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Abstract

Understanding the performance of distributed systems
requires correlation of thousands of interactions be-
tween numerous components — a task best left to a com-
puter. Today’s systems provide voluminous traces from
each component but do not synthesise the data into con-
cise models of system performance.

We argue that online performance modelling should be
a ubiquitous operating system service and outline sev-
eral uses including performance debugging, capacity
planning, system tuning and anomaly detection. We de-
scribe the Magpie modelling service which collates de-
tailed traces from multiple machines in an e-commerce
site, extracts request-specific audit trails, and constructs
probabilistic models of request behaviour. A feasibil-
ity study evaluates the approach using an offline demon-
strator. Results show that the approach is promising, but
that there are many challenges to building a truly ubig-
uitious, online modelling infrastructure.

1 Introduction

Computing today is critically dependent on distributed
infrastructure. E-mail, file access, and web browsing
require the interaction of many machines and software
modules. When end-users of such systems experience
poor performance it can be extremely difficult to find
the cause. Worse, problems are often intermittent or af-
fect only a small subset of users and transactions — the
‘it works for me’ syndrome.

Aggregate statistics are insufficient to diagnose such
problems: the system as a whole might perform quite
well, yet individual users see poor performance. Ac-
curate diagnosis requires a detailed audit trail of each
request and a model of normal request behaviour. Com-
paring observed behaviour against the model allows
identification of anomalous requests and malfunctioning
system components.

We believe that providing such models should be a basic
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The diagram shows how requests move through different soft-
ware components across multiple machines in a distributed sys-
tem. Magpie synthesizes event traces from each machine into
models that can be queried programatically.

Figure 1. Magpie architecture.

operating system service. Performance traces should be
routinely collected by all machines at all times and used
to generate system performance models which are then
made available for online programmatic query. To this
end, we are building Magpie, an online modelling in-
frastructure. Magpie is based on two key design princi-
ples. Black-box instrumentation requires no source code
modification to the measured system. End-to-end trac-
ing tracks not just aggregate statistics but each individual
request’s path through the system.

Fine-grained, low-overhead tracing already exists for
Linux [27] and Microsoft’s .Net Server [17]; the chal-
lenge is to efficiently process this wealth of tracing in-
formation for improved system reliability, manageabil-
ity and performance. Our goal is a system that collects
fine-grained traces from all software components; com-
bines these traces across multiple machines; attributes
trace events and resource usage to the initiating request;
uses machine learning to build a probabilistic model
of request behaviour; and compares individual requests
against this model to detect anomalies. Figure 1 shows
our envisioned high-level design.

In Sections 2 and 3 we describe the many potential uses
of online monitoring and modelling. Section 4 describes
the current Magpie prototype, which does online mon-
itoring but offline modelling. Sections 5 and 6 briefly
describe related work and summarize our position.



2 Scenario: performance debugging

Joe Bloggs logs into his favourite online bookstore,
monongahela.com, to buy ‘The Art of Surfing” in prepa-
ration for an upcoming conference. Frustratingly, he
cannot add this book to his shopping cart, though he
can access both the book details and his shopping cart.
His complaint to customer support is eventually picked
up by Sysadmin Sue. However, Sue is perfectly able to
order “The Art of Surfing” from her machine, and finds
nothing suspicious in the system’s throughput or avail-
ability statistics: she can neither replicate the bug nor
identify the faulty component.

Consider the same website augmented with the Magpie
online performance modelling infrastructure. Magpie
maintains detailed logs of resource usage and combines
them in real time to provide per-request audit trails. It
knows the resource consumption of each request in each
of several stages — parsing, generation of dynamic con-
tent, and database access — and can determine whether
and where Joe’s request is out of bounds with respect to
the model of a correctly behaving request.

Using Magpie’s modelling and visualization tools, Sue
observes a cluster of similar requests which would not
normally be present in the workload model. On closer
examination, she sees that these requests spend a sus-
picious amount of time accessing the ‘Book Prices’ ta-
ble, causing a time-out in the front-end server. This is
the problem which is affecting Joe and the culprit is a
misconfigured SQL Server. Sue could not replicate the
bug because her requests were redirected by an IP ad-
dress based load balancer to a different, correctly con-
figured replica. Within minutes the offending machine is
reconfigured and restarted, and Joe can order his book
in good time for the conference.

This is just one performance debugging scenario, but
there are many others. File access, browsing and e-mail
in an Intranet may rely on Active Directory, authenti-
cation and DNS servers: slow response times could be
caused by any combination of these components. Di-
agnosing such problems today requires expert manual
intervention using tools such as top, traceroute and
tcpdump.

3 Applications

Pervasive, online, end-to-end modelling has many uses
apart from distributed performance debugging; here we
list some of the most exciting ones. These applications
are research goals rather than accomplished facts. Sec-

tion 4 describes our first step towards these goals in the
form of our offline modelling prototype.

Capacity planning. Performance prediction tools such
as Indy [11] require workload models that include a
detailed breakdown of resource consumption for each
transaction type. Manual creation of such models is time
consuming and difficult; Magpie’s clustering algorithm
(Section 4) automatically creates workload models from
live system traces.

Tracking workload level shifts. Workloads can change
qualitatively due to subtle changes in user behaviour
or client software. For example, a new web interface
might provide substring matching in addition to key-
word search. To reconfigure the system appropriately,
we must distinguish level shifts from the usual fluctua-
tions in workload. Magpie could do so by comparing
models of current and past workloads. This might also
detect some types of denial-of-service attacks.

Detecting component failure. Failure of software or
hardware components can degrade end-to-end perfor-
mance in non-obvious ways. For example, a failed disk
in a RAID array will slow down reads that miss in the
buffer cache. By tracking each request through each
component, Magpie can pinpoint suspiciously behaving
components.

Comparison-based diagnosis. Workload models could
be compared across site replicas to diagnose perfor-
mance discrepancies.

‘Bayesian Watchdogs'. Given a probabilistic model of
normal request behaviour, we can maintain an estimate
of the likelihood of any request as it moves through the
system. Requests deemed unlikely can then be escorted
into a safe sandboxed area.

Monitoring SLAs. The emerging Web Services stan-
dards [26] allow multiple sites to cooperate in servicing
asingle request. For example, an e-commerce site might
access third-party services for authentication, payment,
and shipping. Magpie performance models could be
compared with service level agreements to check com-
pliance. However, this does raise issues of trust and pri-
vacy of sensitive performance data.

Kernel performance debugging. Response times on
a single machine are governed by complex interactions
between hardware, device drivers, the I/0O manager, the
memory system and inter-process communication [14].
Event Tracing for Windows already traces all these OS
components, enabling request tracking at this fine gran-
ularity.

End-to-end latency tuning. Scalable self-tuning sys-
tems such as SEDA [25] optimise individual compo-
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In a typical e-commerce site the majority of HTTP Requests are
for static content, but a significant fraction require execution of
code in the .Net runtime, which might issue SQL queries to a
database server machine.

Figure 2. A simple e-commerce site.
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Instrumentation points for the web server and database server
in our test e-commerce site. Some components such as the
http.sys kernel module and the 11S process generate events for
request arrival, parsing, etc. Additional instrumentation in-
serted by Magpie (shown in gray) also generates events; all
these events are logged by the Event Tracing for Windows sub-
system.

Figure 3. Instrumentation points.

nents for throughput, with potentially deleterious effects
on end-to-end latency. For example, they ignore concur-
rency within a single request, which has little effect on
throughput. However, exploiting intra-request concur-
rency can reduce latency.

4 Feasbility study

To evaluate the feasibility of our approach, we need
to answer the following three questions: Are the over-
heads of tracing acceptable? Is the analysis of log data
tractable? Are the resulting models useful?

To this end, we have constructed an offline Magpie
demonstrator, which traces in-kernel activity, RPCs, sys-
tem calls, and network communication, using Event
Tracing for Windows [17], the .Net Profiling API [18],
Detours [12] and tcpdump respectively. We then ran
an unmodified e-commerce application (Duwamish7) on
the two-machine configuration depicted in Figure 2, and
exercised it using a workload based on TPC-W [24].
Figure 3 shows the components and instrumentation

points for this system.

Each instrumentation point generates a named event,
timestamped with the local cycle counter. For exam-
ple, we have events for context switches and 1/0 opera-
tions as well as entry into and exit from selected proce-
dures. Offline processing assembles logs from multiple
machines, associates events with requests, and computes
the resource usage of each request between successive
events. Figure 4 shows an automatically generated visu-
alization of one such request audit trail.

To stitch together a request’s control flow across multi-
ple machines, we use the logged network send and re-
ceive events. Similarly, we could track requests across
multiple thread pools on the web server, by instrument-
ing the thread synchronization primitives. Our current
prototype does not yet track thread synchronization: in-
stead, we track a request across thread pools by adding
a unique ID to the request header.

To estimate the worst-case overhead of logging, we ran
a simple stress benchmark on our test site, and traced
all system activity on both machines. This generated
150k events/min, resulting in 10 MB/min of log data.
This large volume is mostly caused by inefficient ASCII
logging of system calls, and could easily be reduced. On
a simple microbenchmark, throughput was reduced by
18%, again with all trace points active.

Behavioural clustering

Our initial driving application was workload generation
for the Indy performance prediction toolkit. This re-
quires specification of a small number of representative
transaction types together with their relative frequen-
cies. Typically, these transaction types are categorized
by their URL, and measured using microbenchmarks.
However, URLs are not always a good indicator of re-
quest behaviour: the same URL often takes different
paths through the system due to differences in session
state or error conditions.

Instead, Magpie categorizes requests by their observed
behaviour under realistic workloads. It merges logs and
deterministically serializes each request’s events to con-
struct an event string, annotated with resource usage
information. We then cluster the event strings accord-
ing to the Levenshtein String Edit Distance [21] aug-
mented with the normalized Euclidean distance between
the resource usage vectors. Behavioural clustering gives
us substantially better clustering accuracy than a URL-
based approach, in terms of the difference between be-
haviour of the representative and those transactions it
represents, as shown in Figure 5.
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Figure 4. Request audit trail.
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Figure 5. Magpie vs. URL-based clusters.

Our unoptimized Cf implementation takes just under 2
seconds to extract 8 clusters from 5 minutes of trace data
(1800 requests) on a 2GHz Intel Pentium 4. This gives
us confidence that an online version of Magpie mod-
elling will have low overheads.

Inferring higher level behaviour

Behavioural clustering alone is sufficient for realistic
workload generation, and additionally enables some as-
pects of the performance debugging scenario of Sec-
tion 2. By looking for outliers — requests that are not

close to any existing clusters — we can identify anoma-
lous requests. However, this does not tell us the cause of
the anomaly: the particular event or event sequence that
makes the request suspicious.

To identify specific events that are out of place, we must
model the process that generates the event sequences. A
natural way to model such a process is as a probabilistic
state machine: each transition between states produces
an event, and has an associated probability. Given such a
model and an anomalous request, we can identify events
or event sequences with suspiciously low probability. In
fact, an online version of such a model could be used
to continuously check all requests for anomalous be-
haviour, i.e. to implement the “Bayesian watchdogs”
scenario of Section 3.

A probabilistic state machine can be represented as a
stochastic context-free grammar (SCFG). This grammar
is an intuitive representation of the underlying process
which generated the event sequences, and can provide
useful clues as to the higher level control flow and the
internal structure of the application code, including hi-
erarchy and looping.

Given a set of example strings, the ALERGIA algo-
rithm [4] derives an SCFG in linear time by recursively
merging similar portions of their prefix tree. For the
test grammar in Figure 6, our Python implementation
converges to the correct state machine after 400 sample
strings, taking under 4 seconds on a 2GHz machine. By
way of comparison, the example 5 minute long dataset
described earlier produced some 1800 event strings, im-
plying that ALERGIA could have a convergence time of
around 1 minute and a CPU overhead of approximately
5%.



BPTTVPSE BPVPSE BPVPSE
BTSSSSSSSSSSXSE  BPTVPXTTVVE  BPTTVVE
BTSXSE BPVVE BPVPSE

A stochastic context free grammar (the Reber grammar) and
some of the strings which It generates. The string BTSXSE, for
example, will be generated with probability 0.06.

Figure 6. Example SCFG.

This efficiency, combined with the enhanced informa-
tion in the resulting model, has encouraged us to ap-
ply ALERGIA to Magpie request event strings. We
are currently evaluating ALERGIA’s performance on the
longer and more complex strings generated by Magpie,
and exploring extensions to the algorithm to incorporate
resource usage measurements.

M odelling concurrency

Both the clustering and SCFG-based approaches use a
deterministic serialization of each request’s events, and
thus do not model concurrency within a request. In our
test scenario there was little intra-request concurrency;
more complex systems will require us to explicitly cap-
ture concurrency, perhaps by extending the clustering
distance metric and replacing SCFGs with coupled hid-
den Markov models [3]. In so doing, scenarios such as
end-to-end latency tuning become feasible.

5 Redated work

The closest relative to Magpie is Pinpoint [6], a pro-
totype implementation of the online system evolution
model [7]. Pinpoint has a similar philosophy and design
to Magpie, recommending aggressive logging, analy-
sis and anomaly detection, but its focus is fault detec-
tion rather than performance analysis. TIPME [8] per-
forms continuous monitoring on a single machine, also
for the purposes of debugging particular problems. In
this case, the monitored environment encompasses the
transactions initiated by user input to the X Windows
system on a single machine.

Scout [19] and SEDA [25] require explicitly defined
paths along which requests travel through the system.
In contrast, Magpie infers paths by combining event
logs generated by black-box instrumentation. Whole
Path Profiling [16] traces program execution at the ba-
sic block level; Magpie’s paths are at a much coarser
granularity, but can span multiple machines.

Log-based performance profiling has been used in dis-
tributed systems [13], operating systems [23], and adap-
tive applications [20]. Magpie differs in that its logging
is black-box and not confined to a single system. It also
tracks resource usage of individual requests rather than
aggregating information to a system component or re-
source.

Distributed event-based monitors and debuggers [1, 2,
15] track event sequences across machines, but do not
monitor resource usage, which is essential for perfor-
mance analysis. Systems such as that used by Appli-
ant [5] measure web application response time by em-
bedding JavaScript in the HTML of fetched pages which
records the relevant data at the client browser. The ag-
gregated data gives a view of server latency which would
complement the detailed server-side workload charac-
terisation obtained using Magpie.

Finally, a few model checking approaches infer correct-
ness models from source code analysis [9] or runtime
monitoring [10, 22]; this is similar to our approach of
inferring performance models.

6 Conclusion

Our preliminary results show that fine-grained logging
and offline analysis are feasible, and that the resulting
models are useful for workload generation. Truly perva-
sive, online modelling has many potential applications,
but also presents many challenges.

Not all events have information value for all applica-
tions. For example, we both instrument TCP sends and
receives, and capture packets on the wire, redundant ex-
cept when debugging TCP. Ideally, we would dynami-
cally insert and remove instrumentation according to its
utility.

Our modelling algorithms are offline, operating on a sin-
gle merged log of all events. online modelling will re-
quire incremental, distributed algorithms that can pro-
cess events when and where they occur. We are currently
developing the infrastructure to enable an online system.
In addition, we need efficient ways to use the generated
models: for example, a distributed database with an on-
line query mechanism for performance debugging.



Although some of our target scenarios are ambitious
given the current state-of-the-art, we believe that they
will be achievable in the near future. Performance-aware
systems are an important step towards automatic system
management and an essential part of managing increas-
ingly complex and distributed systems.
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