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Abstract

The Hierarchical Mixture of Experts (HME) is
a well-known tree-structured model for regres-
sion and classification, based on soft probabilis-
tic splits of the input space. In its original for-
mulation its parameters are determined by maxi-
mum likelihood, which is prone to severe over-
fitting, including singularities in the likelihood
function. Furthermore the maximum likelihood
framework offers no natural metric for optimiz-
ing the complexity and structure of the tree. Pre-
vious attempts to provide a Bayesian treatment
of the HME model have relied either on local
Gaussian representations based on the Laplace
approximation, or have modified the model so
that it represents the joint distribution of both in-
put and output variables, which can be wasteful
of resources if the goal is prediction. In this pa-
per we describe a fully Bayesian treatment of the
original HME model based on variational infer-
ence. By combining ‘local’ and ‘global’ varia-
tional methods we obtain a rigorous lower bound
on the marginal probability of the data under the
model. This bound is optimized during the train-
ing phase, and its resulting value can be used for
model order selection. We present results using
this approach for data sets describing robot arm
kinematics.

1 INTRODUCTION

The hierarchical mixture of experts (HME) is a parametric
probabilistic model for solving regression and classifica-
tion problems (Jordan and Jacobs 1994). The HME can be
viewed as a conditional mixture model in which the distri-
bution of the target variables is given by a mixture of com-
ponent distributions in which the components, as well as
the mixing coefficients, are conditioned on the input vari-
ables. The component distributions are referred to as ex-

perts, while mixing coefficients are controlled by gating
distributions. Values for the model parameters can be set
using maximum likelihood, for which there exists an ef-
ficient EM algorithm (Jordan and Jacobs 1994). Such a
model will automatically perform a soft partitioning of the
data set into groups corresponding to different regions of
input space and simultaneously fit separate models (cor-
responding to the mixture components) to each of those
groups.

A major limitation of the maximum likelihood approach
is the propensity for over-fitting. This can be particularly
problematic in a complex model such as the HME due
to the relatively large number of parameters involved in
defining the expert and gating distributions. Indeed, there
are many singularities in the likelihood function arising
whenever one of the mixture components ‘collapses’ onto
a single data point. Furthermore, the maximum likelihood
framework provides no direct mechanism for determining
either the number of nodes in the HME tree, or its topology,
since optimization of the likelihood function will simply
favour ever more complex models. Both of these problems
can be resolved by adopting a Bayesian approach, in which
we introduce prior distributions over the parameters of the
HME. However, an exact Bayesian treatment of the HME
is intractable. In fact the gating distributions do not even
admit conjugate priors.

Currently there is considerable interest in deterministic ap-
proximation schemes for Bayesian inference based on vari-
ational methods. An application of variational inference
to the HME model was previously investigated by Water-
house, MacKay, and Robinson (1996). However, in order
to define a tractable algorithm they fitted Gaussian distribu-
tions over the parameters controlling the gating functions
using the Laplace approximation. This sacrifices one of the
most appealing aspects of the variational approach namely
that it optimizes a rigorous lower bound on the log marginal
likelihood.

A variational treatment for a related model was recently
given by Ueda and Ghahramani (2002), in which they ob-
tain tractability by considering a model which represents
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the joint distribution over both input and output variables
(though in fact they only implement a single-layer model,
not a hierarchical version). If the goal is prediction then
such an approach can be very wasteful of resources, as well
as demanding of data, since the distribution over the input
space (which often has much higher dimensionality than
the target space) is not required.

Here we build on recent developments in variational meth-
ods to provide a fully Bayesian treatment of the hierarchi-
cal mixture of experts model in which we optimize a well
defined lower bound on the log marginal probability of the
observed data (Bishop 2002).

We illustrate this framework by applying the Bayesian
HME to example problems involving the kinematics of
robot arms. For the case of inverse kinematics the condi-
tional distribution being modelled is multi-modal, and this
is handled well by the HME approach.

2 THE HME MODEL

The HME describes a conditional probability distribution
over a vector

�
of target variables, conditioned on a vector� of inputs. For a given value of � , the distribution over

�
is

a mixture distribution in which the mixing coefficients are
defined with the help of a tree-structured graph, of which
a simple example is shown in Figure 1. Each expert rep-
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Figure 1: A hierarchical mixture of experts, comprising ex-
pert nodes, shown as diamonds, and gating nodes, shown
as squares. The ��� denote the binary variables associated
with the gating nodes whereas the ��� denote the means of
the conditional distributions over the target variable

�
.

resents a probability distribution over
�
, conditioned on the

input vector � . The gating nodes are probabilistic switches
which decide which of the expert nodes is selected, and
again these switching probabilities are functions of � . For
the moment let us suppose

�
has real valued components

and that the corresponding expert distributions are Gaus-
sian. Relaxations of the Gaussian assumption will be dis-
cussed later. We shall also suppose that the HME tree is
binary.

The conditional distribution for expert � is a Gaussian with
mean � �
	 ����
�� � � , so that� 	 ��� ����� � ��� � ��
�� 	 ��� � � ���������� � � (1)

where � 	 �!� " �$#%� denotes a Gaussian distribution with
mean

"
and covariance # . Here � � is a matrix of pa-

rameters associated with expert � , � � is the precision (in-
verse variance) of the distribution, and � is the unit ma-
trix. In order to simplify the notation we have assumed that
the vector of inputs has been augmented with an additional
dummy input variable whose value is clamped to 1, so that
the corresponding column of � represents a ‘bias’.

The HME model is perhaps best understood generatively.
Each gating node has an associated binary variable � �'&(*) �,+.- , whose value is chosen with probability given by� 	 �/� � ����0 � ��
21 	 043� ���65�798:+<;=1 	 0�3� ���?> �@� 5�7 (2)

where 1 	BA ��
 ++DCFE,G�H 	 ; A �
is the logistic sigmoid function, and 0 � is a vector of pa-
rameters governing the distribution. If � � 
I+ we go down
the left branch while if ��� 
 ) we go down the right branch.
Starting at the top of the tree, we thereby stochastically
choose a path down to a single expert node � , and then
generate a value for

�
from conditional distribution for that

expert.

We see that, given the states of the gating variables, the
HME model corresponds to a conditional distribution for

�
of the form

� 	 ��� �����J��K<��L!��
 MN��O � � 	 �!� � � ���������� � �6PRQ
where S is the total number of experts, � denotes

( � � - ,
and K denotes

( � � - . Here we have definedT � 
 N �2U�/� � (3)

in which the product is taken over all gating nodes on the
unique path from the root node to the � th expert, and

U�/� 
WV �/� if � is in the left sub-tree of X ,+<; �/� otherwise.

Marginalizing over the gating variables LY
 ( � � - we obtain� 	 �!� �����J��0���KD�
 Z\[ N � � 	 ��� � � ����� �4�� � �6PRQ N � � 	 �/� � ����0 � �
 Z �^] � 	 ���_� 	 ��� � � ����� ����`� �
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Figure 2: A toy data set together with the result of fitting
the HME model of Figure 1 using the Bayesian technique
described in this paper. The data points have been coloured
with proportions of red, blue and green ink according to the
posterior probabilities of the points having been generated
from the three corresponding experts.

so that the conditional distribution � 	 �!� �����J��0���KD� is a
mixture of Gaussians in which the mixing coefficient ] �
	 ���for expert � is given by a product over all gating nodes on
the unique path from the root to expert � of factors 1 	 0 3� ���
or + ;�1 	 0 3� ��� according to whether the branch at the X th
node corresponds to ��� 
 + or �/� 
 ) .
If we are given an i.i.d. data set

� 
 ( ��� - , comprising�
observations of the input vector � , and corresponding

observations of the target vector � 
 ( � � - , the likelihood
function is given by

� 	 �J��0���K���
 �N
� O � � 	 � � � � � ���J��0���K��	�

Note that there will be a separate latent variable L � for each
data point, and in the likelihood function we are implicitly
marginalizing over 
 
 ( L�� - . In its original formulation,
the parameters � , K and 0 of the HME were determined
by maximum likelihood using the EM algorithm, in which
the E-step involves finding the posterior distribution over
the
( L�� - , and the M-step involves maximizing the corre-

sponding expected complete-data log likelihood with re-
spect to � , 0 and K .

Note that the maximum likelihood solution for � � of a
conditional Gaussian distribution of the form (1) corre-
sponds to linear regression, so that the HME model is per-
forming a soft partitioning of the data set and then fitting
a linear regression model to each of those partitions sepa-
rately.

We illustrate the HME model by considering a simple toy
problem (Bishop 1995) shown in Figure 2. Here we have
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Figure 3: Mixing coefficients for each of the three experts
as a function of � , for the toy problem shown in Figure 2.

generated 200 values of 
 uniformly from the interval 	 ) � +*�
and then evaluated � 
 
 C ) � ������� 	�� ] 
 ��C�� where � is a
zero-mean Gaussian random variable having standard de-
viation

) � )�� . Then we learn the inverse of this problem,
namely that of predicting 
 given a new value of � , using
an HME model having 2 gating nodes and 3 experts, with
the architecture shown in Figure 1. The lines in Figure 2
correspond to the mean outputs of the three experts. In
Figure 3 we show the (means of the distribution over the)
mixing coefficients as a function of � for the three experts.

A key feature to note is that this conditional distribution
is multi-modal. This is possible because the gating node
outputs are smooth functions of the input variable. Such
multi-modality, which often arises in the solution of inverse
problems, could not be captured in CART (Classification
and Regression Trees) or similar models, since they assign
each point of the input space to one, and only one, of the
terminal nodes (‘hard’ splits).

2.1 A Bayesian HME

We can avoid the severe bias of maximum likelihood, and
also obtain a principled framework for optimizing the com-
plexity and topology of the HME graph, by adopting a
Bayesian treatment. Specifically we define a Gaussian
prior distribution independently over of the parameters 0 �
for each of the gating nodes given by� 	 0 � � � � ��
F� 	 0 � � � � � �4�� � ���
Similarly, for the parameters � � of the expert nodes we
define priors given by

� 	 � � � � � ��
 �N
� O � � 	! � � � � � � �4�� � �

where " runs over the target variables, and # is the dimen-
sionality of the target space. Thus the rows  � � of � � ,
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corresponding to different target variables, are given inde-
pendent priors. The hyper-parameters

� � and
� � , as well as

the noise precisions � � , are given conjugate gamma distri-
butions � 	 � � � 
 ����� 	 � � � A ���9�� 	 � � � 
 ����� 	 � � � A ���9�� 	 � � � 
 ����� 	 � � � A ���,�
where

����� 	 � � A ���9�
	 ��� ��
�� ����� E9G H 	 ; A � �� 	BA � �

in which we set A 
 + ) ��� and �F
 + ) ��� giving broad
hyper-priors. Our Bayesian HME can be expressed as
the directed probabilistic graphical model shown in Fig-
ure 4. Exact inference in this model is not analytically
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Figure 4: Graphical model representation of the Bayesian
HME. The box, called a plate, denotes

�
copies of the

nodes shown inside the box. This model does not include
the distribution over the input variables � � and so these do
not have a corresponding stochastic node. The output node� � is shaded, indicating that these variables are observed.

tractable, and so we make use of variational methods (Jor-
dan, Ghahramani, Jaakkola, and Saul 1998).

3 VARIATIONAL INFERENCE

Our goal is to find a variational distribution � 	�� � that ap-
proximates the true posterior distribution � 	�� � � � , where
we collectively denote the hidden variables by � 
	 �J��K<� 
 ��0����%��� � , and we suppress the dependence on

�
.

To do this we note the following decomposition of the log
marginal probability of the observed data, which holds for
any choice of distribution � 	�� �� ��� 	 � ��
�� 	 � � C! #" 	 �%$ � � (4)

where � 	 � � 
 & � 	�� � � � V � 	�� � � �� 	�� �(' # � (5)

 #" 	 �%$ � � 
 ; & � 	�� � � � V � 	�� � � �� 	)� �*' # � (6)

and the integrals are replaced by sums in the case of the dis-
crete variables in 
 . Here  #" 	 �%$ � � is the Kullback-Leibler
divergence between the variational distribution � 	)� � and
the true posterior � 	�� � � � . Since this satisfies  #" 	 �%$ ���,+)

it follows from (4) that the quantity � 	 � � forms a lower
bound on

� ��� 	 � � . Maximizing the lower bound with re-
spect to � 	�� � is equivalent to minimizing the Kullback-
Leibler divergence, which has the effect of bringing the
variational distribution closer to the true posterior.

3.1 Local Convex Bound

Our goal is to find a variational distribution � 	�� � which
will give a tight lower bound, yet which is sufficiently sim-
ple that it remains tractable. Our approach will be based
on factorized forms for the variational distribution, as dis-
cussed in Section 3.2. While this approach is widely used
(Bishop, Spiegelhalter, and Winn 2002), and has given
good results for a wide range of models, it does not directly
lead to a tractable solution for the Bayesian HME.

The difficulty lies with the sigmoid function in (2) which
spoils the conjugate-exponential structure of the model. In
this paper we address this problem using another technique
from the field of variational methods based on bounding
log convex functions (Jaakkola and Jordan 2000).

We first of all re-write (2) in the form� 	 � � � 0 � ������
�E,G H 	 � � 0 3� ����1 	 ;<0 3� ���	�
Next we make use of a variational bound for the logistic
sigmoid function in the form1 	 � �-+/. 	 � �10.�2	 1 	 0.��E,G�H ( 	 � ;30.�14 �;,5 	 0.� 	 � � ;30 � �76 (7)

where 5 	 0.� 
98�� �%: 	 0;4 � ��4 	=< 0.� , and 0 is a variational pa-
rameter. For any given value of � we can make this bound
exact by an appropriate choice of the variational parameter0 , namely 0 
 � . In fact the bound is exact at both � 
90
and � 
 ;-0 . The bound is illustrated in Figure 5, in which
the solid curve shows the logistic sigmoid function 1 	 � � ,
and the dashed curve shows the lower bound . 	 � ��0.� .
We can use this result to derive a new bound >�@?A� which
is obtained by replacing every occurrence of � 	 �\� � 0 � �����
with its lower bound E,G H 	 ��� 0 3� ����. 	 ;<0 3� ����0 � � , where. 	�B � B � is defined by (7). So far as the dependence on 0 is
concerned, the effect of this transformation is to replace the
logistic sigmoid with an exponential, thereby restoring con-
jugacy to the Bayesian model. For each gating node X there
is a separate variational parameter 0 � � for each observationC , and the values of these parameters can be optimized to
yield the tightest bound.

Note that the variational bound given by . 	 � �10.� does not
extend to multi-way gating nodes governed by softmax
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Figure 5: Logistic sigmoid function and variational bound.

functions. However, a complex, multi-way division of the
input space can be represented using binary splits provided
the tree structure is sufficiently rich.

3.2 Factorized Distributions

We now choose some family of distributions to represent� 	�� � and then seek a member of that family which max-
imizes the lower bound � 	 � � . If we allow � 	�� � to have
complete flexibility then we see that the maximum of the
lower bound occurs for � 	�� � 
 � 	�� � � � so that the varia-
tional posterior distribution equals the true posterior. In this
case the Kullback-Leibler divergence vanishes and � 	 � ��
� ��� 	 � � . However, working with the true posterior distri-
bution is computationally intractable. We must therefore
consider a more restricted family of � distributions which
has the property that the lower bound (5) can be evaluated
and optimized efficiently and yet which is still sufficiently
flexible as to give a good approximation to the true poste-
rior distribution.

Here we consider the set of distributions which factorizes
with respect to disjoint groups � � of variables

� 	�� ��
 N � �,� 	)� � ��� (8)

Substituting (8) into (5) we can maximize � 	 � � variation-
ally with respect to one of the factors, say �*� 	�� � � keeping
all �$� for ���
 X fixed. This leads to the solution� � ���� 	)� � ��
�� � ��� 	�� � � ���	� ��
O4��� C�
�� � ��8 � (9)

where � B � � denotes an expectation with respect to the dis-
tribution � � 	)� � � , and the constant represents the log of the
normalization coefficient for the distribution. In the case of
models having a conjugate-exponential structure, we can
evaluate the right hand side explicitly and obtain a solution
for � �� 	)� � � which belongs to the same class of distribution
(for instance Gaussian or Gamma) as the original condi-
tional � 	)� � � B � .

Note that these are coupled equations since the solution
for each � ��	)� � � depends on expectations with respect to
the other factors

( � ��
O�� - . The variational optimization pro-
ceeds by initializing the � ��	)� � � and then cycling through
each factor in turn replacing the current distribution with a
revised estimate given by (9).

For the Bayesian HME model we consider the specific fac-
torization given by

� 	�� ��
 ��� 	 � � � K 	 K�� ��� 	 
 � ��� 	 0 � � � 	 � � � � 	 �<�9� (10)

from which we obtain a set of re-estimation equations for
each of the factors. For instance, the optimal solution for� � 	 
 � takes the form

���� 	 
 ��
 N � N � 1 	�� � � � 5 7���8:+<;=1 	�� � � �R> �$� 5 7��
where the product over X runs over all gating nodes, and

� � � 
 Z � T 
 �� ��� � � � � � � � � ; �B� � ��"! $ � �%; � � � � $ �$#&%C'�_0 3� �?� �
in which � is the dimensionality of the target space, andT 
 �� � has an analogous definition to

T � in (3) but with theX th term omitted. Note that the solution for � �� 	 
 � depends
on moments, such as �B0 3� � , evaluated with respect to other
factors in the variational � distribution. Similar results are
obtained for the other factors, in which the solutions for� � , � � and � K are gamma distributions while those for� � and � � are Gaussian. Due to lack of space we do not
reproduce all of the update equations here.

Optimization of the 0 parameters is achieved by maximiz-
ing the lower bound on the marginal likelihood, leading to
the re-estimation equations0 �� � 
 ��3 � �B0 � 0�3� �?� � �
Re-estimation of the

( 0 � � - is interleaved with re-estimation
of the factors in the variational posterior.

It should be noted that, although we are optimizing a well
defined bound on the log marginal likelihood, we will con-
verge to a local, but not necessarily a global, maximum.
We address this through multiple re-starts with random ini-
tialization of the variational distribution.

3.3 Lower Bound

In this variational framework it is also tractable to compute
the value of the lower bound >� itself (Bishop, Spiegelhal-
ter, and Winn 2002). We omit detailed expressions due to
lack of space. In fact most of the terms which appear in the
bound are already evaluated during the variational updates,
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so little additional computational cost is incurred. Evalua-
tion of the bound can be used to monitor convergence and
to set stopping criteria.

The bound also provides a check on the correctness of the
algorithm and its implementation since each variational up-
date should not lead to a decrease in the value of this bound.
As a further check on the correctness of the implementation
during the debugging phase, we use finite differences to
evaluate the derivatives with respect to each set of parame-
ters immediately after updating the corresponding factor in
the variational posterior distribution, to confirm that a local
maximum with respect to those parameters has indeed been
reached.

If we consider a range of models indexed by � then the
posterior distribution over models, given an observed data
set � , is given by � 	 � � � ���=� 	 � �_� 	 � � � � where � 	 � �
is a prior distribution over models. This posterior distri-
bution can be used to select the most probable model, or to
perform model averaging. In contrast to the maximum like-
lihood approach, which always favours ever more complex
models, the Bayesian posterior provides a natural trade-off
between fitting the data and model complexity.

The key quantity we need to evaluate is therefore the model
‘evidence’ � 	 � � � � , whose logarithm we have approxi-
mated through the lower bound, ��� , in the form (5). In
order to make effective use of the bound, however, it is im-
portant to obtain good solutions to the variational equations
by avoiding poor local maxima.

For moderately sized trees, we can determine the archi-
tecture of the HME by simply evaluating exhaustively all
possible trees up to some maximum depth, that are unique
up to symmetry. For each architecture we perform multi-
ple training runs using different random initializations and
keep only the one for which the resulting value of the lower
bound is largest, since this represents our best approxima-
tion to the posterior distribution. These largest values are
then compared and the largest of these is used to deter-
mine the choice of architecture. Note that the largest val-
ues from each model could also be used to construct (un-
normalized) weights E9G H 	 � � � for use in model averaging.
For larger trees, we could consider using greedy search
algorithms (Ueda and Ghahramani 2002) or Monte-Carlo
methods (Chipman, George, and McCulloch 2002).

The application of the lower bound in model order selec-
tion can be illustrated using the toy data set of Figure 2.
Here we consider HME models having between 2 and 5
expert nodes, and for each architecture we perform 100
runs of the variational optimization starting with random
initializations. Plots of the resulting values of the lower
bound are shown in Figure 6. We see that there are many
local maxima of the lower bound. Also we observe that
the largest value of the lower bound for each architecture
exhibits the classical ‘Ockham hill’, which has its maxi-

2 3 4 5
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Number of experts

Figure 6: Plot of the the lower bound values obtained with
multiple random starts for HME architectures having vari-
ous numbers of expert nodes, applied to the toy data set of
Figure 2.

mum value for the optimal architecture (3 experts in this
case) and falls steeply for models which are less complex
(in this case ones having 2 experts) due to the poor fit to the
data, and also falls away, but much less sharply, for more
complex models as any improvement in data fit is offset by
an increasing complexity penalty arising from the Bayesian
marginalization.

4 RESULTS

We illustrate the application of the Bayesian approach to
the HME using a data set derived from the kinematics of
a two-link robot arm, whose geometry is shown in Fig-
ure 7. The cartesian coordinates of the robot end effector
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Figure 7: Geometry of the two-link robot arm used to gen-
erate data to illustrate the Bayesian HME model.
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are given by the forward kinematics equations

� � 
 � � 
������ � ; � � 
���� 	 � � C�� � �
� � 
 � � � � ��� � ; � � ����� 	 � � C�� � �

where
� � and

� � are the lengths of the links, and � � and � �
are the joint angles. Note that the forward kinematic equa-
tions have a unique solution for given values of the joint
angles. However, we are interested in solving the inverse
kinematics in which we are given the end effector location
and have to determine the corresponding joint angles. This
inverse problem can be multimodal due to the presence of
two solutions, as indicated in Figure 8.
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Figure 8: Illustration of the regions of space covered by
the robot end effector for given ranges of the joint angles.
Regions A and B are accessible in an elbow down config-
uration while regions B and C are accessible in elbow up
configurations. Thus in region B there are two possible so-
lutions to the inverse kinematics problem.

Here we consider joint lengths
� � 
 ) � � and

� � 
 ) � � ,
and we limit the joint angles to the ranges

) � � ?�� � ? + � �
and ] 4 � ?�� � ? � ] 4 � . This allows the robot end effector
to sweep out the regions shown in Figure 8.

Standard approaches to regression, based on least squares
optimization, can give extremely poor results when applied
to multi-modal problems. Figure 9 shows the result of
training a multi-layer perceptron neural network on this
data set using least squares. The network had 20 hidden
units and was trained using 3000 iterations of conjugate
gradients. We see that the results are particularly poor in
the central region where the inverse kinematics is bimodal.
This arises because a least squares solution is computing a
conditional average, and the average of the two solutions
is not itself a solution (in fact it corresponds to a solution
with � � 
 ] in which the robot arm is ‘straight’, hence the
appearance of radial lines in the central region in Figure 9).

The corresponding results obtained with the Bayesian
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Figure 9: Test set results for the two-link robot arm
problem obtained using a neural network trained by least
squares. For each test set point we have drawn a line be-
tween the end effector position (which is the input to the
neural network) and the corresponding predicted position
obtained by taking the joint angles output by the network
and feeding them through the forward kinematic equations.
Thus the length of a line indicates the magnitude of the cor-
responding predictive error.

HME model are shown in Figure 10. Here an HME model
with 16 experts was trained with 100 random starts and the
solution giving the largest value for the lower bound was
chosen and used to generate the plot. For each test input,
the prediction is given by the mean of the expert distribu-
tion for the most probable expert. Thus in the multi-modal
region the model selects either one branch or the other,
not their average, and hence the predictive errors are much
smaller.

As a third application of the Bayesian HME model we con-
sider a more realistic robot arm problem, taken from a fam-
ily of public domain data sets which have been syntheti-
cally generated to model the forward kinematics of an 8-
link all-revolute robot arm. The task is to predict the dis-
tance between the end effector of the robot arm and a speci-
fied point, from the parameters and angles of the robot arm.
This family offers data sets with varying number of input
parameters, degree of non-linearity and level of noise. It is
available, together with more detailed documentation, from
the Delve repository1.

We used the data set with 8 inputs, a high degree of non-
linearity and medium noise (kin-8nm). The size of the
training set was 1024 and the data was normalized to zero
mean and unit variance. We trained HME models with 2–
8 experts, trying all unique tree topologies and for each
instance trying 50 different random starts. In an attempt

1http://www.cs.toronto.edu/ � delve/
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Figure 10: Test set results, analogous to those in Fig-
ure 9, but obtained using the Bayesian HME. Note the
much smaller errors particularly in the central multi-modal
region.

to avoid local optima, we used a deterministic annealing
schedule during the training, scaling the conditional prob-
ability of the data with an inverse temperature parameter.
This parameter had an initial value of 5.85, which reduced
with a factor of 0.97 at each of the 200 first iterations of
training, which were followed by another 600 iterations of
training with the temperature fixed at 1.0.

We selected the model with the overall highest bound,
which turned out to be a model with four experts, and then
evaluated this model using an independent test set from
the same problem of size 1024. The standardized mean
squared error (MSE) on this test set was 0.249, which com-
pares well with the results presented by Waterhouse (1997)
for a range of different HME models, which had MSE val-
ues of 0.262–0.3782.

5 DISCUSSION

In this paper we have presented a variational treatment for
a Bayesian hierarchical mixture of experts model which
maintains a rigorous lower bound on the log marginal like-
lihood. We have shown that the model can learn good so-
lutions to multi-dimensional regression problems, and that
the lower bound can be used to perform model selection.

Although we have focussed on regression problems in this
paper, it is straightforward to apply this approach to binary
classification problems for a model with logistic sigmoid
experts simply by applying the variational bound (7) to the
expert nodes as well as to the gating nodes.

2Of all models evaluated by Waterhouse (1997), the lowest
MSE, 0.094, was obtained for an MLP, whereas a linear regres-
sion model scored worst with a MSE of 0.569.

In common with other applications of variational inference
we have observed that the lower bound possesses many lo-
cal maxima, not all of which represent good solutions. Here
we have proceeded by using multiple runs with random ini-
tializations and selecting the best optima, augmented where
necessary by deterministic annealing. For large data sets
and complex models this may be computationally infeasi-
ble, and it remains an open research issue to find effective
and broadly applicable methods to address the local max-
ima problem for variational methods.
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