
Deciding Validity in a Spatial Logic for Trees

Cristiano Calcagno
Queen Mary, University of

London

Luca Cardelli
Microsoft Research

Andrew D. Gordon
Microsoft Research

ABSTRACT
We consider a propositional spatial logic for finite trees. The
logic includes A | B (tree composition), A . B (the implica-
tion induced by composition), and 0 (the unit of composi-
tion). We show that the satisfaction and validity problems
are equivalent, and decidable. The crux of the argument is
devising a finite enumeration of trees to consider when decid-
ing whether a spatial implication is satisfied. We introduce
a sequent calculus for the logic, and show it to be sound and
complete with respect to an interpretation in terms of satis-
faction. Finally, we describe a complete proof procedure for
the sequent calculus. We envisage applications in the area
of logic-based type systems for semistructured data. We
describe a small programming language based on this idea.

Categories and Subject Descriptors
F.4 [Theory of Computation]: MATHEMATICAL LOGIC
AND FORMAL LANGUAGES; F.3 [Theory of Compu-
tation]: LOGICS AND MEANINGS OF PROGRAMS

General Terms
Languages, Algorithms, Theory

1. INTRODUCTION
Due to the growing popularity of semistructured data [2],

and particularly XML [1], there is a renewed interest in
typed programming languages that can manipulate tree-like
data structures. Unfortunately, semistructured data can-
not be checked by conventional type systems with sufficient
flexibility. More advanced type systems are being proposed
that better match the data schemas used with semistruc-
tured data [16].

In general, we are going to have some tree-like data t,
and some description language T that can flexibly describe
the shape of the data. We are interested in description lan-
guages so flexible that they are akin to logics rather than to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TLDI’03, January 18, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-649-8/03/0001 ...$5.00.

type systems. The question is: what is needed to use a de-
scription language T as a type system in some programming
language that manipulates t data?

First of all, the programming language needs to analyze
the data, so it needs to check at run-time whether a tree
value matches a description. In type system terms this is
a run-time typing problem: does tree t have type A. In
logical terms this is a satisfaction problem: does tree t satisfy
formula A.

Second, the programming language needs (most likely)
to check at compile time whether a description A is less
general than a description B. In terms of type system this
is a subtyping test: is type A a subtype of type B. In logic
terms this is a validity test: does every tree t satisfying
formula A also satisfy formula B.

Given both a satisfaction and a validity algorithm, it is
then fairly routine to build a type system around the descrip-
tion language, along with an operational semantics obeying
standard typing soundness properties. The key problem,
though, is to find rich description languages that admit sat-
isfaction and (more crucially) validity algorithms. In the
case of XDuce [17], for example, these algorithms are found
in tree automata theory.

We propose here a logic that can be used as a rich descrip-
tion language for tree-like data. It emerges as an applica-
tion of the novel area of “spatial” logics used for describing
data and network structures. The logic of this paper is so
expressive that, in fact, satisfaction and validity are equiv-
alent problems (validity can be defined internally). For a
restricted version of the spatial logics studied so far, we are
able to obtain a validity algorithm, and this is sufficient for
language applications. We end this paper by describing a
simple language based on these ideas.

In a spatial logic, the truth of a formula depends on its
location. Models for spatial logics include computational
structures such as concurrent objects [5], heaps [22, 18, 21],
trees [9], graphs [8], and also process calculi such as the
π-calculus [3, 4] and the ambient calculus [10, 11]. Previ-
ous applications of spatial logics include specifying and ver-
ifying imperative and concurrent programs, and querying
semistructured data.

The spatial logic of this paper describes properties of fi-
nite edge-labelled trees. In our textual notation, n1[P1] | · · · |
nk[Pk] is a tree consisting of k edges, labelled n1, . . . , nk,
leading to k subtrees P1, . . . , Pk, respectively. Our logic
starts with propositional primitives: conjunction A∧B, im-
plication A ⇒ B, and falsity F. To this basis, we add spatial
primitives: composition A | B (satisfied by composite trees

P | Q where P and Q satisfy A and B, respectively), guar-
antee A . B (the spatial implication corresponding to com-
position, satisfied by trees that, whenever composed with
any tree that satisfies A, result in trees that satisfy B) and
void 0 (the unit of composition, satisfied by the empty tree).
We complete the logic with primitives for labelled edges: lo-
cation n[A] (satisfied by a tree n[P] if P satisfies A) and
placement A@n (satisfied by a tree P if the tree n[P] satis-
fies A).

We consider the satisfaction problem (whether a given tree
satisfies a given formula) and the validity problem (whether
every tree satisfies a given formula). Since satisfaction of the
guarantee operator A . B is defined as an infinite quantifi-
cation over all trees, neither problem is obviously decidable.
Our first significant result, is that both are, in fact, decid-
able (Theorem 2). In effect, we show how to decide validity
by model checking. The main auxiliary result (Theorem 1)
is that we need consider only a finite enumeration of trees
when model checking a formula A . B.

Subsequently, we introduce a sequent calculus for our spa-
tial logic, and show how to decide validity by deduction in
this calculus. The finite enumeration of trees introduced in
the first half is built into the right rule for A . B. Our se-
quent calculus has a standard interpretation in terms of the
satisfaction predicate. By appeal to Theorem 1, we show
the sequent calculus to be sound (Theorem 3) and complete
(Theorem 4) with respect to its interpretation. Moreover,
we obtain and verify a complete algorithm for finding proofs
in the sequent calculus (Theorem 5). The resulting algo-
rithm for validity is better suited to optimisations than the
algorithm based directly on model checking.

Section 2 gives formal definitions of our logic and its model.
Section 3 develops our first algorithm for validity, based on
model checking. Section 4 develops our second algorithm,
based on our sequent calculus. Section 5 describes a small
programming language for manipulating trees, to illustrate
the idea of using spatial logic formulas as programming lan-
guage types. Section 6 concludes.

A technical report [6] includes all the proofs omitted from
this technical summary.

2. GROUND PROPOSITIONAL SPATIAL
LOGIC (REVIEW)

This section introduces our spatial logic and its model.
First, we define our notation for edge-labelled finite trees.
Second, we introduce the formulas of the logic and their
semantics: the satisfaction predicate, P |= A, means that
the tree P satisfies the formula A. Third, we define the
validity predicate, vld(A), to mean P |= A for every tree
P . By constructing certain characteristic formulas, we note
that satisfaction and validity are interderivable.

In a study of a richer spatial logic than the one considered
here, Hirschkoff, Lozes, and Sangiorgi [15] also define char-
acteristic formulas for ambient processes, and note equiva-
lences between the satisfaction and validity problems.

2.1 Edge-Labelled Finite Trees
Let m, n range over an infinite set N of names. The model

of our logic is the set of edge-labelled trees, finitely branching
and of finite depth.

Trees:

P, Q ::= tree
0 empty tree
P |Q composition
m[P] edge labelled by m, atop tree P

Let fn(P) be the set of names free in P . For any X ⊆ N, let

TreeX
4
= {P | fn(P) ⊆ X}.

Structural Equivalence: P ≡ Q

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q, Q ≡ R⇒ P ≡ R (Struct Trans)

P ≡ Q⇒ P |R ≡ Q |R (Struct Par)
P ≡ Q⇒M [P] ≡M [Q] (Struct Amb)

P |Q ≡ Q | P (Struct Par Comm)
(P |Q) |R ≡ P | (Q |R) (Struct Par Assoc)
P | 0 ≡ P (Struct Zero Par)

Lemma 1. If P ∈ TreeX and P ≡ Q then Q ∈ TreeX .

2.2 Logical Formulas and Satisfaction

Logical Formulas:

A,B ::= formula
F false
A ∧ B conjunction
A ⇒ B implication
0 void
A | B composition
A . B guarantee
n[A] location
A@n placement

The derived propositional connectives T, ¬A, A ∨ B, are
defined in the usual way. Name equality can be defined by

m = n
4
= m[T]@n; this formula holds if and only if m = n.

We write A{m←m′} for the outcome of substituting each
occurrence of the name m in the formula A with the name
m′.

We define the satisfaction predicate, P |= A, as follows.

Satisfaction: P |= A
P |= F never

P |= A ∧ B 4
= P |= A ∧ P |= B

P |= A ⇒ B 4
= P |= A ⇒ P |= B

P |= 0
4
= P ≡ 0

P |= A | B 4
= ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧

P ′ |= A ∧ P ′′ |= B
P |= A . B 4

= ∀P ′.P ′ |= A ⇒ P | P ′ |= B
P |= n[A]

4
= ∃P ′.P ≡ n[P ′] ∧ P ′ |= A

P |= A@n
4
= n[P] |= A

A basic property is that structural congruence preserves sat-
isfaction:

Lemma 2. If P |= A and P ≡ P ′ then P ′ |= A.

It is useful to know that every tree P has a characteristic

formula P . Let 0
4
= 0, P |Q 4

= P | Q, and m[P]
4
= m[P].

The formula P identifies P up to structural equivalence:

Lemma 3. For all P and Q, Q |= P if and only if Q ≡ P .

Now, to turn the definition of satisfaction into an algorithm,
that is, to build a model checker for the logic, we must show
that the three quantifications in the clauses for A|B, A .B,
and n[A] can be reduced to finite problems. It is not hard
to reduce the clauses for A | B and n[A] to finite quantifi-
cations [10], but it seems far from obvious how to reduce
satisfaction of A . B to a finite problem. The principal re-
sult of the paper, Theorem 1, is that for any A′, A′′ there
is a finite set T (A′ .A′′) such that:

P |= A′ .A′′ ⇔ ∀P ′ ∈ T (A′ .A′′).P ′ |= A′ ⇒ P ′ | P |= A′′

2.3 Validity of a Formula
The validity predicate, vld(A), means every tree satisfies

the formula A.

Validity: vld(A)

vld(A)
4
= ∀P.P |= A

The next two lemmas exhibit formulas to encode validity in
terms of satisfaction, and the converse.

Lemma 4 (Validity from Satisfaction). vld(A) if
and only if 0 |= T .A.

Lemma 5 (Satisfaction from Validity). P |= A if
and only if vld(P ⇒ A).

Hence, the validity and satisfaction problems are equivalent.
The goal of the paper is to show both are decidable.

3. DECIDING VALIDITY BY MODEL
CHECKING

The crux of our problem is the infinite quantification in
the definition of satisfaction for A.B. We bound this infinite
quantification in three steps, which lead to an alternative
definition in terms of a finite quantification. This leads to
a model checking procedure, and hence to an algorithm for
validity.

• In Section 3.1, we bound the alphabet of distinct names
that may occur in trees that need to be considered. Let
fn(A) be the set of names occurring free in any formula
A. Let m be some other name. Proposition 1 asserts
that P |= A . B if and only if Q |= A ⇒ P | Q |= B
for all trees Q with edge-labels drawn from the set
fn(A) ∪ {m}.

• In Section 3.2, we introduce a measure of the size of
a tree, and bound both the alphabet and size of trees
that need to be considered. Proposition 4 asserts that
P |= A.B if and only if Q |= A ⇒ P |Q |= B for all the
trees Q smaller than a size determined by A and with
edge-labels drawn from a particular finite alphabet.

• In Section 3.3, we give a procedure to enumerate a fi-
nite set of structural equivalence classes of trees deter-
mined by a formula. Theorem 1 asserts that P |= A.B
if and only if Q |= A ⇒ P |Q |= B for all the represen-
tatives Q of these equivalence classes. Hence, we prove
in Theorem 2 that satisfaction, and hence validity, is
decidable.

3.1 Bounding the Names to Consider
We need the following facts relating substitution with the

operators for adding an edge to a tree and for composing
trees.

Lemma 6. If n /∈ {m, m′} then:

P{m←m′} ≡ n[Q]⇔ ∃P ′.P ≡ n[P ′] ∧ P ′{m←m′} ≡ Q

Lemma 7.

P{m←m′} ≡ Q′ |Q′′ ⇔
∃P ′, P ′′. P ≡ P ′ | P ′′ ∧ P ′{m←m′} ≡ Q′

∧P ′′{m←m′} ≡ Q′

Given these facts we can show that satisfaction of a formula
is independent of any name not occurring in the formula.

Lemma 8. If m, m′ /∈ fn(A), P |= A ⇔ P{m←m′} |= A.

This lemma is not true for the logic extended with quan-
tifiers: we have m[] | n[] |= ∃x, y.(x[] | y[]) ∧ x 6= y but
m[] |m[] 6|= ∃x, y.(x[] | y[]) ∧ x 6= y.

Proposition 1 (Bounding Names). If m /∈ fn(A.B)
then:

P |= A .B ⇔ (∀Q ∈ Treefn(A.B)∪{m}. Q |= A ⇒ P |Q |= B)

Proof. The forwards direction is immediate. For the
backwards direction, assume that (∀Q ∈ Treefn(A.B)∪{m}.
Q |= A ⇒ P | Q |= B) and consider any tree Q such that
Q |= A. Suppose that fn(P |Q) ⊆ fn(A.B)∪{m, n1, . . . , nk}
where {n1, . . . , nk} ∩ (fn(A . B) ∪ {m}) = ∅. Let P ′ =
P{n1←m} · · · {nk←m} and Q′ = Q{n1←m} · · · {nk←m}.
By repeated application of Lemma 8, we get that Q |= A ⇔
Q′ |= A. Since Q′ ∈ Treefn(A.B)∪{m} and Q′ |= A, we obtain
P |Q′ |= B by assumption. Now, we have:

(P |Q′){n1←m} · · · {nk←m}
= P ′ |Q′

= (P |Q){n1←m} · · · {nk←m}

Hence, by repeated application of Lemma 8, we get that
P |Q′ |= B ⇔ P ′ |Q′ |= B ⇔ P |Q |= B. Hence P |Q |= B
follows.

3.2 Bounding the Sizes to Consider
We introduce measures of the height and width of both

trees and formulas.

Definition 1 (Notation). Write a·P for a ≥ 0 copies
of P in parallel: P | . . . | P .

Definition 2 (Size of Trees).

|P |hw 4
= (h, w) iff there are a1, n1, P1, . . . , ak, nk, Pk, for

some k, such that:

• P ≡ a1 · n1[P1] | . . . | ak · nk[Pk]

• ∀i, j ∈ 1..k. ni[Pi] ≡ nj [Pj]⇒ i = j

• (hi, wi) = |Pi|hw for each i ∈ 1..k

• if k = 0, h = 0; otherwise h = 1 + max(h1, . . . , hk)

• if k = 0, w = 0; otherwise w = max(a1, . . . , ak, w1,
. . . , wk)

When |P |hw = (h, w), we write |P |h for h and |P |w for w.
We write (h1, w1) ≤ (h2, w2) for (h1 ≤ h2) ∧ (w1 ≤ w2).

Intuitively |P |h is the height of P , and |P |w is the width, de-
fined as the maximum multiplicity of the subtrees of P . The
multiplicity is the number of structurally equivalent non-
empty trees under the same edge. For example:

• |0|hw = (0, 0)

• |n[0]|hw = (1, 1)

• |n[0] |m[0]|hw = (1, 1)

• |n[0] | n[0]|hw = (1, 2)

• |n[m[0]]|hw = (2, 1)

• |n[n[0]]|hw = (2, 1)

Next, we define height and width measures for logical for-
mulas.

Height of Logical Formulas

|F|h 4
= 0

|A ∧ B|h 4
= max(|A|h, |B|h)

|A ⇒ B|h 4
= max(|A|h, |B|h)

|0|h 4
= 1

|A | B|h 4
= max(|A|h, |B|h)

|A . B|h 4
= |B|h

|n[A]|h 4
= 1 + |A|h

|A@n|h 4
= max(|A|h − 1, 0)

Width of Logical Formulas

|F|w 4
= 0

|A ∧ B|w 4
= max(|A|w, |B|w)

|A ⇒ B|w 4
= max(|A|w, |B|w)

|0|w 4
= 1

|A | B|w 4
= |A|w + |B|w

|A . B|w 4
= |B|w

|n[A]|w 4
= max(2, |A|w)

|A@n|w 4
= |A|w

Here are the sizes for the derived propositional connectives:

|T|h 4
= 0

|¬A|h 4
= |A|h

|A ∨ B|h 4
= max(|A|h, |B|h)

|T|w 4
= 0

|¬A|w 4
= |A|w

|A ∨ B|w 4
= max(|A|w, |B|w)

We define a relation ∼h,w between trees, parameterized by
the size (h, w). The main property of the relation is that if
P ∼h,w Q then no formula with size (h, w) can distinguish
between P and Q (Proposition 2).

Definition 3 (Relation P ∼h,w Q).

P ∼0,w Q always

P ∼h+1,w Q ⇔ ∀i ∈ 1..w.∀n, Pj with j ∈ 1..i.
if P ≡ n[P1] | · · · | n[Pi] | Pi+1

then Q ≡ n[Q1] | · · · | n[Qi] | Qi+1

such that Pj ∼h,w Qj for j ∈ 1..i
and vice versa

Note that ∼h,w is an equivalence relation: reflexivity, sym-
metry, and transitivity are immediate consequences of the
definition. Moreover, it is preserved by structural congru-
ence:

Lemma 9. If P ∼h,w Q and Q ≡ R then P ∼h,w R.

The following lemma shows that the relation ∼h,w is mono-
tone in (h, w).

Lemma 10 (Monotonicity). Suppose P ∼h,w Q and
(h′, w′) ≤ (h, w). Then P ∼h′,w′ Q.

The following lemma shows that the relation ∼h,w is a
congruence.

Lemma 11 (Congruence). The following hold:

(1) If P ∼h,w Q then n[P] ∼h+1,w n[Q].

(2) If P ∼h,w P ′ and Q ∼h,w Q′ then P |Q ∼h,w P ′ |Q′.

Lemma 12 (Inversion). If P ′ | P ′′ ∼h,w1+w2 Q then
there exist Q′, Q′′ such that Q ≡ Q′ | Q′′ and P ′ ∼h,w1 Q′

and P ′′ ∼h,w2 Q′′.

Proposition 2. Suppose |A|hw = (h, w) and P |= A and
P ∼h,w Q. Then Q |= A.

Proof. By induction on the structure of A.

The following lemma shows that each equivalence class de-
termined by ∼h,w contains a tree of size bounded by (h, w).

Lemma 13 (Pruning). For all P ∈ TreeX , h, w there
exists P ′ ∈ TreeX such that P ∼h,w P ′ and |P ′|hw ≤ (h, w).

Proposition 3 (Bounding Size). For any tree P , set
of names X and formulas A and B, if h = max(|A|h, |B|h)
and w = max(|A|w, |B|w) then

(∀Q ∈ TreeX . Q |= A ⇒ P |Q |= B) ⇔
(∀Q ∈ TreeX . |Q|hw ≤ (h, w) ∧Q |= A ⇒ P |Q |= B)

Proof. The forwards direction is immediate. For the
backwards direction, assume that the right hand side holds.
Take any Q ∈ TreeX such that Q |= A. Then we have:

∃Q′. Q ∼h,w Q′ ∧ |Q′|hw ≤ (h, w) by Lemma 13
Q ∼|A|h,|A|w Q′ by Lemma 10 since |A|hw ≤ (h, w)
Q′ |= A by Proposition 2
P |Q′ |= B by assumption
P |Q ∼h,w P |Q′ by Lemma 11
P |Q ∼|B|h,|B|w P |Q′ by Lemma 10 since |B|hw ≤ (h, w)
P |Q |= B by Proposition 2

Proposition 4 (Bounding Size and Names). For any
tree P and formulas A and B, suppose m /∈ fn(A . B)
and X = fn(A . B) ∪ {m} and h = max(|A|h, |B|h) and
w = max(|A|w, |B|w). Then:

P |= A . B ⇔
(∀Q ∈ TreeX . |Q|hw ≤ (h, w) ∧Q |= A ⇒ P |Q |= B)

Proof. We have:

P |= A . B
⇔ (∀Q ∈ TreeX . Q |= A ⇒ P |Q |= B)

⇔ (∀Q ∈ TreeX . |Q|hw ≤ (h, w) ∧Q |= A ⇒ P |Q |= B)

Proposition 1 justifies the first step, Proposition 3 the sec-
ond.

So, to check satisfaction of A.B, we need only consider trees
whose free names are drawn from fn(A.B)∪{m}, and whose
size is bounded by max(|A|hw, |A|hw). We show in the next
section, that the number of such trees, modulo structural
equivalence, is finite. Hence, we obtain an algorithm for
satisfaction of A . B.

3.3 Enumerating Equivalence Classes
In this section we present an explicit characterization of

the equivalence classes on trees, modulo structural equiva-
lence, determined by ∼h,w .

Definition 4 (Notation). Consider the following no-
tation, where metavariable c ranges over sets of trees modulo
structural congruence:

〈P 〉≡
4
= {P ′ | P ≡ P ′}

〈P 〉h,w
4
= {P ′ | P ∼h,w P ′}

c1 + c2
4
= c1 ∪ c2

n[c]
4
= {〈n[P]〉≡ | 〈P 〉≡ ∈ c}

c≤n 4
= {〈a1 · P1 | · · · | ak · Pk〉≡

| 0 ≤ ai ≤ n for i ∈ 1..k}
when c = {〈P1〉≡, . . . , 〈Pk〉≡}

We can now give a direct definition of the set of equivalence
classes EQX

h,w determined by ∼h,w , given a set of names
X.

Definition 5. If X = {n1, . . . , nk}, define EQX
h,w as fol-

lows:

EQX
0,w

4
= {〈0〉≡}

EQX
h+1,w

4
= (n1[EQX

h,w] + · · ·+ nk[EQX
h,w])≤w

Lemma 14. If |P |hw ≤ (h, w) and |P ′|hw ≤ (h, w), then

(1) P ∈ TreeX implies 〈P 〉≡ ∈ EQX
h,w.

(2) P ≡ P ′ ⇐⇒ P ∼h,w P ′.

The following lemma shows that EQX
h,w contains exactly

the trees (modulo ≡) of size at most (h, w) with free names
drawn from X.

Lemma 15. 〈P 〉≡ ∈ EQX
h,w ⇔ P ∈ TreeX ∧ |P |hw ≤

(h, w).

Theorem 1 (Finite Bound). Consider any formulas
A and B. Let EQX

h,w = {〈Q1〉≡, . . . , 〈Qn〉≡}, where h =

max(|A|h, |B|h) and w = max(|A|w, |B|w) and X = fn(A .
B) ∪ {m} for some m /∈ fn(A . B).

Then, for any tree P :

P |= A . B ⇔ (∀i ∈ 1..n. Qi |= A ⇒ P |Qi |= B)

Proof. Using Proposition 4, Lemma 15, and Lemma 2:

P |= A . B
⇔ (∀Q ∈ TreeX . |Q|hw ≤ (h, w) ∧Q |= A ⇒ P |Q |= B)

⇔ (∀Q. 〈Q〉≡ ∈ EQX
h,w ∧Q |= A ⇒ P |Q |= B)

⇔ (∀Q. (∃i ∈ 1..n. Q ≡ Qi) ∧Q |= A ⇒ P |Q |= B)

⇔ (∀i ∈ 1..n.∀Q. Q ≡ Qi ∧Q |= A ⇒ P |Q |= B)

⇔ (∀i ∈ 1..n. Qi |= A ⇒ P |Q |= B)

Given this result, we can now show that each of the three
quantifications in the definition of satisfaction can be re-
duced to a finite problem.

Finite Test Sets: T (P), T (A . B), and T (n, P)

T (P) is the finite set {〈Q, R〉 | P ≡ Q |R}/(≡×≡).
T (A . B) is the finite set EQX

h,w,
where h = max(|A|h, |B|h)and w = max(|A|w, |B|w)
and X = fn(A . B) ∪ {m} for some m /∈ fn(A . B).
T (n, P) is the finite set {Q | P ≡ n[Q]}/ ≡.

Lemma 16.

(1) For any P , P |= A′ | A′′ ⇔ ∃〈P ′, P ′′〉 ∈ T (P).P ′ |=
A′ ∧ P ′′ |= A′′.

(2) For any A, B, P |= A .B ⇔ ∀Q ∈ T (A .B).Q |= A ⇒
Q | P |= B.

(3) For any P , P |= n[A′]⇔ ∃P ′ ∈ T (n, P).P ′ |= A′.

Proof. Part (2) follows at once from Theorem 1. The
other parts follow easily, as in earlier work [10].

Theorem 2. Satisfaction and validity are interderivable
and decidable.

Validity is defined in terms of an infinite quantification over
trees. We end with a corollary of Lemma 4 and Theorem 1,
which reduces validity to a finite quantification over a com-
putable sequence of trees. Hence, we obtain an explicit al-
gorithm for validity.

Corollary 1. Consider any formula A. If EQX
h,w =

{〈P1〉≡, . . . , 〈Pn〉≡}, where (h, w) = |A|hw and X = fn(A) ∪
{m} for some m /∈ fn(A), then

vld(A)⇔ (∀i ∈ 1..n. Pi |= A)

It is straightforward to implement the algorithms for sat-
isfaction and validity suggested above. However, they are
of limited practical interest, since the size of EQX

h,w is not
elementary (not bounded by any tower of exponentials) in
the worst case. The only lower bound we know is PSPACE.
Still, the algorithm terminates in a reasonable time on small
formulas. Here is a selection of formulas found to be valid
by our implementation.

• (0 ∨ p[0]) | ¬(p[0])

• q[¬0] . ¬(0)

• ¬((q[q[0]] | q[0])@q)

• (T . ¬((q[0] ∨T) . 0))@q

• ((0 ∨ p[0])@p)@p@p

• (¬(p[T]) ∨ ¬(q[T]))@q

• p[T] . (p[T] |T)

• ¬(p[T] . 0)

• ¬(T | (T . q[0])@q)

• (T | (¬(0) ∨ 0)) |T

• (T | q[T])@q ∨ 0

To see why, for example, that the formula (0∨p[0])|¬(p[0])
is valid, consider any process P . Either P |= p[0] or not. If
so, we have P ≡ P |0, and P |= 0∨ p[0] and 0 |= ¬(p[0]). If
not, we have P ≡ 0 | P , and 0 |= 0 ∨ p[0] and P |= ¬(p[0]).
So, in either case, the process satisfies (0 ∨ p[0]) | ¬(p[0]).

4. DECIDING VALIDITY BY DEDUCTION
We present a sequent calculus for our spatial logic, fol-

lowing the pattern of Caires and Cardelli [4]. We show the
calculus to be sound and complete with respect to an inter-
pretation in terms of the satisfaction relation, and present
a complete proof procedure. Hence, we obtain an algorithm
for deciding validity by deduction in the sequent calculus.

4.1 A Sequent Calculus
A context, Γ or ∆, is a finite multiset of entries of the

form P : A where P is a tree and A is a formula. A sequent
is a judgment Γ ` ∆ where Γ and ∆ are contexts. The
following table states the rules for deriving sequents. The
rules depend on the finite test sets T (P), T (A . B), and
T (n, P) introduced in Section 3. All that matters for the
purpose of this section is that these sets are computable
and that they satisfy the properties stated in Lemma 16.
Hence, this is a finitary proof system; note the form of the
rules (| L), (. R), and (n[] L).

Rules of the Sequent Calculus:

(Id)
P ≡ Q

Γ, P : A ` Q : A, ∆

(Cut)
Γ ` P : A, ∆ Γ, P : A ` ∆

Γ ` ∆

(C L)
Γ, P : A, P : A ` ∆

Γ, P : A ` ∆

(C R)
Γ ` P : A, P : A, ∆

Γ ` P : A, ∆

(F L)

Γ, P : F ` ∆

(F R)
Γ ` ∆

Γ ` P : F, ∆

(∧ L)
Γ, P : A, P : B ` ∆

Γ, P : A ∧ B ` ∆

(∧ R)
Γ ` P : A, ∆ Γ ` P : B, ∆

Γ ` P : A ∧ B, ∆

(⇒ L)
Γ ` P : A, ∆ Γ, P : B ` ∆

Γ, P : A ⇒ B ` ∆

(⇒ R)
Γ, P : A ` P : B, ∆

Γ ` P : A ⇒ B, ∆

(0 L)
P 6≡ 0

Γ, P : 0 ` ∆

(0 R)
P ≡ 0

Γ ` P : 0, ∆

(| L)
∀〈Q, R〉 ∈ T (P). Γ, Q : A, R : B ` ∆

Γ, P : A | B ` ∆

(| R)
Γ ` Q : A, ∆ Γ ` R : B, ∆ P ≡ Q |R

Γ ` P : A | B, ∆

(. L)
Γ ` Q : A, ∆ Γ, Q | P : B ` ∆

Γ, P : A . B ` ∆

(. R)
∀Q ∈ T (A . B). Γ, Q : A ` Q|P : B, ∆

Γ ` P : A . B, ∆

(n[] L)
∀Q ∈ T (n, P). Γ, Q : A ` ∆

Γ, P : n[A] ` ∆

(n[] R)
Γ ` Q : A, ∆ P ≡ n[Q]

Γ ` P : n[A], ∆

(@n L)
Γ, n[P] : A ` ∆

Γ, P : A@n ` ∆

(@n R)
Γ ` n[P] : A, ∆

Γ ` P : A@n, ∆

The variables Q, R in (| L) and the variable Q in (. R)
cannot occur free (in a formalistic reading) in Γ, P , ∆.
Compare the side conditions on these rules in Caires and
Cardelli [4]. Here, these are meta-level variables ranging
over terms, so there is no need for such side conditions.
Note that (n[] L) applies also when T (n, P) is empty (some-
thing that never happens for (| L)), so we can conclude, for
example, Γ,0 : n[A] ` ∆. The fact that T (n, P) may be
empty explains also the irregular form of clause (n[] R) of
Lemma 18 below.

Lemma 17 (Weakening). If Γ ` ∆ is derivable, then
Γ, P : A ` ∆ and Γ ` P : A, ∆ are derivable. Moreover,
if there is a derivation of Γ ` ∆ free of (Id), (Cut), (C
L), (C R), then there are derivations of Γ, P : A ` ∆ and
Γ ` P : A, ∆ free of (Id), (Cut), (C L), (C R).

4.2 Soundness and Completeness
We make a conventional interpretation of sequents:

∧[[P1 : A1, ..., Pn : An]]
4
= P1 |= A1 ∧ . . . ∧ Pn |= An

∨[[Q1 : B1, ..., Qm : Bm]]
4
= Q1 |= B1 ∨ . . . ∨Qm |= Bm

[[Γ ` ∆]]
4
= ∧[[Γ]]⇒ ∨[[∆]]

To prove soundness and completeness of the sequent calcu-
lus, we need the following two lemmas.

Lemma 18 (Validity of Antecedents).

(F L) [[Γ, P : F ` ∆]]

(F R) [[Γ ` P : F, ∆]] iff [[Γ ` ∆]]

(∧ L) [[Γ, P : A′ ∧ A′′ ` ∆]] iff [[Γ, P : A′, P : A′′ ` ∆]]

(∧ R) [[Γ ` P : A′ ∧ A′′, ∆]] iff [[Γ ` P : A′, ∆]] ∧ [[Γ ` P :
A′′, ∆]]

(∨ L) [[Γ, P : A′ ∨ A′′ ` ∆]] iff [[Γ ` P : A′, ∆]] ∧ [[Γ, P :
A′′ ` ∆]]

(∨ R) [[Γ ` P : A′ ∨ A′′, ∆]] iff [[Γ, P : A′ ` P : A′′, ∆]]

(0 L) [[Γ, P : 0 ` ∆]] iff P ≡ 0⇒ [[Γ ` ∆]]

(0 R) [[Γ ` P : 0, ∆]] iff P 6≡ 0⇒ [[Γ ` ∆]]

(| L) [[Γ, P : A′ |A′′ ` ∆]] iff ∀P ′, P ′′.P ≡ P ′ |P ′′ ⇒ [[Γ, P ′ :
A′, P ′′ : A′′ ` ∆]]

(| R) [[Γ ` P : A′ | A′′, ∆]] iff ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ [[Γ `
P ′ : A′, ∆]] ∧ [[Γ ` P ′′ : A′′, ∆]]

(. L) [[Γ, P : A′ .A′′ ` ∆]] iff ∃P ′.[[Γ ` P ′ : A′, ∆]]∧ [[Γ, P ′ |
P : A′′ ` ∆]]

(. R) [[Γ ` P : A′ . A′′, ∆]] iff ∀P ′.[[Γ, P ′ : A′ ` P ′ | P :
A′′, ∆]]

(n[] L) [[Γ, P : n[A′] ` ∆]] iff ∀P ′.P ≡ n[P ′]⇒ [[Γ, P ′ : A′ `
∆]]

(n[] R) [[Γ ` P : n[A′], ∆]] iff (∀P ′.P 6≡ n[P ′] ∧ [[Γ ` ∆]]) ∨
(∃P ′.P ≡ n[P ′] ∧ [[Γ ` P ′ : A′, ∆]])

(@n L) [[Γ, P : A′@n ` ∆]] iff [[Γ, n[P] : A′ ` ∆]]

(@n R) [[Γ ` P : A′@n, ∆]] iff [[Γ ` n[P] : A′, ∆]]

Lemma 19 (Finite Test Sets).

(1) For any P there is a finite set T (P) with:
∀P ′, P ′′.P ≡ P ′ | P ′′ ⇒ [[Γ, P ′ : A′, P ′′ : A′′ ` ∆]]
iff ∀〈P ′, P ′′〉 ∈ T (P).[[Γ, P ′ : A′, P ′′ : A′′ ` ∆]].

(2) For any A′, A′′, there is a finite set T (A′ .A′′) with:
∀P ′.[[Γ, P ′ : A′ ` P ′ | P : A′′, ∆]]
iff ∀P ′ ∈ T (A′ .A′′).[[Γ, P ′ : A′ ` P ′ | P : A′′, ∆]].

(3) For any P there is a finite set T (n, P) with:
∀P ′.P ≡ n[P ′]⇒ [[Γ, P ′ : A′ ` ∆]]
iff ∀P ′ ∈ T (n, P).[[Γ, P ′ : A′ ` ∆]].

Theorem 3 (Soundness). If Γ ` ∆ is derivable, [[Γ `
∆]].

Proof. By induction on the derivation of Γ ` ∆.

Theorem 4 (Completeness). If [[Γ ` ∆]], then Γ ` ∆
has a derivation. Moreover, it has a derivation that does not
use (Id), (Cut), (C L), (C R).

Proof. By induction on the sum of the sizes of all the
formulas in Γ ` ∆. The interesting cases are (| L), (n[] L)
and, particularly, (. R), relying on Lemma 19.

Proposition 5. (Id, Cut, and Contraction Elimi-
nation). If Γ ` ∆ has a derivation, then there is a deriva-
tion that does not use (Id), (Cut), (C L), (C R).

Proof. If Γ ` ∆ is derivable in the full system, then
[[Γ ` ∆]] by Theorem 3 (Soundness). Then, by Theorem 4
(Completeness), Γ ` ∆ has a derivation that does not use
(Id), (Cut), (C L), (C R).

By combining Theorems 2, 3, and 4 we obtain:

Proposition 6 (Decidability). It is decidable whether
Γ ` ∆ is derivable.

4.3 A Complete Proof Procedure
The following theorem essentially implies Completeness,

and uses Lemma 18 in a similar way, but is not quite as
clean as Completeness, since it talks about an algorithm.
Moreover, the cases for (. L), (| R) and (n[] R) are harder
than in Completeness.

On the other hand, the proposition is interesting because
it shows that there is a complete proof procedure that actu-
ally builds a derivation, unlike the one in Proposition 6.

Lemma 20 (More on Finite Test Sets).

(1) For any P there is a finite set T (P) with:
∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ [[Γ ` P ′ : A′, ∆]] ∧ [[Γ ` P ′′ :
A′′, ∆]]
iff ∃〈P ′, P ′′〉 ∈ T (P).[[Γ ` P ′ : A′, ∆]] ∧ [[Γ ` P ′′ :
A′′, ∆]].

(2) For any A′, A′′, there is a finite set T (A′ .A′′) with:
∃P ′.[[Γ ` P ′ : A′, ∆]] ∧ [[Γ, P ′ | P : A′′ ` ∆]]
iff
∃P ′ ∈ T (A′.A′′).[[Γ ` P ′ : A′, ∆]]∧[[Γ, P ′|P : A′′ ` ∆]].

(3) For any P there is a finite set T (n, P) with:
∃P ′.P ≡ n[P ′] ∧ [[Γ ` P ′ : A′, ∆]]
iff ∃P ′ ∈ T (n, P).[[Γ ` P ′ : A′, ∆]].

Theorem 5 (Complete Proof Procedure). Given
any Γ ` ∆ there is a procedure such that: if ¬[[Γ ` ∆]], then
the procedure terminates with failure; if [[Γ ` ∆]], then the
procedure terminates with a derivation for Γ ` ∆.

Proof. We describe the procedure, but omit the proof
of correctness, which, in addition to the properties used in
the proof of Theorem 4, uses also Lemma 20. The proce-
dure picks nondeterministically any formula in the sequent
to operate on. It terminates because at every recursive call
it either reduces the total size, size, of the formulas in the
sequent, or stops with success or failure.

Case size = 0, that is, the empty sequent − ` −.
The procedure terminates with failure.

Case size ≥ 1, left rules.

Subcase Γ, P : F ` ∆.
The procedure succeeds with derivation Γ, P :
F ` ∆.

Subcase Γ, P : A′ ∧ A′′ ` ∆.
The procedure recurses with Γ, P : A′, P : A′′ `
∆; if the recursion fails, it fails; if the recursion
succeeds with a derivation for Γ, P : A′, P : A′′ `
∆, it produces a derivation for Γ, P : A′∧A′′ ` ∆
by (∧ L).

Subcase Γ, P : A′ ⇒ A′′ ` ∆.
The procedure recurses with Γ ` P : A′, ∆ and
Γ, P : A′′ ` ∆; if either recursion fails, the proce-
dure fails. If the recursions succeed with deriva-
tions for Γ ` P : A′, ∆ and Γ, P : A′′ ` ∆ the
procedure produces a derivation for Γ, P : A′ ⇒
A′′ ` ∆ by (⇒ L).

Subcase Γ, P : 0 ` ∆.
If P 6≡ 0 (a decidable test) the procedure returns
with the derivation Γ, P : 0 ` ∆ by (0 L), oth-
erwise it recurses with Γ ` ∆. If the recursion
fails, it fails; if it succeeds with a derivation for
Γ ` ∆, it returns a derivation for Γ, P : 0 ` ∆ by
weakening.

Subcase Γ, P : A′ | A′′ ` ∆.
The procedure computes the finite set T (P), and
for every 〈P ′, P ′′〉 belonging to it, it recurses with
Γ, P ′ : A′, P ′′ : A′′ ` ∆. If all the recursive
calls succeed, the procedure builds a derivation
for Γ, P : A′ | A′′ ` ∆ by (| L), otherwise it fails.

Subcase Γ, P : A′ .A′′ ` ∆.
The procedure computes the finite set T (A′.A′′),
and for every P ′ belonging to it, it recurses with
Γ ` P ′ : A′, ∆ and Γ, P ′ | P : A′′ ` ∆. If one pair
of recursive calls succeeds, the procedure builds
a derivation for Γ, P : A′ . A′′ ` ∆ by (. L),
otherwise it fails.

Subcase Γ, P : n[A′] ` ∆.
The procedure computes the finite set T (n, P)
(which may be empty). For every P ′ belonging
to it, the procedure recurses with Γ, P ′ : A′ ` ∆.
If all the recursive calls succeed, the procedure
builds a derivation for Γ, P : n[A′] ` ∆ by (n[]
L), otherwise it fails.

Subcase Γ, P : A′@n ` ∆.
The procedure recurses with Γ, n[P] : A′ ` ∆. If
the recursive call succeeds, the procedure builds
a derivation for Γ, P : A′@n ` ∆ by (@n L),
otherwise it fails.

Case size ≥ 1, right rules.

Subcase Γ ` P : F, ∆.
The procedure recurses with Γ ` ∆. If the re-
cursion fails, the procedure fails. If the recursion
succeeds with a derivation for Γ ` ∆, the proce-
dure returns a derivation for Γ ` P : F, ∆ by (F
R).

Subcase Γ ` P : A′ ∧ A′′, ∆.
The procedure recurses with Γ ` P : A′, ∆ and
Γ ` P : A′′, ∆. If both recursive calls succeeds,
the procedure builds a derivation for Γ ` P : A′∧
A′′, ∆ by (∧ R), otherwise it fails.

Subcase Γ ` P : A′ ⇒ A′′, ∆.
The procedure recurses with Γ, P : A′ ` P :
A′′, ∆. If the recursion fails, it fails; if the recur-
sion succeeds with a derivation for Γ, P : A′ ` P :
A′′, ∆, it produces a derivation for Γ, P : A′ ⇒
A′′ ` ∆ by (⇒ R).

Subcase Γ ` P : 0, ∆.
If P ≡ 0 (a decidable test) the procedure returns

with the derivation Γ ` P : 0, ∆ by (0 R), oth-
erwise it recurses with Γ ` ∆. If the recursion
fails, it fails; if it succeeds with a derivation for
Γ ` ∆, it returns a derivation for Γ ` P : 0, ∆ by
weakening.

Subcase Γ ` P : A′ | A′′, ∆.
The procedure computes the finite set T (P), and
for every 〈P ′, P ′′〉 belonging to it, it recurses with
Γ ` P ′ : A′, ∆ and Γ ` P ′′ : A′′, ∆. If one pair
of recursive calls succeeds, the procedure builds a
derivation for Γ ` P : A′ | A′′, ∆ by (| R), other-
wise it fails.

Subcase Γ ` P : A′ .A′′, ∆.
The procedure computes the finite set T (A′.A′′),
and for every P ′ belonging to it, it recurses with
Γ, P ′ : A′ ` P ′ | P : A′′, ∆. If all these recursive
calls are successful, the procedure builds a deriva-
tion for Γ ` P : A′ .A′′, ∆ by (. R), otherwise it
fails.

Subcase Γ ` P : n[A′], ∆.
The procedure computes the finite set T (n, P). If
T (n, P) is empty, then it recurses with Γ ` ∆;
if the recursion fails the procedure fails, and if it
succeeds with a derivation for Γ ` ∆, the pro-
cedure returns a derivation for Γ ` P : n[A′], ∆
by weakening. If T (n, P) is not empty, then for
every P ′ belonging to it, the procedure recurses
with Γ ` P ′ : A′, ∆. If one of the recursive calls
succeeds, the procedure builds a derivation for
Γ ` P : n[A′], ∆ by (n[] R), otherwise it fails.

Subcase Γ ` P : A′@n, ∆.
The procedure recurses with Γ ` n[P] : A′, ∆. If
the recursive call succeeds, the procedure builds
a derivation for Γ ` P : A′@n, ∆ by (@n R),
otherwise it fails.

By combining Lemma 4 and Theorems 3 and 4, we equate
the validity problem to a particular proof search problem.

Corollary 2. vld(A) if and only if ` 0 : T . A has a
derivation.

Hence, by Theorem 5, we obtain an algorithm for validity
based on deduction.

5. A LANGUAGE FOR MANIPULATING
TREES

We describe a typed λ-calculus that manipulates tree data.
The type system of this calculus has, at its basis, tree types.
Function types are built on top of the tree types in standard
higher-order style. The tree types, however, are unusual:
they are the formulas of our logic. Therefore, we can write
types such as:

T→ ¬0
((A ∧ ¬0) | n[B])→ (n[A] | B)

Logical operators can be applied only to tree types, not to
higher-order types. A subtyping relation is defined between
types. On tree types, subtyping is defined as validity of log-
ical implication; that is, A <: B means vld(A ⇒ B). Sub-
typing is then extended to function types by the usual con-
travariant rule. This implies that a logical validity check is

used during static typechecking, whenever we need to check
type inclusion. Tree data is manipulated via pattern match-
ing constructs that perform “run-time type checks”. Since
tree types are formulas, we have the full power of the logic
to express the pattern matching conditions. Those run-time
type checks are executed as run-time satisfaction checks.
For example, one of our matching constructs is a test to see
whether the value denoted by expression t has type A:

t?(x:A).u, v

This construct first computes the tree P denoted by the
expression t, and then performs a test P |= A. If the test
is successful, it binds P to x and executes u; otherwise it
binds P to x and executes v. The variable x can be used
both inside u and v, but in u it has type A, while in v it has
type ¬A.

To summarize, our formulas are used as a very expressive
type system for tree data, within a typed λ-calculus. A sat-
isfaction algorithm is used to analyze data at run-time, and
a validity algorithm is needed during static typechecking.
We of course have such algorithms available, as described in
previous sections, at least for ground terms and types. In
absence of polymorphism or dependent types, types are in
fact ground. And, at run-time, all values are ground too.
As usual, the type system checks whether an open term has
a (ground) type: it can do so without additional difficulties,
even though the basic satisfaction test we have is for closed
terms (that is, trees).

5.1 Syntax
The λ-calculus is stratified in terms of low types and high

types. The low types are, in this case, just tree types, but
could in general include other basic data types such as inte-
gers and names. The high types are function types over the
low types. The tree types are the formulas of our logic.

The same stratification holds on terms: there are terms of
low types (the trees) and terms of high types (the functions).
This stratification is not reflected in the syntax, essentially
because variables can hold high or low values, but it is re-
flected in the operational semantics.

Syntax:

F ,G,H ::= High Types
A tree types (formulas of the logic)
F → G function types

t, u, v ::= terms
0 void
n[t] location
t | u composition
t?n[x:A].u location match
t?(x:A | y:B).u composition match
t?(x:A).u, v tree type match
x variable
λx:F .t function
t(u) application

The syntax of terms provides: a standard λ-calculus frag-
ment, the three basic tree constructors, and three match-
ing operators for analyzing tree data. The tree type match
construct performs a run-time check to see whether a tree
matches a given formula. Then one needs other constructs
to decompose the trees: a composition match splits a tree in

two components, and a location match strips an edge from
a tree. A zero match is redundant because of the tree type
match construct.

These multiple matching constructs are designed to sim-
plify the operational semantics and the type rules. In prac-
tice, one would use a single case statement over the structure
of trees; this can be easily translated to the given matching
constructs. For example:

Case Statement

case t of analyze t
0.u1, if t ≡ 0, run u1, else
n[x:A].u2, if t ≡ n[P] and P |= A,

bind P to x and run u2, else
(x:A | y:B).u3, if t ≡ P |Q and P |= A, Q |= B,

bind P to x, Q to y and run u3,
else u4 else run u4

4
= can be translated as:

t?(z1:0).u1,
t?(z2:n[A]).z2?n[x:A].u2,
t?(z3:A | B).z3?(x:A | y:B).u3,
u4

Further, one may want to allow complex nested patterns,
that can be translated to nested uses of the given matching
constructs.

5.2 Values
Programs in the syntax of the previous section produce

values; either tree values or function values (that is, clo-
sures). Over the tree values we define the usual structural
congruence ≡; the matching constructs of the language are
not able to distinguish between structurally congruent trees.
The function values are triples of a term t with respect to
an input variable x (that is, essentially λx.t) and a stack
for free variables ρ. A stack ρ is a list of bindings x, F of
variables to values, with possible repetitions of the variables.

Values:

F, G, H ::= High Values
P tree values
〈ρ, x, t〉 function values

ρ is a list of x, F pairs Stacks
ρ[x←F] is ρ plus an x, F pair at the end
ρ(x) is the last F associated with x (if any)

5.3 Operational Semantics
The operational semantics is given by a relation t ⇓ρ F

between terms t, stacks ρ, and values F , meaning that t
can evaluate to F on stack ρ. The semantics makes use of
the satisfaction relation P |= A from Section 2. We use,
for example, t ⇓ρ P to indicate that t evaluates to a tree
value P . We use t ⇓ρ≡ P as an abbreviation for t ⇓ρ Q and
Q ≡ P , for some Q.

Operational Semantics

(Red 0)

0 ⇓ρ 0

(Red |)
t ⇓ρ P u ⇓ρ Q

t | u ⇓ρ P |Q

(Red n[])
t ⇓ρ P

n[t] ⇓ρ n[P]

(Red ?n[])
t ⇓ρ≡ n[P] P |= A u ⇓ρ[x←P] F

t?n[x:A].u ⇓ρ F

(Red ?|)
t ⇓ρ≡ P ′ | P ′′ P ′ |= A P ′′ |= B
u ⇓ρ[x←P ′][y←P ′′] F

t?(x:A | y:B).u ⇓ρ F

(Red ?1)
t ⇓ρ P P |= A u ⇓ρ[x←P] F

t?(x:A).u, v ⇓ρ F

(Red ?2)
t ⇓ρ P P |= ¬A v ⇓ρ[x←P] F

t?(x:A).u, v ⇓ρ F

(Red Var)
x ∈ dom(ρ)

x ⇓ρ ρ(x)

(Red Lam)

λx:F .t ⇓ρ 〈ρ, x, t〉

(Red App)
t ⇓ρ 〈ρ′, x, t′〉 u ⇓ρ G t′ ⇓ρ′[x←G] H

t(u) ⇓ρ H

5.4 Type System
The type system uses environments E, which are lists of

associations x:F of unique variables and their types. We
indicate by dom(E) the set of variables defined in E, by
E, x:F the extension of E with a new association x:F (pro-
vided that x /∈ dom(E)), and by E(x) the type associated
with x in E (provided that x ∈ dom(E)).

The judgments are:

Judgments:

F <: G F is a subtype of G
E ` � E is well-formed
E ` t : F t has type F in E

A validity test is used in the (Sub Tree) rule.

Type Rules:

(Env ∅)

∅ ` �

(Env x)
E ` � x /∈ dom(E)

E, x:F ` �

(Term 0)
E ` �

E ` 0 : 0

(Term |)
E ` t : A E ` u : B

E ` t | u : A | B

(Term n[])
E ` t : A

E ` n[t] : n[A]

(Term ?|)
E ` t : A | B E, x:A, y:B ` u : F

E ` t?(x:A | y:B).u : F

(Term ?n[])
E ` t : n[A] E, x:A ` u : F

E ` t?n[x:A].u : F

(Term ?)
E ` t : B E, x:A ` u : F E, x:¬A ` v : F

E ` t?(x:A).u, v : F

(Term Var)
E ` �

E ` x : E(x)

(Term Lam)
E, x:F ` t : G

E ` λx:F .t : F → G

(Term App)
E ` t : F → G E ` u : F

E ` t(u) : G

(Subsumption)
E ` t : F F <: G

E ` t : G

(Sub Tree)
vld(A ⇒ B)

A <: B

(Sub →)
F ′ <: F G <: G′

F → G <: F ′ → G′

Since types are ground, we do not need reflexivity and
transitivity rules for subtyping. Reflexivity for the base case
derives from vld(A ⇒ A).

In order to derive some basic results, we need to de-
fine a satisfaction relation between values and types. Over
tree types, this is just the satisfaction relation of Section 2,
P |= A. This is then generalized to closures by saying that
〈ρ, x, t〉 |= F → G if for every F |= F , the result G of
evaluating t with F bound to x on stack ρ, is such that
G |= G. Moreover we say that a stack satisfies an environ-
ment, ρ |= E, if ρ(x) |= E(x) for all the variables defined in
E.

Satisfaction:

P |= A as in Section 2
H |= F → G iff H = 〈ρ, x, t〉 and

∀F, G.(F |= F ∧ t ⇓ρ[x←F] G)⇒ G |= G
ρ |= E iff ∀x ∈ dom(E).ρ(x) |= E(x)

Proposition 7 (Subsumption). If F <: G and H |=
F then H |= G.

Proof. Induction on the derivation of F <: G.

(Sub Tree) We have vld(A ⇒ B) and H |= A; hence H is
a tree value, and H |= B by definition of vld.

(Sub →) We have F ′ <: F and G <: G′, and H |= F →
G. By definition, H = 〈ρ, x, t〉 and ∀F, G.(F |= F ∧
t ⇓ρ[x←F] G) ⇒ G |= G. Take any F |= F ′; by Ind
Hyp F |= F . Assume t ⇓ρ[x←F] G, then G |= G, and
by Ind Hyp G |= G′. We have shown that ∀F, G.(F |=
F ′ ∧ t ⇓ρ[x←F] G)⇒ G |= G′. That is, we have shown
that 〈ρ, x, t〉 |= F ′ → G′.

Proposition 8 (Subject Reduction). If E ` t : F
and ρ |= E and t ⇓ρ F , then F |= F .

Proof. Induction on the derivation of E ` t : F .

(Term 0) We have E ` 0 : 0 and ρ |= E and 0 ⇓ρ 0. By
definition, 0 |= 0.

(Term n[]) We have E ` n[t] : n[A] and ρ |= E and n[t] ⇓ρ

F . We must have from (Term n[]) that E ` t : A. We
must have from (Red n[]) that F = n[P] and t ⇓ρ P .
By Ind Hyp, P |= A, hence by definition n[P] |= n[A].

(Term |) We have E ` t |u : A|B and ρ |= E and t |u ⇓ρ F .
We must have from (Term |) that E ` t : A and E `
u : B. We must have from (Red |) that F = P |Q and
t ⇓ρ P and u ⇓ρ Q. By Ind Hyp, P |= A and Q |= B,
hence by definition t | u |= A | B.

(Term ?n[]) We have E ` t?n[x:A].u : F and ρ |= E and
t?n[x:A].u ⇓ρ F . We must have from (Term ?n[]) that
E ` t : n[A] and E, x:A ` u : F . We must have
from (Red ?n[]) that t ⇓ρ≡ n[P] and P |= A and
u ⇓ρ[x←P] F . We have that ρ[x←P] |= E, x:A. By
Ind Hyp E, x:A ` u : F and ρ[x←P] |= E, x:A and
u ⇓ρ[x←P] F implies F |= F .

(Term ?|) We have t?(x:A | y:B).u : F and ρ |= E and
t?(x:A | y:B).u ⇓ρ F . We must have from (Term ?|)
that E ` t : A | B and E, x:A, y:B ` u : F . We
must have from (Red ?|) that t ⇓ρ≡ P ′ | P ′′ and
P ′ |= A and P ′′ |= B and u ⇓ρ[x←P ′][y←P ′′] F . We
have that ρ[x←P][y←Q] |= E, x:A, y:B. By Ind Hyp
E, x:A, y:B ` u : F and ρ[x←P][y←Q] |= E, x:A, y:B
and u ⇓ρ[x←P ′][y←P ′′] F implies F |= F .

(Term ?) We have E ` t?(x:A).u, v : F and ρ |= E and
t?(x:A).u, v ⇓ρ F . We must have from (Term ?) that
E ` t : B and E, x:A ` u : F and E, x:¬A ` v : F .
The reduction may come from (Red ?1); then t ⇓ρ P
and P |= A and u ⇓ρ[x←P] F . We have that ρ[x←P] |=
E, x:A. By Ind Hyp E, x:A ` u : F and ρ[x←P] |=
E, x:A and u ⇓ρ[x←P] F implies F |= F . Else the
reduction must come from (Red ?2); then t ⇓ρ P and
P |= ¬A and v ⇓ρ[x←P] F . We have that ρ[x←P] |=
E, x:¬A. By Ind Hyp E, x:¬A ` v : F and ρ[x←P] |=
E, x:¬A and v ⇓ρ[x←P] F implies F |= F .

(Term Var) We have E ` x : E(x) and ρ |= E and x ⇓ρ F .
We must have from (Red Var) that F = ρ(x). Since
ρ |= E, we have that ρ(x) |= E(x), that is, F |= E(x).

(Term Lam) We have E ` λx:F .t : F → G and ρ |= E
and λx:F .t ⇓ρ F . We must have from (Red Lam) that
F = 〈ρ, x, t〉. We need to show that 〈ρ, x, t〉 |= F → G,
that is, that ∀F, G.(F |= F ∧ t ⇓ρ[x←F] G) ⇒ G |= G.
Take any F |= F , then ρ[x←F] |= E, x:F . Assuming
that t ⇓ρ[x←F] G we need to show that G |= G. We
must have from (Term Lam) that E, x:F ` t : G. By
Ind Hyp if ρ[x←F] |= E, x:F and t ⇓ρ[x←F] G, then
G |= G.

(Term App) We have E ` t(u) : F and ρ |= E and t(u) ⇓ρ

F . We must have from (Term App) that E ` t : G → F
and E ` u : G. We must have from (Red App) that
t ⇓ρ 〈ρ′, x, t′〉 and u ⇓ρ G and t′ ⇓ρ′[x←G] F . By
Ind Hyp if E ` t : G → F and ρ |= E and t ⇓ρ

〈ρ′, x, t′〉 then 〈ρ′, x, t′〉 |= G → F . That means that
∀G′, F ′.(G′ |= G ∧ t′ ⇓ρ′[x←G′] F ′)⇒ F ′ |= F . By Ind
Hyp if E ` u : G and ρ |= E and u ⇓ρ G then G |= G.
Hence, by taking G′ = G and F ′ = F , we conclude
F |= F .

(Subsumption) We have E ` t : F and ρ |= E and t ⇓ρ F .
We must have from (Subsumption) that E ` t : G and
G <: F . By Ind Hyp, F |= G. By Proposition 7,
F |= F .

5.5 Examples
The following program inspects an arbitrary tree (that is,

anything of type T). If the tree is 0 it returns the tree a[0],
otherwise it returns the input tree. Hence the result is never
0, and the result type can be set to ¬0.

λx:T.x?(y:0).a[0], y : T→ ¬0

Here is a (truncated) typing derivation; note the use of
the subsumption rule to determine that a[0] <: ¬0. Each
judgment is derived from the lines above it at the next level
of indentation.

E, x:T ` x:T (Term Var)
E, x:T, y:0 ` 0 : 0 (Term 0)

E, x:T, y:0 ` a[0] : a[0] (Term n[])
a[0] <: ¬0 (Sub Tree)

E, x:T, y:0 ` a[0] : ¬0 (Subsumption)
E, x:T, y:¬0 ` y : ¬0 (Term Var)

E, x:T ` x?(y:0).a[0], y : ¬0 (Term ?)
E ` λx:T.x?(y:0).a[0], y : T→ ¬0 (Term Lam)

6. CONCLUSIONS
This paper concerns a propositional spatial logic for finite

edge-labelled trees. The spatial modalities are composition
A|B, guarantee A.B, void 0, location n[A], and placement
A@n. There are two main results. First, satisfaction and
validity are equivalent and decidable. Second, there is a
sound and complete proof system for validity. We know
of no previous algorithms for satisfaction or validity in the
presence of the guarantee operator.

The spatial logic of this paper is a fragment of the ambi-
ent logic introduced by Cardelli and Gordon [10, 11]. Model
checking algorithms for various fragments without guaran-
tee have been proposed [12, 13]. Lugiez and Dal Zilio [20]
show decidability of the satisfiability problem for another
fragment of the ambient logic, but without guarantee; their
techniques are based on tree automata.

Validity for some other propositional substructural logics
turns out to be undecidable. Urquhart proves undecidability
for propositional relevant logic [23]. Lincoln, Mitchell, Sce-
drov, and Shankar [19] prove undecidability for both propo-
sitional linear logic and propositional intuitionistic linear
logic. See Cardelli and Gordon [10] for a detailed discussion
of the differences between the ambient logic and relevant
and linear logics.

Calcagno, Yang, and O’Hearn [7] show decidability of va-
lidity in a propositional substructural logic for reasoning
about heaps. The proof in this paper is an adaptation of
their proof technique.

We briefly consider the prospects of extending our results:

• Charatonik and Talbot [13] show that validity becomes
undecidable in a spatial logic with name quantifica-
tion. (Their result depends only on the presence of
propositional logic, 0, n[A], A | B, and ∀x.A.)

• Caires and Monteiro [5] and Cardelli and Gordon [11]
introduce logical modalities to deal with fresh names.
A prerequisite of studying these operators would be to
enrich our tree model with fresh names.

We obtain only preliminary results about the complexity
of validity for our logic from the constructions of this pa-
per. It is easy to show that PSPACE is a lower-bound, by
reduction from the Quantified Boolean Variables problem.
However, there is still a significant gap between PSPACE
and the complexity of our algorithm: it is easy to see that
the number of equivalence classes is not elementary (not
bounded by a tower of exponentials) in the size parameter.
We can obtain a higher complexity lower-bound for an ex-
tension of our logic with a Kleene star operator, A∗ (zero

or more copies of A in parallel). The extended logic can en-
code Presburger arithmetic, whose satisfiability problem is
known to be complete for a class between double and triple
exponential time. However, our algorithm cannot be triv-
ially extended: there is a formula A∗ that would invalidate
our results when assigned any finite size.

Finally, building on some of the results of this paper, Co-
hen [14] proposes improvements to the algorithms for satis-
faction and validity of Section 3. He studies a multiset logic,
able to encode our logic, and including Kleene star. He ex-
ploits a symbolic representation of multisets to show that
the validity problem for this logic is PSPACE-complete, an
improvement on our upper-bound. Moreover, he describes
a model checking algorithm that runs in time linear in the
size of the model.

Acknowledgements.Ernie Cohen, Silvano Dal Zilio,
Philippa Gardner, and Etienne Lozes made useful comments.

7. REFERENCES
[1] Extensible markup language.

http://www.w3.org/XML/.

[2] P. Buneman. Semistructured data. In 16th ACM
Symposium on Principles of Database Systems
(PODS’97), 1997.

[3] L. Caires and L. Cardelli. A spatial logic for
concurrency (Part I). In Theoretical Aspects of
Computer Software (TACS 2001), volume 2215 of
Lecture Notes in Computer Science, pages 1–37.
Springer, 2001.

[4] L. Caires and L. Cardelli. A spatial logic for
concurrency (Part II). In CONCUR
2002—Concurrency Theory, volume 2421 of Lecture
Notes in Computer Science, pages 209–225. Springer,
2002.

[5] L. Caires and L. Monteiro. Verifiable and executable
logic specifications of concurrent objects in Lπ. In
Proceedings of the 7th European Symposium on
Programming (ESOP’99), volume 1381 of Lecture
Notes in Computer Science, pages 42–56. Springer,
1998.

[6] C. Calcagno, L. Cardelli, and A. D. Gordon. Deciding
validity in a spatial logic for trees. Technical Report
MSR–TR–2002–113, Microsoft Research, 2002.

[7] C. Calcagno, H. Yang, and P. O’Hearn. Computability
and complexity results for a spatial assertion language
for data structures. In Foundations of Software
Technology and Theoretical Computer Science
(FSTTCS’01), volume 2245 of Lecture Notes in
Computer Science, pages 108–119. Springer, 2001.

[8] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic
for querying graphs. In Automata, Languages and
Programming (ICALP’02), volume 2380 of Lecture
Notes in Computer Science, pages 597–610. Springer,
2002.

[9] L. Cardelli and G. Ghelli. A query language based on
the ambient logic. In Proceedings of the 9th European
Symposium on Programming (ESOP’01), volume 2028
of LNCS, pages 1–22. Springer, 2001.

[10] L. Cardelli and A. D. Gordon. Anytime, anywhere:
Modal logics for mobile ambients. In 27th ACM
Symposium on Principles of Programming Languages
(POPL’00), pages 365–377, 2000.

[11] L. Cardelli and A. D. Gordon. Logical properties of
name restriction. In Proceedings of the 5th
International Conference on Typed Lambda Calculi
and Applications (TLCA’01), volume 2044 of Lecture
Notes in Computer Science, pages 46–60. Springer,
2001.

[12] W. Charatonik, S. Dal Zilio, A. D. Gordon,
S. Mukhopadhyay, and J.-M. Talbot. The complexity
of model checking mobile ambients. In Proceedings
FoSSaCS’01, volume 2030 of LNCS, pages 152–167.
Springer, 2001. An extended version appears as
Technical Report MSR–TR–2001–03, Microsoft
Research, 2001.

[13] W. Charatonik and J.-M. Talbot. The decidability of
model checking mobile ambients. In Proceedings of the
15th Annual Conference of the European Association
for Computer Science Logic, volume 2142 of LNCS,
pages 339–354. Springer, 2001.

[14] E. Cohen. Validity and model checking for logics of
finite multisets. Draft, Microsoft Research, 2002.

[15] D. Hirschkoff, E. Lozes, and D. Sangiorgi.
Separability, expressiveness, and decidability in the
ambient logic. In Logic in Computer Science
(LICS’02), pages 423–432. IEEE, 2002.

[16] H. Hosoya and B. C. Pierce. XDuce: A typed XML
processing language. In Third International Workshop
on the Web and Databases (WebDB2000), volume
1997 of Lecture Notes in Computer Science, pages
226–244. Springer, 2000.

[17] H. Hosoya and B. C. Pierce. Regular expression
pattern matching for XML. In 28th ACM Symposium
on Principles of Programming Languages (POPL’01),
pages 67–80, 2001.

[18] S. Ishtiaq and P. W. O’Hearn. BI as an assertion
language for mutable data structures. In 28th ACM
Symposium on Principles of Programming Languages
(POPL’01), pages 14–26, 2001.

[19] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar.
Decision problems for propositional linear logic.
Annals of Pure and Applied Logic, 56:239–311, 1992.

[20] D. Lugiez and S. Dal Zilio. Multitrees automata,
Presburger’s constraints and tree logics. Laboratoire
d’Informatique Fondamentale, CNRS and Université
de Provence, 2002.

[21] P. O’Hearn, J. Reynolds, and H. Yang. Local
reasoning about programs that alter data structures.
In Computer Science Logic (CSL’01), volume 2142 of
Lecture Notes in Computer Science, pages 1–19.
Springer, 2001.

[22] J. C. Reynolds. Separation logic: a logic for shared
mutable data structures. In Logic in Computer
Science (LICS’02), pages 55–74. IEEE, 2002.

[23] A. Urquhart. The undecidability of entailment and
relevant implication. Journal of Symbolic Logic,
45:1059–1073, 1984.

	Introduction
	Ground Propositional SpatialLogic (Review)
	Edge-Labelled Finite Trees
	Logical Formulas and Satisfaction
	Validity of a Formula

	Deciding Validity by Model Checking
	Bounding the Names to Consider
	Bounding the Sizes to Consider
	Enumerating Equivalence Classes

	Deciding Validity by Deduction
	A Sequent Calculus
	Soundness and Completeness
	A Complete Proof Procedure

	A Language for Manipulating Trees
	Syntax
	Values
	Operational Semantics
	Type System
	Examples

	Conclusions
	REFERENCES -9pt

