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ABSTRACT 
To ensure high data quality, data warehouses must validate and 
cleanse incoming data tuples from external sources. In many 
situations, clean tuples must match acceptable tuples in reference 
tables. For example, product name and description fields in a 
sales record from a distributor must match the pre-recorded name 
and description fields in a product reference relation.  

A significant challenge in such a scenario is to implement an 
efficient and accurate fuzzy match operation that can effectively 
clean an incoming tuple if it fails to match exactly with any tuple 
in the reference relation. In this paper, we propose a new 
similarity function which overcomes limitations of commonly 
used similarity functions, and develop an efficient fuzzy match 
algorithm. We demonstrate the effectiveness of our techniques by 
evaluating them on real datasets.  

1. INTRODUCTION 
Decision support analysis on data warehouses influences 
important business decisions; therefore, accuracy of such analysis 
is crucial. However, data received at the data warehouse from 
external sources usually contains errors, e.g., spelling mistakes, 
inconsistent conventions across data sources, missing fields. 
Consequently, a significant amount of time and money are spent 
on data cleaning, the task of detecting and correcting errors in 
data. A prudent alternative to the expensive periodic data cleaning 
of an entire data warehouse is to avoid the introduction of errors 
during the process of adding new data into the warehouse. This 
approach requires input tuples to be validated and corrected 
before they are loaded. There is much information that can be 
used to achieve this goal. 

A common technique validates incoming tuples against reference 
relations consisting of known-to-be-clean tuples. The reference 
relations may be internal to the data warehouse (e.g., customer or 
product relations) or obtained from external sources (e.g., valid 
address relations from postal departments). An enterprise 
maintaining a relation consisting of all its products may ascertain 
whether or not a sales record from a distributor describes a valid 
product by matching the product attributes (e.g., Part Number and 
Description) of the sales record with the Product relation; here, 
the Product relation is the reference relation. If the product 
attributes in the sales record match exactly with a tuple in the 
Product relation, then the described product is likely to be valid. 
However, due to errors in sales records, often the input product 

tuple does not match exactly with any in the Product relation. 
Then, errors in the input product tuple need to be corrected before 
it is loaded. The information in the input tuple is still very useful 
for identifying the correct reference product tuple, provided the 
matching is resilient to errors in the input tuple. We refer to this 
error-resilient matching of input tuples against the reference table 
as the fuzzy match operation.  

Suppose the enterprise wishes to ascertain whether or not the sales 
record describes an existing customer by fuzzily matching the 
customer attributes of the sales record against the Customer 
relation. The reference relation, Customer, contains tuples 
describing all current customers. If the fuzzy match returns a 
target customer tuple that is either exactly equal or “reasonably 
close” to the input customer tuple, then we would have validated 
or corrected, respectively, the input tuple. The notion of closeness 
between tuples is usually measured by a similarity function. As 
shown in Figure 1, if the similarity between an input customer 
tuple and its closest reference tuple is higher than some threshold, 
then the correct reference tuple is loaded. Otherwise, the input is 
routed for further cleaning before considering it as referring to a 
new customer. A fuzzy match operation that is resilient to input 
errors can effectively prevent the proliferation of fuzzy duplicates 
[13] in a relation, i.e., multiple tuples describing the same real 
world entity.  

 
 

Our goal in this paper is to develop a robust and efficient fuzzy 
match algorithm, applicable across a wide variety of domains. We 
want a solution that provides a strong foundation for adding 
domain-specific enhancements. Most data warehouses are built 
atop database systems. Consequently, we require besides 
robustness and efficiency that the fuzzy match solution is 
implemented over standard database systems without assuming 
the persistence of complex data structures.  

The critical ingredient of a fuzzy match operation is the similarity 
function used for comparing tuples. In typical application 
domains, the similarity function must definitely handle string-
valued attributes and possibly even numeric attributes. In this 
paper, we focus only on string-valued attributes, where defining 
similarity and performing fuzzy matching is more challenging. 
Given the similarity function and an input tuple, the goal of the 
fuzzy match operation is to return the reference tuple—a tuple in 
the reference relation—which is closest to the input tuple. An 
extension is to return the closest K reference tuples enabling 
users, if necessary, to choose one among them as the target, rather 
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Figure 1: A Template for using Fuzzy Match 



than the closest. A further extension is to only output K or fewer 
tuples whose similarity to the input tuple exceeds a user-specified 
minimum similarity threshold. This formulation is essentially that 
of the nearest neighbor problem, but there the domain is typically 
a Euclidean (or other normed) space with well-behaved similarity 
functions [11]. In our case, the data are not represented in 
“geometric” spaces, and it is hard to map them into one because 
the similarity function is relatively complex. 

Previous approaches addressing the fuzzy match operation either 
adopt proprietary domain-specific functions (e.g., Trillium’s 
reference matching operation for the address domain [23]) or use 
the string edit distance function for measuring similarity between 
tuples [17]. A limitation of the edit distance is illustrated by the 
following example. The edit distance function would consider the 
input tuple I3 in Table 2 to be closest to R2 in Table 1, even 
though we know that the intended target is R1. Edit distance fails 
because it considers transforming ‘corporation’ to ‘company’ 
more expensive than transforming ‘boeing’ to ‘bon.’ However, we 
know that ‘boeing’ and ‘98004’ are more informative tokens than 
‘corporation’ and so replacing ‘corporation’ with ‘company’ 
should be considered cheaper than replacing ‘boeing’ with ‘bon’ 
and ‘98004’ with ‘98014.’  In yet another example, note that the 
edit distance considers I4 closer to R3 than to its target R1. This is 
because it fails to capture the notion of a token or take into 
account the common error of token transposition. 

  

ID Org. Name City State Zipcode
R1 Boeing Company Seattle WA 98004
R2 Bon Corporation Seattle WA 98014
R3 Companions Seattle WA 98024  

 

 

Id Org. Name City State Zipcode
I1 Beoing Company Seattle WA 98004
I2 Beoing Co. Seattle WA 98004
I3 Boeing Corporation Seattle WA 98004
I4 Company Beoing Seattle NULL 98014  

We start by proposing a new fuzzy match similarity (fms) function, 
which views a string as a sequence of tokens and recognizes the 
varying “importance” of tokens by explicitly associating weights 
quantifying their importance. Tuples matching on high weight 
tokens are more similar than tuples matching on low weight 
tokens. We adopt the successful inverse document frequency 
(IDF) weights from the IR literature for quantifying the notion of 
token importance; informally, the importance of a token decreases 
with its frequency, which is the number of times a token occurs in 
the reference relation [3]. Even though the approach of weight 
association is common in the IR literature, the effective use of 
token weights in combination with data entry errors (e.g., spelling 
mistakes, missing values, inconsistent abbreviations) has not been 
considered earlier.  

Our notion of similarity between two tuples depends on the 
minimum cost of “transforming” one tuple into the other through 
a sequence of transformation operations (replacement, insertion, 
and deletion of tokens) where the cost of each transformation 
operation is a function of the weights of tokens involved. For 
example, it may be cheaper to replace the token ‘corp’ with 

‘corporation’ than to replace ‘corporal’ with ‘corporation’ even 
though edit distances suggest otherwise. This notion of similarity 
based on transformation cost is similar to edit distance except that 
we operate on tokens and explicitly consider their weights.  

The goal of the fuzzy match algorithm is to efficiently retrieve the 
K reference tuples closest to an input tuple. It is well-known that 
efficiently identifying the exact K nearest neighbors even 
according to the Euclidean and Hamming norms in high-
dimensional spaces is hard [14]. Since the Hamming norm is a 
special case of the edit distance obtained by allowing only 
replacements, the identification of the exact closest K matches 
according to our fuzzy match similarity—which generalizes edit 
distance by incorporating token weights—is essentially hard. 
Therefore, we adopt a probabilistic approach where the goal is to 
return the closest K reference tuples with high probability. We 
pre-process the reference relation to build an index relation, called 
the error tolerant index (ETI) relation, for retrieving at run time a 
small set of candidate reference tuples, which we then compare 
with the input tuple. Our retrieval algorithm is probabilistically 
safe because we retrieve (with high probability) a superset of the 
K reference tuples closest to the input tuple. It is efficient because 
the superset is significantly (often by several orders of magnitude) 
smaller than the reference relation. The index relation ETI is 
implemented and maintained as a standard relation, and hence our 
solution can be deployed even over current operational data 
warehouses.  

Our main contributions are the following. We propose a new 
fuzzy match similarity function that explicitly considers IDF token 
weights and input errors while comparing tuples. We propose the 
error tolerant index and a probabilistic algorithm for efficiently 
retrieving the K reference tuples closest to the input tuple, 
according to the fuzzy match similarity function. Finally, we 
present a thorough empirical evaluation on real datasets. Our 
techniques are extensible to use specialized (possibly domain-
specific) token weight functions instead of the IDF weights. 

The rest of the paper is organized as follows. In Section 2, we 
discuss related work. In Section 3, we define the new similarity 
function. In Section 4, we describe (i) our algorithm to build the 
ETI, and (ii) our retrieval algorithm for efficiently identifying the 
target reference tuples. In Section 5, we discuss a few extensions 
to the algorithm. In Section 6, we discuss a thorough empirical 
study on real datasets, and conclude in Section 7.  

2. RELATED WORK 
Several methods for approximate string matching over 
dictionaries or collections of text documents have been proposed 
(e.g., [12], [17]). All of the above methods use edit distance as the 
similarity function, not considering the crucial aspect of 
differences in importance of tokens while measuring similarity.  

Approximate string matching methods [e.g., 2, 18] preprocess the 
set of dictionary/text strings to build q-gram tables containing 
tuples for every string s of length q that occurs as a substring of 
some reference text string; the record also consists of the list of 
identifiers (or locations) of strings of which s is a substring. The 
error tolerant index relation ETI we build from the reference 
relation is similar in that we also store q-grams along with the list 
of record identifiers in which they appear, but the ETI (i) is 
smaller than a full q-gram table because we only select 
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(probabilistically) a subset of all q-grams per tuple, and (ii) 
encodes column-boundaries specific to relational domains.  

The information retrieval community has successfully exploited 
inverse document frequency (IDF) weights for differentiating the 
importance of tokens or words. However, the IR application 
assumes that all input tokens in the query are correct, and does not 
deal with errors therein. Only recently, some search engines (e.g., 
Google’s “Did you mean?” feature) are beginning to consider 
even simple spelling errors. In the fuzzy match operation, we deal 
with tuples containing very few tokens (many times, around 10 or 
less) and hence cannot afford to ignore erroneous input tokens, as 
they could be crucial for differentiating amongst many thousands 
of reference tuples. For example, the erroneous token ‘beoing’ in 
the input tuple [beoing corporation, seattle, wa, NULL] is perhaps 
the most useful token for identifying the target from among all 
corporations in Seattle. Clustering and reference matching 
algorithms [e.g., 7, 8, 9] using the cosine similarity metric with 
IDF weighting also share the limitation of ignoring erroneous 
input tokens. Further, Cohen et al. improve efficiency by choosing 
probabilistically a subset of tokens from each document under the 
correct input token assumption [9]. In this paper, we propose a 
similarity function that does not assume correctness of input 
tokens, and further improve efficiency by exploiting the variance 
in weights of input tokens. 

As discussed earlier, almost all solutions for the nearest neighbor 
problem are targeted at data in Euclidean/normed spaces [11] and 
hence inapplicable to our setting. There has been some recent 
work on general metric spaces [e.g., 5, 19], but their complexity 
and performance are not suitable for the high-throughput systems 
of interest here. Moreover, many of these solutions cannot be 
deployed easily over current data warehouses because they require 
specialized index structures (e.g., M-trees, tries) to be persisted.  

Some recent techniques addressed the related problem of 
eliminating “fuzzy duplicates” in a relation by using a similarity 
function and identifying highly similar tuples as duplicates. Some 
are based on the use of edit distance [e.g., 13], some on cosine 
similarity with IDF weights [e.g., 8], some on learning similarity 
functions from training datasets [e.g., 10, 20], and some on the 
use of dimension hierarchies [1]. However, all such techniques 
are designed for use in an offline setting and do not satisfy the 
efficiency requirements of the online fuzzy match operation where 
input tuples have to be quickly matched with target reference 
tuples before being loaded into the data warehouse. A 
complementary use of solutions to both problems is to first clean a 
relation by eliminating fuzzy duplicates and then piping further 
additions through the fuzzy match operation to prevent 
introduction of new fuzzy duplicates. 

Several commercial products (e.g., Trillium, Vality, Axciom) 
leverage characteristics peculiar to the address domain in their 
proprietary algorithms for matching addresses and individual or 
organization records. The record linkage literature—a survey can 
be found in [24]—also considers the problem of identifying 
matching records across relations (consisting mainly of census 
records of individuals), and employs a variety of (domain-
specific) similarity functions. In contrast, our goal in this paper is 
to develop a domain-independent method.  

3. THE SIMILARITY FUNCTION 
In this section, we define the fuzzy match similarity (fms) function 
for comparing tuples. We start with 
a few definitions. 

Edit Distance: The edit distance 
ed(s1, s2) between two strings s1 
and s2 is the minimum number of 
character edit operations (delete, 
insert, and substitute) required to transform s1 into s2, normalized 
by the maximum of the lengths of s1 and s2. For the example 
shown in the adjacent figure the edit distance between the strings 
‘company’ and ‘corporation’ is 7/11�0.64, and the sequence of 
edit operations is shown. Vertical lines indicate either exact 
matches (cost is 0) or substitutions (cost is 1). Characters in italics 
are deleted or inserted and always have a unit cost. 

Reference Relation: Let R[tid, A1,…,An] be a reference relation 
where Ai denotes the ith column. We assume that each Ai is a 
string-valued attribute (e.g., of type varchar). We also assume that 
tid (for tuple identifier) is a key of R.  We refer to a tuple whose 
tid attribute assumes value r as the tuple r. We use v[i] to denote 
the value ai in the tuple v[r, a1,…,an]. 

Tokenization: Let tok be a tokenization function which splits a 
string s into a set of tokens, tok(s), based on a set of delimiters 
(say, the white space characters). For example, tok(v[1]) of the 
tuple v = [R1, Boeing Company, Seattle, WA, 98004] is {boeing, 
company}. Observe that we ignore case while generating tokens. 
For tokens generated from attribute values of tuples, we associate 
the column property—the column from which a token originates. 
For example, the column property of tokens in tok(v[col]) is col. 
Consequently, the token ‘madison’ in the name column of a 
customer relation is considered different from the token ‘madison’ 
in the city column. The token set tok(v) is the multiset union of 
sets tok(a1),…,tok(an) of tokens from the tuple v[r, a1,…,an]. That 
is, if a token t appears in multiple columns, we retain one copy per 
column in tok(v), distinguishing each copy by its column 
property. We say that a token t is in tok(v) if t is a member of 
some tok(ai), for 1 � i  � n. 

Weight Function: We now adapt the IDF weight function to the 
relational domain by treating each tuple as a document of tokens. 
The motivation for this definition is clear from the following 
example – we expect the weight of token ‘corporation’ in the 
organization-name column to be less than that of ‘united’ since 
corporation is a frequent token in that column. Let the frequency 
of token t in column i, denoted freq(t, i), be the number of tuples v 
in R such that tok(v[i]) contains t. The IDF value, IDF(t, i), of a 
token t with respect to the ith column in the schema of R is 
computed as follows, when freq(t, i) > 0, 
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For a token t whose frequency in column i is 0, our philosophy is 
that t is an erroneous version of some token in the reference tuple. 
Since we do not know the token to which it corresponds, we 
define the weight w(t, i) to be the average weight of all tokens in 
the ith column of relation R. For clarity in presentation, when the 
column property of a token is evident from the context, we use 
w(t) to denote w(t, i).  



3.1 Fuzzy Similarity Function (fms) 
Informally, the similarity between an input tuple and a reference 
tuple is the cost of transforming the former into the latter—the 
less the cost, the higher the similarity. We consider the following 
transformation operations: token replacement, token insertion, 
and token deletion. Each operation is associated with a cost that 
depends on the weight of the token being transformed. We now 
describe the cost of each transformation operation. Let u and v be 
two tuples with the schema R[A1,…,An]. We will be considering 
only the case where u is an input tuple and v is a reference tuple, 
and we are interested in transforming u into v. 

(i) Token replacement: The cost of replacing a token t1 in 
tok(u[i]) by token t2 from tok(v[i]) is ed(t1,t2)�w(t1,i). If t1 and 
t2 are from different columns, we define the cost to be infinite.  

(ii) Token insertion: The cost of inserting a token t into u[i] is 
cins�w(t, i), where the token insertion factor cins is a constant 
between 0 and 1.  

(iii) Token deletion: The cost of deleting a token t from u[i] is 
w(t,i). 

Observe that the costs associated with inserting and deleting the 
same token may be different. We believe that this asymmetry is 
useful, since in many scenarios it is more likely for tokens to be 
left out during data entry than it is for spurious tokens to be 
inserted. Therefore, absence of tokens is not penalized heavily. 

We ignore the tid attribute while comparing tuples. Transforming 
u into v requires each column u[i] to be transformed into v[i] 
through a sequence of transformation operations, whose cost we 
define to be the sum of costs of all operations in the sequence. 
The transformation cost tc(u[i], v[i]) is the cost of the minimum 
cost transformation sequence for transforming u[i] into v[i]. The 
cost tc(u, v) of transforming u into v is the sum over all columns i 
of the costs tc(u[i], v[i]) of transforming u[i] into v[i].  
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The minimum transformation cost tc(u[i], v[i]) can be computed 
using the dynamic programming algorithm used for edit distance 
computation [22]. 

Consider the input tuple u[Beoing Corporation, Seattle, WA, 
98004] in Table 2 and the reference tuple v[Boeing Company, 
Seattle, WA, 98004]. The minimum cost transformation of u[1] 
into v[1] requires two operations – replacing ‘beoing’ by ‘boeing’ 
and replacing ‘corporation’ by ‘company’.  The function tc(u[1], 
v[1]) is the sum of costs of these two operations; assuming unit 
weights on all tokens, this is 0.97 by adding 0.33 for replacing 
‘beoing’ with ‘boeing’ which are at an edit distance 0.33, and 
0.64 for replacing ‘corporation’ with ‘company’ which are at an 
edit distance 0.64. In this example, only tc(u[1], v[1]) is nonzero 
among column-wise transformation costs. 

Definition of fms: We now define the fuzzy match similarity 
function fms(u, v) between an input tuple u and a reference tuple v 
in terms of the transformation cost tc(u, v). Let w(u) be the sum of 
weights of all tokens in the token set tok(u) of the input tuple u. 
Similarity between u and v is defined as: 
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In the above example involving I3 and R1, w(I3) = 5.0 because 
there are five tokens in tok(I1) and the weight of each token is 1.0. 
Therefore, fms(I3, R1) = 1 - 0.97/5.0 = 0.806. We define fms 
asymmetrically because we believe the cost of transforming a dirty 
input tuple into a clean reference tuple is different from the 
reverse transformation. Also, in this paper, we only transform 
input tuples into clean reference tuples, and never the other way. 

3.2 Edit Distance and fms 
For a broad subclass of errors, we compare the weight assignment 
strategy implicitly adopted by the edit distance ed with that of the 
fuzzy match similarity fms, to isolate scenarios when they agree or 
disagree on fuzzy match. The comparison also justifies, although 
only informally, our belief that fms is the more appropriate choice 
in practice. 

We consider the subclass of order-preserving errors. Under this 
class of errors, an input tuple and its target reference tuple are 
consistent in the ordering among tokens after each input token is 
mapped to the closest matching reference token, and each input 
token is transformed to its counterpart in the reference tuple. Let 
u1,…,um be the list of tokens in the input tuple u ordered 
according to their position in u. Let v1,…,vm be the similarly 
ordered list of tokens in the reference tuple v. In the class of 
order-preserving errors, for all i, the input token ui is transformed 
to the reference token vi. Let ed(u, v) denote the total (minimum) 
number of edit operations for transforming each ui into vi, 
normalized by max(L(u), L(v)) where the length L(z) of a tuple z is 
the sum of lengths of tokens z1,…,zp in tok(z), i.e., L(z)=�|zi|. We 
now rewrite ed(u, v) to highlight the implicit weight assignment to 
the ui�vi token-mapping.  
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Observe that the ui�vi mapping gets a weight proportional to 
max(|ui|, |vi|)/L(u). Therefore, ed implicitly assigns weights to 
token mappings in proportion to their lengths, i.e., longer tokens 
get higher weights. For example, ‘corporation’ to ‘company’ gets 
a higher weight than ‘boeing’ to ‘bon’ thus explaining why ed 
matches input tuple I3 (in Table 2) with R2 (in Table 1) instead of 
the correct target R1. Extensive empirical evidence from the IR 
application suggests the superiority of IDF weights to token 
lengths for capturing the notion of token importance [3]. Hence, 
we expect fms to be more beneficial than ed in practice.  

4. FUZZY MATCH 
We first formally define the fuzzy match problem before 
describing the algorithm.  

The K-Fuzzy Match Problem: Given a reference relation R, a 
minimum similarity threshold c (0 < c < 1), the similarity function 
f, and an input tuple u, find the set FM(u) of fuzzy matches of at 
most K tuples from R such that  

(i) fms(u, v) � c, for all v in FM(u) 

(ii) fms(u, v) � fms(u, v’) for any v in FM(u) and v’ in R−FM(u) 

Observe that by setting the minimum similarity threshold c to be 
zero, we can simulate the scenario where a user is interested in all 
closest K reference tuples. When more than K−i+1 reference 
tuples are tied for the ith, …, Kth (i > 1) best fuzzy matches, we 
break ties by choosing an arbitrary subset of the tied reference 
tuples such that the total number of returned fuzzy matches is K. 



Given an input tuple u, the goal of the fuzzy match algorithm is to 
identify the fuzzy matches—the K reference tuples closest to u. A 
naïve algorithm scans the reference relation R comparing each 
tuple with u. A more efficient approach is to build an “index” on 
the reference relation for quickly retrieving a superset of the target 
fuzzy matches. Standard index structures like B+-tree indexes 
cannot be deployed in this context because they can only be used 
for exact or prefix matches on attribute values. Therefore, we 
gather, during a pre-processing phase, additional indexing 
information for efficiently implementing the fuzzy match 
operation. We store the additional information as a standard 
database relation, and index this relation using standard B+-trees 
to perform fast exact lookups. We refer to this indexed relation as 
the error tolerant index (ETI). The challenge is to identify and to 
effectively use the information in the indexed relation. Our 
solution is based on the insight of deriving from fms an easily 
indexable similarity function fmsapx with the following 
characteristics. (i) fmsapx upper bounds fms with high probability. 
(ii) We can build the error tolerant index (ETI) relation for 
efficiently retrieving a small candidate set of reference tuples 
whose similarity with the input tuple u, as per fmsapx, is greater 
(probabilistically) than the minimum similarity threshold c. 
Therefore, with a high probability the similarity as per fms 
between any tuple in the candidate set and u is greater than c. 
From this candidate set, we return the K reference tuples closest 
to u as the fuzzy matches.  

In Section 4.1, we define fmsapx. In Section 4.2, we describe the 
ETI relation as well as an algorithm for building it. In Section 4.3, 
we present an efficient algorithm to process fuzzy matching 
queries, and we discuss their resource requirements in Section 4.4. 

4.1 Approximation of fms  
Our goal in this section is to derive fmsapx an approximation of 
fms for which we can build an indexed relation. fmsapx is a pared 
down version of fms obtained by (i) ignoring differences in 
ordering among tokens in the input and reference tuples, and (ii) 
by allowing each input token to match with the “closest” token 
from the reference tuple. Since disregarding these two 
distinguishing characteristics while comparing tuples can only 
increase similarity between tuples, fmsapx is an upper bound of 
fms. For example, the tuples [boeing company, seattle, wa, 
98004] and [company boeing, seattle, wa, 98004] which differ 
only in the ordering among tokens in the first field are considered 
identical by fmsapx. In fmsapx, we measure the closeness between 
two tokens through the similarity between sets of substrings—
called q-gram sets—of tokens (instead of edit distance between 
tokens used in fms). Further, this q-gram set similarity is 
estimated well by the commonality between small 
probabilistically chosen subsets of the two q-gram sets. This 
property can be exploited, like we do later, to build an indexed 
relation for fmsapx because for each input tuple we only have to 
identify reference tuples whose tokens share a number of chosen 
q-grams with the input tuple. We first define the approximation of 
the q-gram set similarity between tokens. In Lemma 4.2, we relate 
this similarity with the edit distance between tokens using an 
“adjustment term” which only depends on the value of q 
introduced below. 

Q-gram Set: Given a string s and a positive integer q, the set 
QGq(s) of q-grams of s is the set of all size q substrings of s. For 

example, the 3-gram set QG3(“boeing”) is {boe, oei, ein, ing}. 
Because we fix q to be a constant, we use QG(s) to denote QGq(s).  

Jaccard Coefficient: The Jaccard coefficient sim(S1, S2) between 

two sets S1 and S2 is |21|
|21|
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Min-hash Similarity: Let U denote the universe of strings over an 
alphabet �, and hi:U�N, i = 1,…,H be H hash functions mapping 
elements of U uniformly and randomly to the set of natural 
numbers N. Let S be a set of strings. The min-hash signature 
mh(S) of S is the vector [mh1(S), …, mhH(S)] where the ith 
coordinate mhi(S) is defined as )(minarg)( ahSmh i
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denote an indicator variable over a boolean X, i.e., I[X] = 1 if X 
is true, and 0 otherwise. Then (as shown in [4, 6]), 
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Computing the min-hash signature is like throwing darts at a 
board and stopping when we hit an element of S. Hence, the 
probability that we hit an element in S1�S2 before another 
element in S1US2 is equal to sim(S1,S2). We now define token 
similarity in terms of the min-hash similarity between their q-gram 
sets. Let q and H be positive integers. The min-hash similarity 
simmh(t1,t2) between tokens t1 and t2 is: 
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We define the similarity function fmsapx and then show (i) its 
expectation is greater than fms, and (ii) the probability of fmsapx 
being greater than fms can be made arbitrarily large by choosing 
an appropriate min-hash signature size. 

Definition of fmsapx: Let u, v be two tuples, and let dq = (1-1/q) be 
an adjustment term. 
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Consider the tuple I4 in Table 2 and the tuple R1 in 1. Suppose 
q=3 and H=2. We use the notation t:w to denote a token with 
weight w. Suppose the tokens and their weights in I4 are 
company:0.25, beoing:0.5, seattle:1.0, 98004:2.0; their total 
weight is 3.75. Suppose their min-hash signatures are [eoi, ing], 
[com, pan], [sea, ttl], [980, 004], respectively. The tokens in R1 
are boeing, company, seattle, wa, 98004. Suppose their min-hash 
signatures are [oei, ing], [com, pan], [sea, ttl], [wa], [980, 004], 
respectively. Then, ‘company’ matches with ‘company’, ‘beoing’ 
with ‘boeing’, ‘seattle’ with ‘seattle’, ‘98004’ with ‘98004’. The 
score from matching ‘beoing’ with ‘boeing’ is: w(beoing)*(�*0.5 
+ (1-1/3))=w(beoing). Since every other token matches exactly 
with a reference token, fmsapx(I4, R1) = 3.75/3.75. In contrast, 
fms(I4, R1) will also consider the cost of reconciling differences 
in order among tokens between I4 and R1, and the cost of 
inserting token ‘wa’. Hence, fms(I4, R1) is less than fmsapx(I4, 
R1).  

Lemma 4.1: Let 12 log2,0,10 −−≥><< εδεδ H . Then  

(i) E[fmsapx(u, v)] � fms(u, v) 

(ii) εδ ≤−≤ )),()1(),(( vufmsvufmsP apx  

Sketch of Proof: We require the following definitions.  
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Result (i) falls out of the following sequence of observations.  

(i) Ignoring the ordering among tokens while measuring f, and 
allowing tokens to be replaced by their best matches always 
results in over estimating fms. Therefore, f1(u, v) � fms(u, v). 

(ii) Edit distance between strings is approximated by the 
similarity between the sets of q-grams (Lemma 4.2 below), 
and max(|t|, |r|) � |QG(t) U QG(r)|/2. Hence, f2(u, v) � f1(u, v). 

(iii) Min-hash similarity between tokens is an unbiased estimator 
of the Jaccard coefficient between q-gram sets of tokens. 
Therefore, E[fmsapx(u, v)] = f2(u, v) � fms(u, v). 

Since E[fmsapx(u, v)] = f2(u, v) � fms(u, v) for all H > 0, splitting 
fmsapx(u, v) into the average of H independent functions f1’, …, 
fH’ one for each min-hash coordinate such that fi’ has the same 
expectation as fmsapx and using Chernoff bounds [16], we have 
the following inequality, which yields Result (ii). 
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Lemma 4.2 [15]: Let t1, t2 be two tokens, and m = max(|t1|, |t2|). 
Let d = (1-1/q)�(1-1/m). Then, 

dssed +
∩

≤−
mq

|)QG(s)QG(s|
),(1 21

21
 

Because the probability P(fmsapx(u, v) � (1-δ )fms(u, v)) can be 
increased arbitrarily, we loosely say that fmsapx upper bounds fms.  

4.2 The Error Tolerant Index (ETI)  
The primary purpose of ETI is to enable, for each input tuple u, 
the efficient retrieval of a candidate set S of reference tuples 
whose similarity with u is greater than the minimum similarity 
threshold c. Recall from the definition of fmsapx that fmsapx(u, v) is 
measured by comparing min-hash signatures of tokens in tok(u) 
and tok(v). Therefore, for determining the candidate set, we need 
to efficiently identify for each token t in tok(u), a set of reference 
tuples sharing min-hash q-grams with that of t. Consider the 
example input tuple [Beoing Company, Seattle, WA, 98004] 
shown in Figure 2. The topmost row in the figure lists tokens in 
the input tuple, the next row lists q-gram signatures of each token, 
and the lowest row lists sets (S1 through S9) of tids of reference 
tuples with tokens whose min-hash signatures contain the 
corresponding q-gram. For example, the set S1 U S2 is the set of 
tids of reference tuples containing a token in the Org. Name 
column that shares a min-hash q-gram with ‘beoing’. Extending 
this behavior to q-gram signatures of all tokens, the union of all 
Si’s contains the candidate set S. In order to identify such sets of 
tids, we store in ETI each q-gram s along with the list of all tids of 
reference tuples with tokens whose min-hash signatures contain s. 

We now formally describe the ETI and its construction. Let R be 
the reference relation, and H the size of the min-hash signature. 
ETI is a relation with the following schema: [QGram, Coordinate, 
Column, Frequency, Tid-list] such that each tuple e in ETI has the 
following semantics. e[Tid-list] is a list of tids of all reference 

tuples containing at least one token t in the field e[Column] whose 
e[Coordinate]-th min-hash coordinate is e[QGram]. e[Frequency] 
is the number of tids in e[Tid-list]. Constructing a tuple [s, j, i, 
frequency, tid-list] in ETI requires that we know the list of all 
reference tuple tids containing ith column tokens with s as their jth 
min-hash coordinate. The obvious method of computing all ETI 
tuples in main-memory by scanning and processing each reference 
tuple is not scalable because the combined size of all tid-lists is 
usually larger than the amount of available main memory. To 
build the ETI efficiently, we leverage the underlying database 
system by first building a temporary relation called the pre-ETI 
with sufficient information and then construct the ETI relation 
from the pre-ETI using SQL queries. 

 
The schema of the pre-ETI is: [QGram, Coordinate, Column, 
Tid]. We scan the reference relation R processing each tuple v as 
follows. We tokenize v, and for each ith column token t in tok(v), 
we determine its min-hash signature mh(t) of size H. We insert 
into the pre-ETI a row [q, j, i, r] for the jth min-hash coordinate in 
mh(t). For example, if the size-2 signature of the token ‘company’ 
belonging to column 1 of the tuple R1 is [com, pan], then we 
insert the rows [com, 1, 1, R1], [pan, 1, 1, R1] into the pre-ETI. In 
practice, we can batch such insertions. 
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All tuples required to compute any one ETI tuple occur together 
in the result of the ETI-query: “select QGram, Coordinate, 
Column, Tid from pre-ETI order by QGram, Coordinate, Column, 
Tid.” We scan the result of the ETI-query, and for a group of 
tuples corresponding to the q-gram s which occurs as the jth min-
hash coordinate of (multiple) tokens in the ith column, we insert 
the tuple [s, j, i, freq(s, j, i), tid-list] in ETI, where freq(s, j, i) is 

Beoing  Company    Seattle     WA  98004 

Figure 2: Candidate set generation 

Table 3: An Example ETI Relation 

[eoi, ing]   [com, pan]  [sea, ttl]   [wa]   [980, 004] 

S1   S2       S3     S4       S5   S6      S7       S8   S9 



the size of the group, and tid-list the list of all tids in the group. q-
grams whose frequencies are above a large threshold, called the 
stop q-gram threshold (set to 10000 in our implementation), are 
considered stop tokens. For such q-grams, we insert a NULL 
value in the tid-list column. Finally, we build a clustered index on 
the [QGram, Coordinate, Column] attribute combination of the 
ETI relation so that queries looking up ETI on [QGram, 
Coordinate, Column] combinations are answered efficiently. 

An example ETI relation for the reference relation in Table 1 with 
q=3 and H=2 is shown in Table 3. If the length of a token is less 
than q, then we assume that its min-hash signature consists of the 
token itself. The tuple [R1, Boeing Company, Seattle, WA, 
98004] in Table 1 with min-hash signatures {[oei, ing], [com, 
pan], [sea, ttl], [wa], [980, 004]} for its tokens, respectively, has 
the tid R1 in the tid-lists of each of these q-grams. 

4.3 Query Processing 
In this section, we describe the algorithm for processing fuzzy 
match queries—queries asking for K fuzzy matches of an input 
tuple u whose similarities (as per fms) with u are above a 
minimum similarity threshold c. The goal is to reduce the number 
of lookups against the reference relation by effectively using the 
ETI. We first describe the basic algorithm, which fetches tid-lists 
by looking up ETI of all q-grams in min-hash signatures of all 
tokens in u. We then introduce an optimization called optimistic 
short circuiting, which exploits differences in token weights and 
the requirement to fetch only the K closest tuples to significantly 
reduce the number of ETI lookups. For efficient lookups, we 
assume that the reference relation R is indexed on the Tid 
attribute, and the ETI relation is indexed on the [QGram, 
Coordinate, Column] attribute combination. 

4.3.1 Basic Algorithm 
The basic algorithm for processing the fuzzy match query given 
an input tuple u is as follows. For each token t in tok(u), we 
compute its IDF weight w(t), which requires the frequency of t. 
We can store these frequencies in the ETI and fetch them by 
issuing a SQL query per token. However, we assume for now that 
frequencies of tokens can be quickly looked up from a main 
memory cache called the token-frequency cache. (See Section 
4.4.1 for a discussion on this issue.) We then determine the min-
hash signature mh(t) of each token t. (If |t| � q, we define 
mh(t)=[t].) We assign the weight w(t)/|mh(t)| to each q-gram in 
mh(t). Using the ETI, we then determine a candidate set S of 
reference tuple tids whose similarity (as per fmsapx and hence fms) 
with the input tuple u is greater than c. We fetch from the 
reference relation all tuples in S to verify whether or not their 
similarities with u (as per fms) are truly above c. Among those 
tuples which passed the verification test, we return the K tuples 
with the K highest similarity scores.  

Candidate Set Determination: We compute the candidate set S 
as the union of sets Sk, one for each q-gram qk in the min-hash 
signatures of tokens in tok(u). For a q-gram qk which is the ith 
coordinate in the min-hash signature mh(t) of a token t in the jth 
column, Sk is the tid-list from the record [qk, i, j, freq(qk, i, j), Sk] 
in ETI. Observe that the lookup for [qk, i, j, freq(qk, i, j), Sk] is 
efficient because of the index on the required attribute 
combination of ETI. Each tid in Sk is assigned a score that is 
proportional to the weight w(t) of the parent token t. If a tuple 
with tid r is very close to the input tuple u, then r is a member of 

several sets Sk and hence gets a high overall score. Otherwise, r 
has a low overall score. Tids that have an overall score greater 
than w(u)�c minus an adjustment term—a correction to 
approximate the edit distance between tokens with the similarity 
between their q-gram sets—constitute the candidate set.  

During the process of looking up tid-lists corresponding to q-
grams, we maintain the scores of tids in these tid-lists in a hash 
table. At any point, the score of a tid equals the sum of weights of 
all q-grams whose tid-lists it belongs to. The weight w(qk) 
assigned to a q-gram qk in the min-hash signature mh(ti) of a token 
ti is w(ti)/|mh(ti)|. If a tid in Sk is already present in the hash table, 
then its score is incremented by w(qk). Otherwise, we add the tid 
to the hash table with an initial score of w(qk). After all q-grams in 
the signatures of input tokens are processed, we select a tid r and 
add it to the candidate set S only if its score is above w(u)�c 
(minus the adjustment term).  

An optimization to the after-the-fact filtering of tids with low 
scores described above is to add a tid to the hash table only if the 
score it can potentially get after all min-hash q-grams are 
processed is greater than the threshold. We add a new tid to the 
hash table only if the total weight, which is an upper bound on the 
score a new rid can get, of all min-hash q-grams yet to be looked 
up in the ETI is greater than or equal to w(u)�c. This optimization 
significantly reduces the number of tids added to the hash table. 
We summarize the basic algorithm in Figure 3. 

We illustrate the above procedure with the example input tuple I1 
in Table 2 and the ETI in Table 3. Suppose q=3 and H=2. We use 
the notation [q1, q2]:w to denote the min-hash signature [q1, q2] 
with each q-gram assigned a weight of w. The tokens and their 
weights in I1 are beoing:0.5, company:0.25, seattle:1.0, wa:0.75, 
98004:2.0; their total weight is 4.5. Suppose their min-hash 
signatures are [eoi, ing]:0.25, [com, pan]:0.125, [sea, ttl]:0.5, 
[wa]:0.75, [980, 004]:1.0. We lookup ETI to fetch the following 
tid-lists: [{}, {R1}], [{R1, R3}, {R1, R3}], [{R1, R2, R3}, {R1, 
R2, R3}], [{R1, R2, R3}], [{R1, R2, R3}, {R1}]. For the purpose 
of this example, we ignore the adjustment term. R1 gets an overall 
score of 4.25, R2 a score of 2.75, and R3 3.0. Depending on the 
threshold, the candidate set is a subset of {R1, R2, R3}. For the 
example in Figure 2, suppose we looked up min-hash q-grams 
‘eoi’, ‘ing’, ‘com’, ‘pan’, ‘sea’, ‘ttl’. While processing the q-gram 

FuzzyMatch(input tuple u, H, ETI, R, c) 
1.  Initialize hash table TidScores; AdjustmentTerm = 0 
2.  Tokenize u and compute min-hash signatures Q of all tokens 
3.  Assign token weights; RemWt = sum of all token weights  
4.  threshold = c�RemWt 
5.  For each q-gram s in Q s.t. s = mhi(t) of token t in column col 
6.      if (mhi(t) is the first q-gram of mh(t) to be looked up)  
7.       AdjustmentTerm += w(t)�(1-1/q)    
8.      Fetch tid-list(s) by looking up (s, i, col) against ETI 
9.      Update TidScores  

a. Increment scores of existing tids by w(t)/|mh(t)| 
b. If RemWt � threshold, insert new tids with score w(t)/|mh(t)|.  

10.   RemWt −= w(s) 
11. Fetch tuples from R for TIDs with score � c–AdjustmentTerm 
12. Compare, using f, each of these tuples with u  
13. Return K (or less) most similar tuples with similarity above w(u)�c  

Figure 3: Basic Query Processing Algorithm 



‘wa’, we add new tids to the hash table only if 0.75 + 2.0 (the 
total weight of the remaining q-grams) is greater than w(u)�c. We 
now formally state that the basic algorithm retrieves the correct 
fuzzy matches with a high probability. For the purpose of the 
formal guarantee in Theorem 1, we assume that no q-gram is 
classified as a stop token. Alternatively, the stop q-gram threshold 
is set to at least |R|. We omit the proof due to space constraints. 

Theorem 1: Let 12 log2,0,10 −−≥><< εδεδ H . The basic 
query processing algorithm returns the K reference tuples closest, 
as per fms, to the input tuple with a probability of at least 1-ε . 

4.3.2 Optimistic Short Circuiting (OSC) 
In the basic algorithm, we fetch tid-lists by looking up ETI of all 
q-grams in min-hash signatures of all tokens. We now discuss the 
short circuiting optimization to significantly reduce the number of 
ETI lookups. The intuition is as follows. Weights of input tokens 
(and hence weights of min-hash q-grams) often vary significantly. 
Therefore, we may look up the ETI on just a few important q-
grams and—if a fetching test succeeds—optimistically short 
circuit the algorithm by fetching the current closest K reference 
tuples. If we are able to efficiently verify—via a stopping test—
whether these tuples are actually the closest K tuples then, we can 
save a significant amount of work: (i) avoid ETI lookups on a 
number of unimportant q-grams, and (ii) avoid initializing and 
incrementing similarity scores in the hash table for large numbers 
of tids associated with unimportant high-frequency q-grams. 

We illustrate the intuition using the input tuple I1, the reference 
relation in Table 1, and the ETI relation in Table 3. Suppose K=1, 
q=3, and H=2. The tokens along with weights in I1 are 
beoing:0.5, company:0.25, seattle:1.0, wa:0.75, 98004:2.0; their 
total weight is 4.5. Suppose their min-hash signatures are [eoi, 
ing]:0.25, [com, pan]:0.125, [sea, ttl]:0.5, [wa]:0.75, [980, 
004]:1.0. For the purpose of this example, we ignore the 
adjustment terms. We order q-grams in the decreasing order of 
their weights, and fetch their tid-lists in this order. We first fetch 
the tid-list {R1, R2, R3} of q-gram ‘980.’ We cannot yet 
distinguish between the K and (K+1)th (here, 1st and 2nd) best 
scores. So, we fetch the list {R1} of the next most important q-
gram ‘004’. At this point, R1 has the best score of 2.0, and R2 and 
R3 have scores of 1.0. We now estimate (by extrapolating its 
current score) the score for R1 over all q-grams to be, say, 4.5. 
The best possible score s2

next that R2 (the current K+1th highest 
score tid) can get equals its current score plus the sum of weights 
of all remaining q-grams: 1.0+ (4.5-2.0) = 3.5. Observe that s2

next 
is also greater than the best possible (K+1)th similarity—as per 
fmsapx and hence fms—among all reference tuples in R. Because 
4.5 > 3.5, we anticipate the reference tuple R1 to be the closest 
fuzzy match, fetch it from R, and compute fms(u, R1). If fms(u, 
R1) � 3.5/4.5, we stop and return R1 as the closest fuzzy match 
thus avoiding looking up and processing tid-lists of q-grams: eoi, 
ing, com, pan, sea, ttl, wa. However, if fms(u, R1) � 3.5, we 
continue fetching the next most important q-gram (here ‘wa’).  

The robustness of the stopping test ensures that inaccuracy in 
estimating the score of R1 over all q-grams does not affect the 
correctness of the final result. However, it impacts performance. If 
we over-estimate we may fetch more reference tuples and realize 
they are not good matches, and if we under-estimate then we may 
perform a higher number of ETI lookups.  

The query processing algorithm enhanced with optimistic short 
circuiting (OSC) differs from the basic algorithm in two aspects: 
(i) the order in which we look up q-grams against ETI, and (ii) the 
additional short-circuiting procedure we potentially invoke after 
looking up each q-gram. Pseudo code is almost the same as that in 
Figure 3 except for two additional steps: 3.1 (the ordering of 
tokens) and 9.1 (short circuiting procedure). We order Q the set of 
all q-grams in the min-hash signatures of an input tuple in the 
decreasing order of their weights, where each q-gram s in the 
signature mh(t) is assigned a weight w(t)/|mh(t)|. After fetching 
tid-list(s) (Step 8 in Figure 3) and processing tids in the tid-list 
(Step 9 in Figure 3), we additionally perform the short circuiting 
procedure (new Step 8.1 whose pseudo code is shown in Figure 
4). If the short circuiting procedure returns successfully, we skip 
steps 10, 11, and 12.  

The short circuiting procedure consists of a fetching test and a 
stopping test. The fetching test (Step 3 in Figure 4) evaluates 
whether or not the current K tids could be the closest matches. On 
failure, we return and continue processing more q-grams. On 
success, we fetch the current best K candidates from the reference 
relation R (Step 4), and compare (using fms) each of them with 
the input tuple u (Step 5). The stopping test (Step 6) confirms 
whether or not u is more similar to the retrieved tuples than to any 
other reference tuple. On success, we stop and return the current 
K candidate tuples as the best K fuzzy matches. On failure, we 
continue processing more q-grams.  

We now describe the fetching and stopping tests. Let w(Q) denote 
the sum of weights of all q-grams in a set of q-grams Q. Let 
Qp=[q1,…,qp] denote the ordered list of q-grams in min-hash 
signatures of all tokens in the input tuple u such that w(qi) � 
w(qi+1). Let Qi denote the set of q-grams [q1,…., qi].  Let ssi(r) 
denote the similarity score of the tid r plus the adjustment term 
after processing tid-lists of q1,…,qi. Suppose ri

1,…,ri
K, ri

K+1 are the 
tids with the highest K+1 similarity scores after looking up q-
grams q1,…,qi. Informally, the fetching test returns true if and 
only if the “estimated overall score” of ri

K is greater than the “best 
possible overall score” of ri

K+1. We compute the estimated overall 
score of ri

K by linearly extrapolating its current similarity score 
ssi(r

i
K) to ssi(r

i
K)�w(Qp)/w(Qi), and the best possible overall score 

of ri
K+1 by adding the weight (w(Qp)−w(Qi)) of all q-grams yet to 

be fetched to ssi(r
i
K+1).  

The stopping test returns successfully if fms(u, ri
j) � ssi(r

i
K+1) + 

w(Qp)−w(Qi), for all 1 � j � K. Since ssi(r
i
K+1) + w(Qp)−w(Qi) is 

the maximum possible overall score any candidate outside the 
current top K candidates can get, if the similarities (as per fms) are 
greater than this upper bound we can safely stop because we are 
sure that no other reference tuple will get a higher score. The 
following theorem (whose proof we omit) formalizes the 
guarantees of the algorithm. Again, for the purpose of obtaining 
the formal guarantee, we assume that no q-gram is classified as a 
stop token.  

Theorem 2: Let 12 log2,0,10 −−≥><< εδεδ H . The query 
processing algorithm enhanced with optimistic short circuiting 
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returns the K reference tuples closest according to fms to the input 
tuple with probability at least 1-ε . 

 

4.4 Resource Requirements 
We now discuss the resource requirements of the two phases of 
our algorithm: the ETI building and the query processing phases.  

The expensive steps of the ETI building phase are: (1) scan of the 
reference relation R, (2) writing the pre-ETI, (3) sorting the pre-
ETI, and (4) writing the ETI. The total I/O cost during these 
phases is O(mavg�q�H�|R| + |ETI|� (12+q)) where mavg is the average 
number of tokens in each tuple, and |ETI| is the number of tuples 
in ETI which is less than H�n�|�|q—the maximum number of q-
grams times H times the number of columns in R—given that � is 
the alphabet over which tokens in R are formed from.  

The expensive steps for processing an input tuple are: (1) looking 
up ETI for tid-lists of q-grams, (2) processing tid-lists, and (3) 
fetching tuples in the candidate set. The number of ETI lookups is 
less than or equal to the total number of q-grams in signatures of 
all tokens of a tuple. On average, this number is mavg�H. The 
number of tids processed per tuple and the size of the candidate 
set is bounded by the sum of frequencies of all q-grams in the 
signatures of tokens in a tuple. In practice, the candidate set sizes 
are several orders of magnitude less than the above loose upper 
bound. Due to its dependence on the variance of token weights of 
input tuples, the reduction in the number of ETI lookups due to 
OSC is hard to quantify.  

4.4.1 Token-Frequency Cache 
Thus far, we assumed that frequencies of tokens are maintained in 
a main memory token-frequency cache enabling quick 
computation of IDF weights. Given current main memory sizes on 
desktop machines, this assumption is valid even for very large 
reference relations. For example, a relation Customer[Name, city, 
state, zip code] with 1.7 million tuples has approximately 367,500 
distinct tokens (even after treating identical token strings in 
distinct columns as distinct tokens). Assuming that each token and 
its auxiliary information (4 bytes each for column and frequency) 
together require on average 50 bytes, we only require 18.375 MB 
for maintaining frequencies of all these tokens in main memory. 
In those rare cases when the token-frequency cache does not fit in 
main memory, we can adopt one of following approaches. 

Cache without Collisions: We can reduce the size of the token-
frequency cache by mapping each token to an integer using a 1-1 
hash function (e.g., MD5 [21]). We now only require 24 bytes of 

space (as opposed to a higher number earlier) for each token: the 
hash value (16 bytes), the column to which it belongs (4 bytes), 
and the frequency (4 bytes). Now, the token-frequency cache for 
the 1.7 million tuple customer relation requires only around 
10MB.  

Cache with Collisions: A less preferred option is to restrict the 
size of the hash table to at most M entries allowing multiple 
tokens to be collapsed into one bucket. The impact on the 
accuracy and correctness of our fuzzy matching algorithm 
depends on the collision probability. More the collisions, the 
more likely we will compute incorrect token weights.   

In our experiments, we assume that the token-frequency cache fits 
entirely in main memory and hence do not measure the impact of 
collisions in a size-restricted token frequency cache on accuracy.  

5. EXTENSIONS 
We now discuss several extensions to the query processing 
algorithm and the fuzzy match similarity function. 

5.1 Indexing Using Tokens 
We now extend the ETI and the fuzzy match query processing 
algorithm to effectively use tokens for further improving 
efficiency. Consider the input tuple I1 [I1, Beoing Company, 
Seattle, WA, 98004] in Table 2. All tokens except ‘beoing’ are 
correct, and this characteristic of most tokens in an input tuple 
being correct holds for a significant percentage of input tokens. 
Tokens are higher level encapsulations of (several) q-grams. 
Therefore, if we also index reference tuples on tokens, we can 
directly look up ETI against these tokens instead of several min-
hash signatures thus potentially improving efficiency of the 
candidate set retrieval. However, the challenge is to ensure that 
the candidate set we fetch contains all K fuzzy matching reference 
tuples. If we do not look up ETI on the q-gram signature of a 
token, say ‘beoing’, we may not consider reference tuples 
containing a token ‘boeing’ close to ‘beoing’. And, it is possible 
that the closest fuzzy match happens to be the reference tuple 
containing ‘boeing’. So, the challenge is to gain efficiency 
without losing accuracy. 

Our approach is to split importance of a token equally among 
itself and its min-hash signature by extending the q-gram 
signature of a token to include the token itself, say, as the 0th 
coordinate in the signature. The extension modifies the similarity 
function fmsapx resulting in fmst_apx. Under the broad assumption 
that all tokens in an input tuple are equally likely to be erroneous, 
the new approximation fmst_apx resulting from the modification of 
the token signature is expected to be a rank-preserving 
transformation of fmsapx. That is, if v1 and v2 are two reference 
tuples, and u an input tuple then E[fmsapx(u, v1)] > E[fmsapx(u, v2)] 
implies E[fmst_apx(u, v1)] > E[fmst_apx (u, v2)]. Consequently, the 
fuzzy matches identified by using fmst_apx are the same as that 
identified by using fmsapx. Hence, we gain efficiency without 
losing accuracy. Lemma 5.1 formally states this result. We omit 
the proof due to space constraints.  

Definition of fmst_apx: Let u be an input tuple, v be a reference 
tuple, t and r be tokens, q and H be positive integers. Define 
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BOOLEAN ShortCircuit_ETILookups(TidScores, TupleList) 
//FetchingTest(sK, sK+1) 

1 Identify K+1 tids ri
1,…,ri

K+1 with the highest similarity scores 

2 Estimate the score K
opts  over Qp of ri

K and determine the best 

possible score 1+K
bests  over Qp of ri

K+1 

3 If 1+> K
best

K
opt ss   

4      Fetch R tuples ri
1,…,ri

K  

5      Compare them with u to determine fms(u, ri
1), …, fms(u, ri

K)  
//Stopping Test 

6      If fms(u, ri
j) � 1+K

bests for all j, then assign TupleList = 
<ri

1,…,ri
k> and return True; else, return false 

Figure 4: Short-Circuiting Decision Procedure 
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Lemma 5.1: If the probability of error in an input token is a 
constant p (0 < p < 1), then fmst_apx is a rank-preserving 
transformation of fmsapx.  

The construction of the ETI index relation has to be modified to 
write additional tuples of the form [token, 0, column, tid-list]. We 
omit details of the ETI building and query processing, which are 
straight-forward extensions of the earlier discussion.  

5.2 Column Weights 
Our infrastructure can be extended to assign varying importance 
to columns while matching tuples. Let W1,…,Wn be the weights 
assigned respectively to columns A1, …, An such that W1+…+Wn 
= 1. A higher Wi value exaggerates the contribution due to 
matches and differences between attribute values in the ith column 
to the overall similarity score. The only aspect that changes is that 
of weights assigned to tokens during the query processing 
algorithm. Now, a token t in the ith column gets a weight w(t)�Wi 
where w(t) is the IDF weight and Wi is the column weight. The 
fuzzy match similarity function, the ETI building algorithm, and 
the rest of the query processing algorithm remain unchanged. 

5.3 Token Transposition Operation 
The fuzzy match similarity function may also consider additional 
transformation operations while transforming an input tuple to a 
reference tuple. We now consider one such operation: the token 
transposition operation which re-orders adjacent tokens.  

Token transposition: Let u[r, a1,…,an] be an input tuple. The 
token transposition operation transforms a token pair (t1, t2) 
consisting of two adjacent tokens in tok(ai) where t2 follows t1 into 
the pair (t2, t1). The cost is a function (e.g., average, min, max, or 
constant) g(w(t1), w(t2)) of the weights of t1 and t2. Because the 
token transposition operation only transforms the ordering among 
tokens the resulting similarity is still less (probabilistically) than 
fmsapx. Therefore, all the analytical guarantees of our fuzzy 
matching algorithm are still valid when we include the token 
transposition operation.   

6. EXPERIMENTS 
Using real datasets, we now empirically demonstrate (i) the 
quality of our new similarity function under a variety of 
commonly encountered errors, and (ii) the efficiency of our fuzzy 
matching operation.  

6.1 Datasets and Setup  
We start with a clean Customer[name, city, state, zip code] 
relation consisting of about 1.7 million tuples from an internal 
operational data warehouse as the reference relation. We create 
input datasets by introducing errors in randomly selected subsets 
of Customer tuples. Therefore, all characteristics of real data—
e.g., variations in token lengths, frequencies of tokens—are 
preserved in the erroneous input tuples. We consider two types of 
error injection methods. The type I method introduces errors in 
tokens with equal probability, i.e., all tokens in a column are 

equally likely to become erroneous. The type II method introduces 
errors in tokens with a probability that is directly proportional to 
their frequency, i.e., tokens with higher frequency are more likely 
to become erroneous. This is a common phenomenon because the 
more frequently a token occurs the more likely it is to have 
erroneous versions, e.g., several different versions of the token 
‘corporation’ are ‘corp, co., corpn, inc.’ Observe that the type II 
error injection method is biased towards fms because errors in low 
weight high frequency tokens do not significantly reduce fms 
similarity.  

Table 4: Types and descriptions of errors 
P(ej | u[i] error) 

ej Description of Error 
i = 1 i � 1 

1 Spelling error: modify token 0.5 0.4 

2 Token replacement: replace commonly 
abbreviated tokens with abbreviations  0.25 0.25 

3 Missing values: u[i] = null 0.0 0.1 

4 Truncation: truncate u[i] by 5 or less characters 0.1 0.1 

5 Token merge: remove delimiters in u[i] 0.1 0.1 

6 Token transposition: reorder adacent tokens  0.1 0.05 

As shown in Table 4, we associate with column i a probability pi 
(0 < pi < 1) with which we introduce errors into the value u[i] of 
tuple u. Error introduction across columns is independent. If we 
decide (with probability pi) to introduce an error into u[i], we 
select from among several types of errors with conditional 
probabilities P(ej | u[i] error) shown in the table above. We do 
not introduce missing values in the name column as input tuples 
with a missing name cannot possibly be matched with their target. 
Hence, we have two conditional probability columns: one each for 
i=1 and i�1. 

Metrics 
We use the following evaluation metrics. 

(1) Normalized Elapsed Time: the elapsed time to process the set 
of input tuples using the fuzzy match algorithm divided by the 
elapsed time to process one input tuple using the naïve 
algorithm (which compares an input tuple with each reference 
tuple). If the normalized time for a fuzzy match algorithm is 
less than the number of input tuples, then it outperforms the 
naive algorithm. 

(2) Accuracy: The percentage of input tuples for which a fuzzy 
match algorithm identifies the seed tuple, from which the 
erroneous input tuple was generated, as the closest reference 
tuple is its accuracy.  

Parameter Settings: In all our experiments, we set K=1 (i.e., we 
only retrieve the closest fuzzy match), the q-gram size q=4, the 
minimum similarity threshold c=0.0, and the token insertion 
factor (required for measuring fms) cins=0.5. 

Machine Specifications: We ran experiments on a 930MHz 
Pentium machine with 256MB RAM running Microsoft Windows 
XP. We implemented our algorithm on the Microsoft SQLServer 
2000 database system using OLEDB for database access. 
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                Figure 5: Accuracy                    Figure 6: Normalized Elapsed Times                     Figure 7: ETI Building Time 

6.2 Experimental Results 
In this section, we use the following notation to denote the 
approaches and parameters we evaluate. To denote the signature 
computation strategy, we use A_H, A∈{Q, Q+T} and H � 0. Q 
denotes q-grams only, and Q+T denotes q-grams plus token 
signatures as discussed in Section 5.1. H is the number of q-grams 
in the signature. For example, Q+T_2 is a signature with 2 q-
grams and the token; Q+T_0 denotes a token only (no q-grams at 
all) signature.   

6.2.1 Accuracy 
We first compare the quality of ed and fms, and then evaluate 
accuracy of our fuzzy match algorithms. 

6.2.1.1 Comparison between ed and fms  
We show that the quality of fms is better than ed using two 
datasets: one created using Type I and the other using Type II 
error injection methods. Each one of these datasets has around 
100 tuples. The probabilities of error in columns are 0.90, 0.5, 
0.5, 0.6, respectively. Because we want to compare the quality of 
similarity functions and not the efficiency of algorithms for 
identifying the fuzzy matches, we use the naïve algorithm to 
identify the best fuzzy match for each input tuple.  

The adjacent table shows 
the accuracies of fms and 
ed on each dataset. We 
observe that fms is better 
than ed. As expected, it is significantly better for the dataset 
created with Type II errors than it is for the dataset with Type I 
errors. To study the cases that are not biased towards fms, we 
henceforth consider only datasets created with Type I error 
injection method. 

Table 5: Error probabilities for creating datasets 
Dataset Error Probabilities: [Name, City, State, Zip code] 

D1 [0.90, 0.90, 0.90, 0.90] 

D2 [0.80, 0.5, 0.5, 0.6] 

D3 [0.70, 0.5, 0.5, 0.25] 

6.2.1.2 Accuracy of Algorithms 
We evaluate the accuracy of various strategies on datasets D1, D2, 
and D3 generated using the type I error injection method. The 
error probabilities on each column for these datasets are shown in 
Table 5. Note that D3 is relatively cleaner than D2, which in turn 
is cleaner than D1. Each of D1, D2, and D3 has 1655 tuples. The 
Customer relation which is the reference relation in all our 

experiments has approximately 2 million tuples. Figure 5 shows 
the results from which we observe the following. 

(i) Min-hash signatures significantly improve accuracy: Q_H (for 
H>0) is more accurate (5% to 25%) than Q+T_0 (the tokens 
only approach).  

(ii) Adding tokens to the signature does not negatively impact 
accuracy, because when H > 0, Q+T_H is as accurate as Q_H. 

(iii) Even small signature sizes yield higher gains in accuracy: Q_2 
is more accurate than Q_1, but the difference in accuracy 
between Q_2 and Q_3 is not significant. 

6.2.2 Efficiency 
To demonstrate the overall efficiency of our algorithms, we 
measure the normalized elapsed time for processing fuzzy match 
queries, the number of candidate reference tuples fetched per 
input tuple, and the number of tids processed per input tuple. To 
demonstrate the effectiveness of the optimistic short circuiting 
(OSC) optimization, we observe the numbers of reference tuples 
fetched per input tuple when OSC succeeded versus when it 
failed. Figure 6 shows the normalized elapsed times, from which 
we observe the following. 

(i) Our algorithms are 2 to 3 orders of magnitude faster than the 
naïve algorithm: the normalized elapsed time of any of our 
strategies for processing all 1655 input tuples is less than 2.5. 
That is, they process all 1655 tuples before the naïve 
algorithm processes 2 or 3 tuples. 

(ii) The query processing time decreases with the signature size. 
Even though we may have to look up ETI for more q-grams, 
the presence of more q-grams helps better distinguish 
differences between similarity scores of tids. Consequently, 
the average number of reference tuples fetched per input tuple 
decreases with signature size, also confirmed by Figure 8. 

(iii) For all 1�H�3, Q+T_H is significantly faster than Q_H thus 
confirming our intuition (discussed in Section 5.1) that the 
use of tokens significantly improves efficiency of candidate 
set retrieval without compromising on accuracy. 

We now discuss results on the average number of reference tuples 
fetched per input tuple (Figure 8), the average number of tids 
processed per input tuple (Figure 9) for D2. The results for D1 
and D3 are similar. Again, Figure 8 shows that more q-grams help 
decrease candidate set sizes by better distinguishing similarity 
scores of tids. Even though, as shown in Figure 9, the average 
number of tids processed per input tuple increases, it is more than 
compensated by the average reduction in candidate set sizes. 

 fms ed 

Accuracy on Type I  69% 63% 

Accuracy on Type II 95% 71% 



Figure 10 shows that the optimistic short circuiting (OSC) 
optimization is successful for 50%—75% of the input tuples, and 
the success fraction increases with signature size. Once again, we 
believe that this behavior is due to the higher distinguishing 
ability between similarities by using more q-grams. Figure 8 also 
splits the average number of reference tuples fetched into two 
parts: the number when OSC succeeds and the number when OSC 
fails. We observe that when OSC succeeds, we retrieve very few 
(around 1 per input tuple) candidate tuples. For those remaining 
tuples where OSC fails, we fetch a much larger number.  

6.2.2.1 ETI Building Time 
Figure 7 shows the normalized ETI building times for various 
settings. As expected the time for Q+T_H is greater than Q_H. 
Observe that the normalized time for any setting is less than 7. 
Thus, if we have more than 10 input tuples to fuzzy match, then it 
seems advantageous to build the ETI, and use our fuzzy match 
algorithm. Because we persist the ETI as a standard indexed 
relation, we can use it for subsequent batches of input tuples if the 
reference table does not change. Due to space constraints, we do 
not discuss ETI maintenance when the reference table changes.  

7. CONCLUSIONS 
In this paper, we generalized edit distance similarity by 
incorporating the notion of tokens and their importance to 
develop an accurate fuzzy match similarity function for matching 
erroneous input tuples with clean tuples from a reference relation. 
We then developed the error tolerant index and an efficient 
algorithm for identifying with high probability the closest fuzzy 
matching reference tuples. Using real datasets, we demonstrated 
the high quality of our similarity function and the efficiency of 
our algorithms. 
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   Figure 8: Average Candidate Set Size         Figure 9: #Tids processed per Input Tuple          Figure 10: OSC Success Fractions 


