
Validating Use-Cases with the AsmL Test Tool

Mike Barnett, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Tillmann and Margus Veanes

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{mbarnett,wrwg,schulte,nikolait,margus}@microsoft.com

Abstract. The Abstract State Machine Language supports use-case oriented modeling in a faithful way.
In this paper we discuss how the AsmL test tool, a new component of the AsmL tool environment, is
used to generate finite state machines from use-case models which can be used for validation purposes
or for testing.1

1 Introduction
The Abstract State Machine Language (AsmL) is an executable modeling language which is fully
integrated in the .NET framework and Microsoft development tools. AsmL is designed to meet modeling
needs arising in requirement and design specifications. This paper shows how AsmL can be used in a
faithful way for use-case/scenario oriented modeling and how these models can be used for validation and
verification purposes with the AsmL test tool. The paper refines and extends earlier work on AsmL and use
cases [1].

The AsmL test tool is the newest component of the AsmL system [2]. It supports the generation of
parameters, of call sequences, and the conduction of conformance tests. The tool realizes a semi-automatic
approach, requiring a user to annotate models with information for generating tests. On the basis of the
annotated model, parameter sets, a finite state machine, and call sequences are algorithmically derived.
Some basic aspects of the AsmL test tool have been described in [4]2. In this paper we investigate the use
of the AsmL test tool for generating finite state machines from use-case models, which serve as a validation
for the model and as a starting point for generating conformance tests.

The paper is organized as follows. We start with a sketch of AsmL. We then describe how we model
use-cases in AsmL. We then introduce as a non-trivial example a model for the weather control logic of
CTAS, a flight control system. We will use the AsmL test tool for deriving a finite state machine for the
CTAS weather control logic which puts together the scenarios of the model into a coherent view of the
behavior. The paper concludes with a discussion and comparison of related work.

2 A Glimpse of AsmL
Space constraints prevent us from giving a systematic introduction into AsmL; instead we rely on the
readers’ intuitive understanding of the language as used in the examples3. Conceptually, AsmL is a fusion
of the Abstract State Machine paradigm and the .NET common language runtime type system. One finds
the usual concepts of earlier modeling languages like VDM or Z. AsmL has sets, finite mappings and other
high level data types with convenient and mathematically-oriented notations (e.g., comprehensions); it uses
ASM update semantics and atomic transactions for dealing with state [3]; and it has all the ingredients of a
.NET language like interfaces, structures, classes, enumerations, methods, delegates, properties, and events.
The close embedding into .NET allows AsmL to interoperate with any other .NET language, and makes it a
perfect choice for modeling under .NET.

The most unique feature of AsmL is its foundation on Abstract State Machines (ASM) [3]. An ASM is a
state machine which in each step computes a set of updates of the machine's variables. Upon the
completion of a step, all updates are "fired" (committed) simultaneously. The computation of an update set
can be complex, and the number of updates calculated may depend on the current state. The expressive
power of AsmL in modeling is an extension of basic ASMs to that of nondeterministic synchronous

1 Note to referees: this paper is an extended version of a paper accepted for presentation at the SCESM'03 workshop;

the proceedings of the workshop do not have a formal publication status.
2 We expect to have more references for the tool available at publication time of this paper.
3 At the time of this writing, there is no publication about the AsmL language available. However, the AsmL

distribution [1] contains a tutorial and reference.

 2

parallel ASMs with submachines. AsmL uses the theory of partial updates [11,12] and the concept of state
background for ASMs [10].

Control flow of the ASM is described in AsmL in a programmatic, textual way: there are constructs for
parallel composition, sequencing of steps, non-deterministic (more exactly, random) choice, loops, and
exceptions. Upon an exception, all of the updates are rolled back, enabling atomic transactions to be built
from many sub-steps.

AsmL supports meta-modeling and introspection that allows a systematic exploration of the non-
determinism in the model. On the meta-level the state is a first-class citizen, which enables us to realize
various search strategies over the state space of a model. This is important for the instrumentation of an
AsmL model for test generation and the use as a test oracle.

AsmL documents are given in XML and/or in Word and can be compiled from Visual Studio .NET or
from Word; the AsmL source is embedded in special tags/styles. Conversion between XML and Word (for
a well-defined subset of styles) is available. Note that this paper is itself a valid AsmL document; it is fed
directly into the AsmL system for executing the formal parts it contains or for working with the AsmL test
tool.

3 Use-Cases in AsmL
We consider a use case to be a set of scenarios; each scenario describes a sequence of events. As in [1], we
do not explicitly attach actors and roles to the events, but regard this as an extra level of methodology
which can be expressed for a particular model if required. Our goal is to describe scenarios
programmatically by using the sequence notation of AsmL, as in:

Here step is a keyword introducing the next step of the abstract state machine in a sequence, and DO is a
helper method which appends an event to the sequence of events associated with this scenario.

We collect the required auxiliary definitions in an abstract class UseCase which is extended for a
concrete use case. An event is described by an interface which just serves as a type tag. The class contains
an ASM variable holding a sequence of events. The DO helper method appends to this sequence. If a use-
case is "played" we can think of this variable as holding the history of what has happened so far.

interface Event

abstract class UseCase

 var events as Seq of Event = []

 DO(e as Event)

 events := events + [e]

To give life to these definitions, let us consider a simple example, a keycard controlled door. The use case
for this defines structures (value types in AsmL) for the actions of the door and of the user, and gives
scenarios for the normal behavior (the keycard is valid) and for the error behavior. Note that the "case"
notation below is a convenient way to extend the enclosing class/structure in AsmL's OO type system, and
corresponds to the sum-of-products or "free algebraic type" construct in other languages:

 step DO(Event1)

 step DO(Event2)

 3

class KeycardControlledDoor extends UseCase

 structure DoorEvent implements Event

 case WaitForCard

 case ReleaseLock

 case SignalInvalidCard

 structure UserEvent implements Event

 case SwipeCard

 NormalScenario()

 step DO(DoorEvent.WaitForCard)

 step DO(UserEvent.SwipeCard)

 step DO(DoorEvent.ReleaseLock)

 InvalidCardScenario()

 step DO(DoorEvent.WaitForCard)

 step DO(UserEvent.SwipeCard)

 step DO(DoorEvent.SignalInvalidCard)

So far, we have a problem-oriented notation for use-cases in AsmL. The use-cases are type-checked and
can be executed by calling the scenario methods. For example, the following top-level AsmL definition
allows one to "play" the scenarios for the keycard controlled door:

PlayDoor(numberOfIters as Integer) as Seq of Event

 let door = new KeycardControlledDoor()

 step for i=1 to numberOfIters

 choose oracle in {true,false}

 if oracle

 door.NormalScenario()

 else

 door.InvalidCardScenario()

 step

 return door.events

PlayDoor(3)4 will result in a sequence of events, and due to the non-deterministic choice of the scenario,
different ones over time. With the expression explore PlayDoor(3) we can actually explore all the
different choices taken, resulting in 8 sequences of events, covering the behavior described for the use-case
with a chosen iteration depth of 3. (In general, the AsmL explore expression takes an arbitrary expression
and delivers the sequence of the results of executing all possible combinations of choices in the
expression.) Note that in [1] we needed a much more complicated setup to basically achieve the same
functionality, which is now built into the AsmL language.

4 Example: CTAS Weather Control Logic
CTAS weather control logic is suggested by the organizers of the SCESM 2003 workshop as a case study
for scenario oriented modeling [5]. CTAS (Center TRACON Automation System) is a set of tools designed
to help air traffic controllers. CTAS consists of a set of processes with one of them acting as the connection
manager (CM) to which the other processes are clients. One task in the CTAS system is to synchronize
weather information between a weather forecast provider and the variety of clients, which is safety critical
since adverse weather conditions can grind an entire traffic control system to a halt. The weather control
logic is given as a "real world" informal specification consisting of a set of axioms and scenarios written by
NASA. Here, we will model a fragment of the logic, more specifically, the updating of the weather
information between the CM and its clients. The interesting aspect of the update phase is that it has to

4 Note that you can directly evaluate the expression from this document under Word XP by highlighting it and selecting

the Quick Watch function of the AsmL tool bar. To that end, you will need to edit the configuration file and change
the target to "library" and the output file name to end with ".dll".

 4

guarantee atomicity: new weather information becomes effective only if all clients successfully receive the
new weather information. Our approach to use-cases in AsmL allows us a nearly one-to-one translation
from the original spec (note that the choice of identifiers is also taken from the original spec and not
invented by us).

4.1 Data Domains and State
We start with modeling some data domains. The (simplified) STATUS of the CM as well of its clients is
described by an enumeration distinguishing the states pre-updating, updating, post-updating, post-reverting,
and done (idle):

class CTASWeatherControl extends UseCase

 enum STATUS

 PREUPDATING

 UPDATING

 POSTUPDATING

 POSTREVERTING

 DONE

One interesting aspect of this example is that we deal with a variable number of clients; each client (CL)
is identified by a unique CLIENTID, which is a number. We define structures describing the events
(messages) of the client, of the connection manager, and events related to the environment; the former both
are parameterized by a client id:

class CTASWeatherControl

 type CLIENTID = Integer

 structure ENV implements Event

 case NEW_FORECAST

 structure CM implements Event

 destination as CLIENTID

 case CLOSE_CONNECTION

 case GET_NEW_WEATHER

 case USE_NEW_WEATHER

 case REVERT_WEATHER

 structure CL implements Event

 source as CLIENTID

 case CONNECT

 case RECEIVED_GET

 sucess as Boolean

 case RECEIVED_USE

 success as Boolean

 case RECEIVED_REVERT

 success as Boolean

To represent a connection with a client, we add a socket class to the class CTASWeatherControl. It
holds the id of the client and its status:

class CTASWeatherControl

 class SOCKET

 id as CLIENTID

 var status as STATUS

We can now define the data state of the use case. It consists of the current cycle status of the CM and a
set of sockets representing the clients with their status. Note that this is the state of the entire system, not of
an actor like the CM or a client.

 5

class CTASWeatherControl

 var status as STATUS = DONE

 var sockets as Set of SOCKET = {}

4.2 Scenarios
We start with a scenario for a client connecting with the CM. This scenario is parameterized over the
client's id. When the client connects, a new socket is created and the client's and CM's cycle status is set to
DONE. (Note that in the original spec we have an initialization protocol for the new client, which we skip
here to save space.) We use the require construct of AsmL to ensure that a client connect can happen
only when the CM is in cycle status DONE:

class CTASWeatherControl

 ConnectClient(id as CLIENTID)

 require status = DONE and not exists s in sockets where s.id = id

 DO(CL.CONNECT(id))

 let s = new SOCKET(id,DONE)

 add s to sockets

The technique of parameterized scenarios will be used in our approach whenever we need to invent some
data to synthesize events.

The next scenario describes the situation where the CM enters the update weather information phase.
This is triggered by the event ENV.NEW_FORECAST. The CM will send out a message to each client to get
the new weather information; in reality, the message carries the weather information, which we omit here:

class CTASWeatherControl

 NewForecast()

 require status = DONE

 step DO(ENV.NEW_FORECAST)

 status := UPDATING

 step foreach s in sockets

 DO(CM.GET_NEW_WEATHER(s.id))

 s.status := UPDATING

The next scenario handles incoming CL.RECEIVED_GET responses from the clients. It is parameterized
over the client's socket and a Boolean flag indicating whether the client has successfully received the new
weather. It is enabled only if both the CM and the given client are in the status updating. If the client has
successfully received, its status is changed to post-updating. If the client failed, then the CM switches into
status post-reverting and all clients are sent messages to revert:

class CTASWeatherControl

 ReceivedGet(s as SOCKET, success as Boolean)

 require status = UPDATING and s.status = UPDATING

 step DO(CL.RECEIVED_GET(s.id,success))

 step if success

 s.status := POSTUPDATING

 else

 status := POSTREVERTING

 step foreach s' in sockets

 DO(CM.REVERT_WEATHER(s'.id))

 s'.status := POSTREVERTING

The next scenario describes what to do when the CM is in status updating and all clients have
successfully received the new weather information, i.e. are in state post-updating. The CM sends a message
to all clients to actually use the new data:

 6

class CTASWeatherControl

 AllReceivedGet()

 require status = UPDATING and forall s in sockets holds s.status = POSTUPDATING

 status := POSTUPDATING

 step foreach s in sockets

 DO(CM.USE_NEW_WEATHER(s.id))

The next scenario describes incoming CL.RECEIVED_USE responses from the clients and is similar to
the scenario ReceivedGet. However, if in this state any of the clients fail when using the new weather, the
system essentially resets, disconnecting all clients:

class CTASWeatherControl

 ReceivedUse(s as SOCKET, success as Boolean)

 require status = POSTUPDATING and s.status = POSTUPDATING

 step DO(CL.RECEIVED_USE(s.id,success))

 step if success

 s.status := DONE

 else

 status := DONE

 step foreach s' in sockets

 DO(CM.CLOSE_CONNECTION(s'.id))

 remove s' from sockets

The next scenario describes the situation where all clients have successfully acknowledged usage of the
new weather info. The CM returns to status DONE. In reality, more things happen (like logging the new
weather info to a file) which we omit here:

class CTASWeatherControl

 AllReceivedUse()

 require status = POSTUPDATING and forall s in sockets holds s.status = DONE

 status := DONE

We finally need to model the reverting phase, which happens when any of the clients fail to get the new
weather data:

class CTASWeatherControl

 ReceivedRevert(s as SOCKET,success as Boolean)

 require status = POSTREVERTING and s.status = POSTREVERTING

 step DO(CL.RECEIVED_REVERT(s.id,success))

 step if success

 s.status := DONE

 else

 status := DONE

 step foreach s' in sockets

 DO(CM.CLOSE_CONNECTION(s'.id))

 remove s' from sockets

 AllReceivedRevert()

 require status = POSTREVERTING and forall s in sockets holds s.status = DONE

 status := DONE

This finishes the CTAS model. As with the keycard controlled door, we could give now definitions
which play the scenarios of the CTAS. However, a more powerful approach to analyze the behavior is
provided by the AsmL test tool.

5 The AsmL Test Tool
The AsmL test tool supports exploring a model's behavior by various means. The main purpose of the tool
is to generate test suites and conduct conformance tests on the basis of a model, but the tool is also useful to

 7

understand the behavior of a model, which is the main focus of this paper. The technologies currently used
in the tool are the followings:
• Parameter generation: given annotations on types and/or methods providing domain information, and

a precondition or invariant on the parameters, parameter tuples are automatically generated.
Conceptually, the product of the domains of each parameter is generated (including the inductive
generation of terms for nested/recursive types like trees and general graphs), filtered by the
precondition/invariant. In fact, filter promotion is used to optimize the process. (In this paper, we won't
use much of the powerful facilities for parameter generation found in the AsmL test tool but focus on
call sequence generation.)

• Call sequence generation: our approach to call sequence generation is divided into two phases. First
we generate a finite state machine (FSM) from the model [4]. This is done as follows: starting from the
initial state, the state space is transitively explored by executing all enabled actions (those whose
precondition holds). By defining so-called state abstraction properties and filters, the user can control
when the exploration is terminated (we discuss this in more detail below). Once the FSM is generated,
we use standard techniques to generate a set of sequences covering all paths of the FSM in an optimal
way (we use a version of the algorithm found in [6]).

• Conformance testing: given a model-to-implementation binding that relates types and methods, the
model is used to verify whether the implementation conforms to the specified behavior, running the
test sequences generated in a previous step. To achieve this, we do not need the source of the
implementation; instead we modify it at the binary level in order to monitor all API method calls. (In
this paper, we won't use the facilities for conformance testing.)

Here, we will focus on the FSM generation technique to understand the behavior of the CTAS model.

6 Generating an FSM for CTAS
The first step in preparing for FSM generation is configuring variables and actions of the abstract state
machine to explore. The variables constitute the relevant state of the ASM. During exploration, states
which are identical regarding these variables are identified. The actions are methods which shall be used for
exploration. A variable can either be shared or instance based; in the last case, a domain for the instance
type needs to be configured to provide values for the instances. If a variable v is instance based, and i1,...,in
is the domain for the instance type, then the tuple (i1.v,...,in.v) will be part of the relevant state.

For the CTAS example, as variables we use the CM cycle status, the set of client sockets and the client
cycle status per socket; all these variables are instance based. As actions we use the scenario methods. Note
that each scenario actually describes a sequence of use-case events, though it is an atomic action of the
ASM.

Once we have configured the ASM we need to provide domains for the types of instance variables and
parameters of methods. The tool allows defining these domains as arbitrary AsmL expressions which
depend on the current state.

For example, we need to tell the tool the domain of the socket type since it is required to obtain instances
for the client cycle status variables and for parameters of scenarios like ReceivedGet. We can use the
current value of the variable sockets of the CTAS use case. Naturally, this variable presents those sockets
in each step of the ASM whose client cycle state is relevant and which should be considered as a parameter
for the scenarios. (In general, we have found that the domains needed for object types naturally arise from
the model.)

To define the domain of the CTASWeatherControl type itself we introduce a constant which represents
the use case; the domain is then the singleton set containing this constant:

const CTAS = new CTASWeatherControl()

 8

The complete configuration for the CTAS is shown in the screen shot given in Fig. 1. In addition to the
ones mentioned, we have defined the domains for Boolean to be the enumeration of this type (true and
false), and for client ids to be a set containing two numbers (thus we will have only two clients which
connect to the CTAS in this configuration).

The next step is the configuration for FSM generation: to define state abstraction properties and other
means to control the state exploration. Our state exploration algorithm works by applying enabled ASM
actions from the initial state with the provided parameters in a breadth-first way; actions are enabled if their
precondition (require form) is true in the current state. This exploration potentially does not terminate in
feasible time if the state space is not finite or of a huge size; but even if the exploration space is feasible, we
might want to reduce it to get a more comprehensive picture.

The state abstraction properties allow us to group states into equivalence classes; when we encounter a
state for which we have already seen an equivalent one according to the state abstraction we stop
exploration at this point. For the CTAS configuration we actually have a finite state space (since there are
only two clients). However, there are symmetrical behaviors we do not want to distinguish, for example,
the order in which clients connect, or perform other actions. This is achieved by the following abstraction:

property CTASAbstraction as (STATUS, Map of STATUS to Integer)

 get return (CTAS.status,

 { st -> [st | so in CTAS.sockets where so.status = st].Length

 | st in enum of STATUS })

The domain of the state abstraction is a pair of the status of the CM and a multi-set of the status of
connected clients (where the multi-set is presented as a mapping from a status into occurrences). For
example, the sequence of events where first client #1 connects and then client #2 will lead to the same
multi-set as in the opposite order ({DONE->2,...}, since clients are in state DONE after connection.)

Figure 1: Configuration for the CTAS

 9

A further means to control the state exploration are filters. If filters are given, then only those states
which pass the filter are considered for exploration. For the CTAS example, we want to restrict the
exploration to those states where a non-trivial number of clients is connected to the CM. We can express
this as follows: whenever the CM is not in status DONE, there must be more then one client connected:

property CTASFilter as Boolean

 get return CTAS.status <> STATUS.DONE implies Size(CTAS.sockets) > 1

Figure 2: FSM for CTAS (revert actions hidden)

The result of the FSM generation with this property and filter is shown in Fig. 2. The visible FSM shows

the behavior we expected. The screenshot shows a view of the FSMs automatic layout where actions

 10

belonging to the reverting phase of the CTAS are hidden (for reasons of space). These actions are collapsed
into the transitions with dotted lines: successful reverting leads us from S5 back to S3 from where a new
forecast can be handled, failing revert shuts down the CTAS and leads to the initial state where no client is
connected.

For sake of completeness of this document as a formal input to the AsmL test tool, we provide two
further auxiliary definitions for the printout of sockets and the CTAS use case object (this representation is
seen in the screenshot):

class CTASWeatherControl

 class SOCKET

 override ToString() as String?

 return "#" + id

class CTASWeatherControl

 override ToString() as String?

 return "C"

7 Discussion and Conclusion
In this paper we showed with a non-trivial example the application of AsmL for use-case/scenario oriented
modeling and how the AsmL test tool can be used to visualize the behavior of the use-case model as a finite
state machine. The visualization of the FSM serves at least as a validation of the model. But we can do
more. The AsmL test tool allows generating sequences of actions from the FSM which cover all branches.
Since the CTAS example is a cyclic system where all states are connected, we get a single sequence from
the FSM consisting of 44 actions when running the AsmL test tool. The value of the events variable of the
use case in the last step of this sequence gives us a corresponding sequence of events which can be used for
conformance testing of an implementation of the CTAS weather control logic. This sequence contains all
combination of behaviors where two clients are connected to the CM and where updating the weather
succeeds or fails in various ways, including the reverting phase on failure. It is easy to generate longer
sequences by increasing e.g. the number of clients which can connect to the CM.

We have presented earlier work on use-cases in AsmL in [1]. In contrast, this paper presents a much
simplified technical approach which is enabled by meta-modeling facilities of AsmL which have been
recently added, and by the AsmL Test Tool which is based on these facilities. Though we haven't discussed
it in this paper, we nevertheless believe one general message of [1] is still very true: use-case modeling in
the style we presented in this paper has to augment existing techniques, e.g. by means of annotation of
informal use-cases with AsmL fragments, as we showed in [1].

The basic FSM generation algorithm that is implemented in the AsmL test tool is described in [4]. One
of the first automated techniques for extracting FSMs from model-based specifications for the purpose of
test case generation, introduced in [7], is based on a finite partitioning of the state space of the model using
full disjunctive normal forms. While our partition of the state space is related to that of the DNF approach,
the two approaches are quite different. Most importantly, the DNF approach employs symbolic techniques
while we build the FSM by executing the model. Heuristics are used differently in the two approaches: in
the DNF approach, heuristics are used as part of theorem proving, whereas we use heuristics to prune the
search space.

In model checking, data abstraction is used to cope with state explosion when the original model M is
too large. Data abstraction groups states of M and produces a reduced model Mr which is analogous to the
FSM produced in our tool by using properties. Due to efficiency considerations, the standard data
abstraction algorithms may yield an over-approximation of Mr; see [8]. In contrast, our approach may yield
an under-approximation of the true abstraction, in other words some transitions may be missing, but there
are no false transitions, which is important for using the FSM for test case generation. In general, model
checking techniques have been considered in the context of ASM based test case generation; in [9] the
counter examples of SPIN are considered as test cases generated from a given ASM and a given property.

 11

Currently our tool supports the Rural Chinese Postman Tour method to traverse the generated FSM. For
an efficient implementation of the postman tour the tool uses the algorithm for Maximal Weight Bipartite
Matching given in [6].

References

[1] Wolfgang Grieskamp, Markus Lepper, Wolfram Schulte, and Nikolai Tillmann: Testable Use Cases in the Abstract
State Machine Language, in Proceedings of Asia-Pacific Conference on Quality Software (APAQS'01). December
2001.

[2] AsmL for Microsoft .NET (version 2.1.5.7 or higher), Software Distribution. Containing Tools, Samples and
Documentation. Downloadable at http://www.research.microsoft.com/foundations/asml.

[3] Y. Gurevich: Evolving Algebra 1993: 3 Guide, in Specification and Validation Methods, Ed. E. Börger, Oxford
University Press, 1995.

[4] W. Grieskamp, Y. Gurevich, W. Schulte and M. Veanes, Generating Finite State Machines from Abstract State
Machines, ISSTA 02, Software Engineering Notes 27(4) 112-122, ACM, 2002.

[5] CTAS case study, http://www.doc.ic.ac.uk/~su2/SCESM/CS/.
[6] H. Bast, K. Mehlhorn, G. Schäfer, and H.Tamaki. A heuristic for Dijkstra's algorithm with many targets and its use

in weighted matching algorithms. In ESA, Lecture Notes in Computer Science, pages 242-253, 2001.
[7] J. Dick and A. Faivre. Automating the generation and sequencing of test cases from model-based specifications. In

Proc. FME'93, LNCS 670, p. 268-284, Springer, 1993.
[8] E. M. Clarke, Jr., O. Grumberg and D. A. Peled, Model Checking, MIT Press, 1999.
[9] A. Gargantini, E. Riccobene, and S. Rinzivillo. Using Spin to Generate Tests from ASM Specifications. In Proc.

Abstract State Machines 2003, LNCS, Vol 2589, pages 263-277, Springer, 2003.
[10] A. Blass and Y. Gurevich. Background, reserve, and Gandy machines, in Proc. Computer Science Logic, Lecture

Notes in Computer Science, Vol. 1862, pages 1-17, Springer, 2000.
[11] Y. Gurevich and N. Tillmann. Partial Updates: Exploration. Journal of Universal Computer Science, 11 (7): 917-

951, Springer Pub. Co, 2001.
[12] Y. Gurevich and N. Tillmann. Partial Updates Exploration II. In Proc. Abstract State Machines 2003, LNCS, Vol

2589, pages 57-86, Springer, 2003.

