can either be eliminated completely or can be moved out
of the choice.

5 Content Classes, XSDs and XML

Now that we have introduced streams, tuples, and unions, our type system is
rich enough to model a large part of the XSD schema language [I7]; our aim is
to cover as much of the essence of XSD [41] as possible while avoiding most of
its complexity.

The correspondence between XSD particles such as <sequence> and <choice>
with local element declarations and the type constructors sequence and choice
with (labelled) fields should be intuitively clear. Likewise, the relationship of
XSD particles with occurrence constraints to streams is unmistakable. For T
the attribute pair (minOccurs, maxOccurs) is (0, unbounded), for T+ it is
(1, unbounded), for T'7 it is (0, 1), and for T'! it is (1,1).

The content class Address that we defined in Section [4] corresponds to the fol-
lowing XSD schema Address:

<element name="Address">
<complexType>
<sequence>
<choice>
<element name="Street" type="string">
<element name="P0OBox" type="integer">
</choice>
<element name="City" type="string">
<element name="State" type="string" minOccurs="0"/>
<element name="Zip" type="integer"/>
<element name="Country" type="string"/>
</sequence>
</complexType>
</element>



The only difference between a content class and a normal C* class is the fact that
the members of content class can be unlabelled (just like the members of tuples
and unions). As a consequence, unlabelled content can only ever be accessed via
its individually named children, which allows the compiler to choose the most
efficient data layout.

The next example schema defines two top level elements Author and Book where
Book elements can have zero or more Author members:

<element name="Author">
<complexType>
<sequence>
<element name="Name" type="string"/>
</sequence>
</complexType>
</element>

<element name="Book">
<complexType>
<sequence>
<element name="Title" type="string"/>
<element ref="Author" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>
</element>

In this case, the local element reference is modelled by an unlabelled field and
the schema is mapped onto the following two content type declarations:

class Author { string Name; }
class Book { sequence{ string Title; Author*; } }

All groups such as the one used in the following schema for the complex type
Name

<complexType name="Name">
<all>
<element name="First" type="string"/>
<element name="Last" type="string"/>
</all>
</complexType>

are mapped to ordinary fields of the containing type, i.e. without a sequence:
class Name { string First; string Last; }

As these examples show, both top-level element declarations and named com-
plex type declarations are mapped to top-level types. This allows us to unify
derivation of complex types and substitution groups of elements using standard
inheritance.



5.1 XML Literals

XML literals are an intuitive way to construct instances of content classes by
making XML serialization into a first class language construct. For example, we
can define an Address instance by directly assigning an XML document that
confirms to the schema for Address as follows:

Address Microsoft =
<Address>
<Street>One Microsoft Way</Street>
<City>Redmond</City><Zip>98052</Zip>
<Country>USA</Country>
</Address>;

XML literals can also have placeholders to describe dynamic content (similar
to anti-quoting as found in Lisp and other languages). We use the XQuery [6]
convention whereby an arbitrary expression or statement block can be embedded
inside an element by escaping it with curly braces:

Author NewAuthor(string name) {
return <Author>{name.ToUpper ()}</Author>;
}

Embedded expressions must return or yield values of the required type (in this
case string). Validation of XML literals with placeholders is non-trivial and is
the subject of a forthcoming paper.

XML literals are just object constructors, there is nothing special about content
classes. Hence we can write XML literals to construct values of any type, for
example, the next assignment creates an instance of the standard Button class
and sets its Text field to the string "Click Me":

Button b = <Button>
<Text>Click Me</Text>
</Button>;

6 Generalized Member Access

In the previous sections we have concentrated on the type-system extensions to
our hypothetical programming language. This section extends our repertoire of
expressions to transform and query values of these new types.

6.1 Map, Filter, Fold

To make the creation of streams as concise as possible, we allow statement blocks
(anonymous method bodies) as expressions. In the example below we assign



the (lazy) infinite stream of positive integers to the variable nats by using an
anonymous method body as an expression:

// block expression that yields the stream [0,1,2,...]
int* nats = { int i=0; while(true) yield i++; I};

Our stream constructors (*,+,7?,!) are functors, and hence we implicitely lift
member access on the element type of a stream over the stream itself. For in-
stance, to convert each individual string in a stream Ss of strings to uppercase,
we can simple write ss.ToUpper():

string* Ss
string* SS

{ yield "Hello"; yield "World!"; 1};
Ss.ToUpper () ;

If both the stream and its elements have the same member no lifting takes
place, and member access on the whole stream is the best match. For exam-
ple, since GetType() is defined for both string and string+, the expression
Ss.GetType () will return the dynamic type of the stream Ss.

If we nevertheless want to lift member access over a stream, we can use an
apply-to-all block. For example, to get all the dynamic types of the elements of
a stream we write Ss.{ return it.GetType(); }. The implicit argument it
inside the apply-to-all block plays a similar role as the implicit argument this
for methods and refers successively to each element of the stream nats.

As the next example shows, the apply-to-all block itself can yield a stream, in
which case the resulting nested stream is flattened according to the rules of

table 2.2}

// self-counting numbers: 1, 2,2, 3,3,3, 4,4,4,4,
int* rs = nats.{ for(i=1; i<it; i++) yield it; };

If an apply-to-all block returns void, no new stream is constructed and the
block is eagerly applied to all elements of the stream. For example to print all
the elements of a stream we can just map Console.WriteLine over each element:

nats.{ Console.WriteLine(it); };

Apply-to-all blocks can be stateful, so we can use them to do reductions or folds.
For example, we can sum all integers in an integer stream xs by adding each
element of the stream to a local variable s:

int sum(int* xs){
int s = 0;
xs.{ s += it; return; 7};
return s;

3



Note that we need the return statement inside the block to ensure that the
return type of the block is void such that the iteration is performed eagerly.

Often we want to filter a stream according to some predicate on the elements
of the stream. For example, to construct a stream with only odd numbers, we
filter out all even numbers from the stream nats of natural numbers using the
filter expression

int* oddsl = nats[it%2 == 1];

For each element in the stream to be filtered, the predicate is evaluated with
that element as it. Only if the predicate is true the element becomes part of the
new stream.

On closer inspection, we realize that filters are just abbreviations of an apply-
to-all-block:

int* odds2 = nats.{if (it%2 == 1) return it;};

Hence odds1 and odds2 denote streams that both have the same elements in
the same order.

Lifting over non-null types is different from lifting over the other stream types,
since the fact that the receiver object is not null does not imply that its members
are not null either. For example when we create a new non-null Button instance
using the default constructor, it’s Parent field will definitively be null:

Button! b <Button/>;
Control p = b.Parent; // Parent is null

Hence the return type of lifting over a non-null type is not guaranteed to return
a non-null type.

The table show how lifting of member-access interacts with streams types.
Let 77 be a stream type, and m of type S* be a member of the element type T
that we want to lift over the stream . The result type of lifting m is then given
by s'®/ (here _ denotes a non stream type):

L@ [ 3=[]7]+]¥
7|7 k| *

i 7%

~

* | +|~[=]0
*| + |-
* |+~ =
IR
x|+ % | %
* [ * [ %[ %

Fig. 2. Lifting over streams



Member access is not only lifted over streams, but over all structural types. For
example the expression xs.x will return the stream true, 1, 2 of union type
choice{bool; int;}+ when xs is defined as:

sequence{ bool x; sequence{ int x; }*; } xs =
new( x=true, { yield new(x=1); yield new(x=2); 1} );

Lifting over union types introduces a possibility of nullness for members that
are not in all of the alternatives.

Suppose x has type choice{ int; string; }. Since only string has a Length
member, the type of x.Length is int? which reflects the fact that in case the
dynamic type of x is int, the result of x.Length will be null. Since int and
string both have a member GetType (), the return type of x.GetType () is Type:

choice{ int; string; } x = 4711;
int? n = x.Length; // null
Type t = x.GetType(); // System.Int32

In case the alternatives of a union have a member of different type in common,
we require a downcast before doing the member access.

6.2 Wildcard, Transitive and Type-based Member-access

The only query form available in object-oriented languages is member access.
But that is rather restrictive. To allow for more flexible forms of member access,
we provide wildcard, transitive and type-based access. These forms are similar to
the concepts of nametest, abbreviated relative location paths and name filters
in XPath [14]. However we adapted them to work uniformly on object graphs.

Wildcards allow to access all accessible members of a type without having to
know their names. Suppose that we want to have all fields of an Address, then
we can write:

choice{string; int;}* addressfields = Microsoft.x*;

The wild-card expression returns the content of all accessable fields and proper-
ties of the variable Microsoft in their declaration order. In this case the stream
of strings "One Microsoft Way", "Redmond", 98052, "USA".

Transitive member-access, written as e...m, returns all accessible members m
that are transitively reachable from e in depth-first order. The following decla-
ration of authors (lazily) returns a stream containing all Author of all Books in
the source stream books:

Book F = <Book>
<Title>Faust</Title><Author>Goethe</Author>
</Book>;



Book K = <Book>
<Title>Max Havelaar</Title><Author>Multatuli</Author>
</Book>;

Book* books = { yield F; yield K; };
string* authors = books...Author;

Transitive member access allows to abstract from the concrete representation of
a document; as long as the mentioned member is reachable and accessible, its
values are returned.

Looking for just a field name is often not sufficient, especially for transitive
queries where there might be several reachable members with the same name
but of different type. In that case we can add an additional type-test to restrict
the matching members. A type-test on T selects only those members whose static
type is a subtype of T'. For instance, if we are only interested in Microsoft’s POBox
number, and Zip code, we can write the transitive query Microsoft...int: :*.

Note that type based access is also useful for unnamed members, since even if
they have no name, they do have a static type.

6.3 Select and Join

The previous sections presented our solutions to querying documents. However
for accessing relational data, which we have modelled as streams of tuples, sim-
pler SQL queries are sufficient. Here we only show the integration of the SQL
select-from-where clause, and defer the discussion of more advanced features
such as data manipulation and transactions to a future paper.

The fundamental operations of relational algebra are selection, projection, union,
difference and join. Selection is similar to filter and transforms one stream of
tuples into another stream of tuples. Here are two variations of selection:

Pokemon* normalPokemonsl

select *

from Pokedex

where Kind == Normal;
Pokemon* normalPokemons2 =

select it

from (Pokemon it in Pokedex)

where it.Kind == Normal;

The first example uses the familiar SQL syntax. Its meaning is provided by the
second form, which uses the explicit iterator variable it as we have seen before.

We use similar sugar to introduce names for projection. Projection produces a
stream of tuples by selecting only certain columns in its input stream:



sequence{string Name; Kind Kind;}*
pokemonAbstractl =
select Name, Kind
from Pokedex;
sequence{string Name; Kind Kind;2}*
pokemonAbstract2 =
select new(Name= it.Name, Kind=it.Kind)
from (Pokemon it in Pokedex) ;

Again, the first declaration shows the traditional SQL syntax, where the second
shows the unsugared representation, which explicitly builds the resulting tuple
by projecting the required members.

In practice, the result types of SQL queries can be quite involved and hence it
becomes painful for programmers to explicitly specify types. Since the compiler
already knows the types of sub-expressions, the result types of queries can be
inferred automatically. Providing type declarations for method local variables is
not necessary, and we can simply write:

pokemonAbstract3 = select Name, Kind from Pokedex;

without having to declare the type of pokemonAbstract3.

Union and difference present no difficulty in our framework. They can easily be
handled with existing operations on streams. Union concatenates two streams
into a single stream. Difference takes two streams, and returns a new stream
that contains all values that appear in the first but not in the second stream.

The real power of select-from-where comes from join. Join takes two input
streams and creates a third stream whose values are composed by combining
members from the two input streams. For example, here is an expression that
selects pairs of Pokemeons which have evolved from each other:

select p.Name, q.Name
from p in Pokedex, q in Pokedex
where p.Evolved == q

Again, we would like to stress the fact that everything fits together. The select
expression works on arbitrary streams, whether in memory or on the hard disk;
streams simply virtualize data access. Strong typing makes data access secure.
But there is no burden for the programmer since the result types of queries are
inferred.

7 Conclusion

The language extensions proposed in this paper support both the SQL [4] and
the XML schema type system [41] to a large degree, but we have not dealt



with all of the SQL features such as (unique) keys, and the more esoteric XSD
features such as redefine. Similarly, we already covered much of the expressive
power of XPath [14], XQuery [6] and XSLT[I3], but we do not support the full
set of XPath axis. We are able to deal smoothly with namespaces, attributes,
blocking, and facets however. Currently we are investigating whether and which
additional features need to be added to our language.

Summarizing, we have shown that it is possible to have both SQL tables and
XML documents as first order citizen in an object-oriented language. Only a
bridge between the type worlds is needed. Building the bridge is mainly an
engineering task. But once it is available, it offers the best of three worlds
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