
Combination of CFG and N-gram Modeling in Semantic 
Grammar Learning 

Ye-Yi Wang and Alex Acero 

Speech Technology Group 
Microsoft Research, One Microsoft Way, Redmond, WA 98052 

yeyiwang@microsoft.com, alexac@microsoft.com 
 

Abstract 
SGStudio is a grammar authoring tool that eases semantic 
grammar development. It is capable of integrating different 
information sources and learning from annotated examples to 
induct CFG rules. In this paper, we investigate a modification 
to its underlying model by replacing CFG rules with n-gram 
statistical models. The new model is a composite of HMM and 
CFG. The advantages of the new model include its built-in 
robust feature and its scalability to an n-gram classifier when 
the understanding does not involve slot filling. We devised a 
decoder for the model. Preliminary results show that the new 
model achieved 32% error reduction in high resolution 
understanding. 

1. Introduction 
Semantic-based understanding has been successfully used in 
many research conversational systems [1, 2]. The technology 
often relies on the manual development of domain-specific 
grammars, a task that is time-consuming, error-prone and 
requires a significant amount of expertise. To facilitate the 
development of speech enabled applications, we introduced 
SGStudio, an example-based grammar authoring tool that 
greatly eases grammar development by taking advantage of 
different sources of prior knowledge [3, 4]. It allows a regular 
developer with little linguistic knowledge to build a semantic 
grammar for spoken language understanding.  

While experiments have shown that SGStudio not only 
significantly reduces the effort in grammar development, but 
also improves the understanding accuracy across several 
different domains, the technology still has two limitations: it 
only works well for slot-rich high resolution understanding 
tasks; and the grammar it generates only works well with 
robust understanding technology. 

In this paper we introduce a new model that combines 
semantic context free grammar and n-gram language models. 
The model accounts for the robustness problem itself instead 
of relaying it to the parser. The model also scales down to 
accurately handle low resolution understanding tasks. 

The remaining part of this section introduces SGStudio. The 
following sections describe the new model, its training and 
decoding algorithms, and some experimental results. 

1.1. Example-Based Grammar Authoring 

SGStudio learns to create a domain-specific grammar from 
three types of inputs: a semantic schema that defines the 
semantics of the domain; a grammar library that contains CFG 

rules for either domain-independent concepts (such as Date 
and Time) or domain-specific semantic terminals (such as city 
names and airlines that can be obtained from the application 
database); and training data with their meaning annotated 
according to the schema. Below is a simplified example of a 
semantic class in a schema that defines the semantics for an  
appointment scheduling command. It states that to schedule a 
meeting, a user can (optionally) specify its attendee and start 
time (slots of the semantic class). The slots can be specified 
with different language expressions that refer to a Person or 
Time (types of the slots).  
   <command name=”NewAppt”> 
          <slot type=”Person” name=”Attendee”/> 
          <slot type=”Time” name=”StartTime”/> 
   </command> 

SGStudio assumes that the syntactic structures are invariable 
for the type of language used in human-computer interaction. 
Therefore, it encodes the structural constraints into template 
rules, and treats the semantic constraints as the template 
variables. The following template rules are automatically 
generated by SGStudio for the semantic class NewAppt, where 
symbols inside braces are optional: 

<C_NewAppt>  <NewApptCmd> {<NewApptProperties>}   (1) 
<NewApptProperties>   <NewApptProperty>                            
                                          {<NewApptProperties>}                (2)                      
<NewApptProperty>  <NewApptAttendeeProperty> |              
                                    <NewApptStartTimeProperty>            (3) 
<NewApptAttendeeProperty>     
            {<PreAttendee>} <Person> {<PostAttendee>}           (4) 
<NewApptStartTimeProperty>     
            {<PreStartTime>} <Time> {<PostStartTime>}            (5) 

The template grammar models the language for appointment 
scheduling with a command part followed by properties (1). 
The properties part incorporates the slots in the schema (2, 3). 
It brackets each slot with a preamble and a post-amble (4, 5). 
The commands, preambles and post-ambles are not defined in 
the template grammar. The language expressions for them are 
learned from the semantic annotations. The annotation for the 
sentence “New meeting with Peter at five” is shown below as 
an example:  
     <NewAppt>                                                                       (6) 
          <Attendee type=”Person”>Peter</Attendee>                     
          <StartTime type=”Time”>five</StartTime> 
     </NewAppt> 

Since the mapping from schema to template rules is one-to-
one, a semantic annotation can be mapped to a CFG parse tree. 
The annotated slots serve as the anchor points in the mapping, 
and the rest of the words in the input can be aligned to the pre-
terminals in the parse tree according to their positions relative 



 Eurospeech 2003, pp. 2809-2812, ISCA, Geneva, Switzerland, 2003



to those anchor points. For example, given annotation (6), the 
word “at” has to align to the pre-terminals <PostAttendee> or 
<PreStartTime>, the only two pre-terminals that can appear 
between the two slots (<Attendee> “Peter” and <StartTime> 
“five”). Since “at” is a preposition and has to go with the 
phrase after it, SGStudio inducts the rule <PreStartTime>  
at.  Similarly, the words “new meeting with” have to align to 
the pre-terminals in front of “<Attendee> Peter”, i.e., 
<NewApptCmd> and <PreAttendee>. It is hard to 
automatically determine from this single example the 
segmentation point that separates the words for 
<NewApptCmd> from those for <PreAttendee>.  However, 
when multiple examples of pre-terminal sequence and word 
sequence pairs are available, the EM algorithm we introduced 
in [5] can learn from those examples to find the most probable 
segmentations. Once a segmentation point is found, the 
corresponding lexical rules are added into the grammar. In the 
previous example, the algorithm finds the position between 
“meeting” and “with” is the best segmentation point, therefore 
it adds the following two rules: 

     <NewApptCmd>  new meeting 
     <PreAttendee>  with 

2. CFG and N-gram Combined Model 
SGStudio has been used to develop the MiPad [2] and ATIS 
grammars. In both cases, it not only significantly reduced the 
human involvement, but also achieved better understanding 
accuracy. However, two limitations exist: 

1. It only works well with slot-rich high resolution tasks. 
SGStudio depends on the annotated slots serving as the 
anchor points. It uses the anchor points to divide a 
training sentence into smaller units, and localize the 
segmentation ambiguities in a smaller context. This 
effectively reduces the requirement for data in EM 
segmentation; and makes it generalize well since it 
models with smaller units. When no slots are available, 
for example, when NewAppt does not have the slots 
Attendee and StartTime, it simply remembers the entire 
sentence by introducing rules like “NewApptCmd  new 
meetings with Peter at five.” It does not generalize at all. 

2. The grammar does not model the language robustly. 
When training data are limited, it depends on robust 
parser at runtime to get good coverage. This restricts the 
grammar from being used as the language model for 
speech recognition. Moreover, the robust parser relaxes 
the constraints of the grammar (model). As a side effect, 
it introduces ambiguities and accepts invalid inputs. 
Therefore there must be a trade-off between robustness 
and precision.  

We propose to replace CFG rules with an n-gram to model 
each of the commands, preambles and post-ambles in the 
template grammar, and to use n-gram to model the slot 
transitions. The resulting model is a composite of an HMM 
and a CFG. The HMM models the template rules and the n-
gram pre-terminals; the CFG models the library grammar, as 
illustrated by Figure 1. 

In this model, the meaning of an input s can be obtained by 
finding the Viterbi semantic class c and the state sequence 
σ that satisfy 

( , ) ( , )

( , )

( , ) arg max ( , | ) arg max ( , , )

arg max ( ) ( , | )

c c

c

c P c s P c s

P c P s c

σ σ

σ

σ σ σ

σ

= =

= ×
              (7) 

The new model overcomes both of the limitations of the CFG 
model. For low resolution understanding (task classification), 
no property pre-terminals will be introduced into the template 
grammar. Therefore all training data are used to train/smooth 
the n-gram for the command pre-terminals. The model scales 
down nicely to an n-gram classifier below, which achieved 
comparable accuracy as other statistical classifiers [6]: 

1 2 1

ˆ arg max ( ) ( | )

arg max ( ) ( |, , , , ;  Cmd)
c

i i i
c i

c P c P s c

P c P w w w w c− −

=

= ∏ …
          (8) 

The n-gram model does not require exact rule match. Instead 
of making binary decisions about rule applicability, it 
compares the probability that the observed word sequence is 
generated from a state (pre-terminal) sequence to find the most 
likely interpretation. Therefore, the model itself is robust, and 
there is no need for robust parser any more. 

 
Figure 1. HMM representation of the template grammar. Att 
abbreviates for Attendee, and ST abbreviates for StartTime. 
The emission probabilities b are pre-terminal-dependent 
unigrams, and the transition probabilities a are the slot 
transition bigrams. The emissions τ from a slot node are 
library CFG non-terminals. Words will be generated from 
them according to the CFG model Pcfg. 

3. Model Training 
The training algorithm for the new model is an extension of 
the EM algorithm used by SGStudio for automatic string 
segmentation [5]. In section 1.1, we described that pairs of 
pre-terminal (command, preamble or post-amble) sequence 
and word sequence can be harvested from the annotated data. 
The EM algorithm then automatically segments the word 
sequence, aligns each segment α to the corresponding pre-
terminal NT in the pre-terminal sequence of the same pair. It 
builds a model ( )P NT α→  that assigns probability for 
generating word string α from NT, and parameterizes it with 
an initial uniform distribution. It then iteratively refines the 
parameterization. In each iteration, it computes the expected 
count for the rule NT α→ according to the parameterization 
of the model in the previous iteration (E-step), and then re-
estimates the probability ( )P NT α→ by normalizing the 
expected counts (M-Step). To train the new model that 

a(</s>|Att)
a(ST | Att) 

b(w|NACmd) 

a(Att| <s>) 

b(w| PostST) b(τ |Time)* 
Pcfg(t1,…,tn |τ ) 

b(τ |Att)* 
Pcfg(t1,…,tm |τ ) 

b(w| PreAtt) b(w| PostAtt) 

b(w| PreST) 

  a(ST| <s>) a(</s>|ST) 

P(CancelAppt) 

:::

a(Att | ST) P(NewAppt) a(</s> | <s>)



models the pre-terminals with n-grams, we simply use the 
expected counts to train the n-grams in the M-step. This 
results in the following algorithm: 
 
Initialize the model λ with uniform parameterization 
do { 
     foreach NT α→ in λ 
           Compute the expected count ( )C NT α→  with DP described in [5] 
     foreach NT, set its n-gram parameters in the new model λ’:  
        Partition all the rules for NT into training and held-out sets; 
        For the rules NT α→ in the training set, train the n-gram model for  
                NT using α with the expected count ( )C NT α→  
          Estimate the model smoothing parameters with the held-out counts via 
                deleted interpolation [7]. 
} while (Perplexity(Sample | λ) – Perplexity(Sample | λ’) > threshold)    

In our experiments, we set threshold = 0.01. 

4. Decoding Algorithm 

 
Figure 2. DP Trellis. Below the trellis are the non-terminal 
identified by the chart parser. The thick path is the Viterbi 
interpretation. The higher thin path identifies the correct task 
but neither of the slots. The lower thin path (sharing parts of 
the Viterbi path) identifies the Attendee but not the StartTime 
slot. It treats “at five” as the post-amble for Attendee. 

To find the Viterbi path in Equation 7 for an input, we devised 
a dynamic programming (DP) decoder. Figure 2 illustrates the 
DP trellis structure for the input “New meeting with Peter at 
five”. Upon receiving the input, the decoder first uses a 
bottom-up chart parser to find the library grammar non-
terminals that cover some input spans. In this example, it 
identifies “Peter” as <Person> and “five” as either <Time> or 
<Num>. The decoder then searches through the trellis, starting 
from the semantic class nodes at the first column (the example 
only shows the semantic class NewAppt).  At each node, it 
makes transitions to other nodes in the same column 
(switching to a different non-terminal) or to the next node in 
the same row (consuming an input word by the non-terminal.) 
The search continues from left to right until it reaches the 
rightmost column. When it makes a transition, a score is 
obtained by adding an appropriate log probability to the score 
of the starting node. The score is then compared with that of 
the destination node, and replaces it if the new score in higher. 
The log probabilities for each of the first 9 transitions are 
listed below for the Viterbi path in Figure 2.  

1. log P(NewAppt)                                    // Class Prior 
2. log b(New | <s>; NewApptCmd)           // Word bigram 
3. log b(meeting | new; NewApptCmd)     // Word bigram 
4. log b(</s> | meeting; NewApptCmd) +  // Word bigram 

log a( Attendee | <s>; NewAppt)           // Slot bigram 
5. log b(with | <s>; PreAttendee)               // Word bigram 
6. log b(</s> | with; PreAttendee)              // Word bigram 
7. log Pcfg(Peter| <Person>)                        // PCFG 
8. 0 
9. log b(</s> | <s>; PostAttendee) +          // Word bigram 

log a( StartTime | Attendee; NewAppt) // Slot bigram 
A simple pruning mechanism was used such that at each 
column of the trellis, no transition would be made out of a 
node if its score is smaller than a threshold (5.0) less the 
maximum score in the same column. In other words, a path is 
not extended if it is 105 times less likely than another that 
leads to a node in the same column. The decoder runs an order 
of magnitude faster than the robust parser after pruning. 

5. Experimental Results 
We conducted experiments with the ATIS3 set A data. We 
used the ATIS3 1993 set A test data for testing. Since some 
tasks in the test data do not get any training samples, we 
followed the practice in [4] to augment the training set with 
nine sentences.  

We constructed the semantic schema for ATIS by abstracting 
the CMU Phoenix grammar for ATIS. Training and test 
sentences were annotated according to the schema. The 
resulting canonical meaning representations were used as the 
gold standard in SLU evaluation. We used our robust parser 
[2] and the SGStudio derived CFG as the baseline system, and 
compared its accuracy with the CFG/n-gram models. 

We studied the topic classification (henceforth Task ID) and 
slot identification (henceforth Slot ID) performance. Task ID 
performance was measured by comparing the parser/DP 
decoder found top level semantic class with the corresponding 
manual label. In slot ID evaluation, slots were extracted from a 
semantic parse tree by listing all the paths from the root to the 
pre-terminals, and the resulting list was compared with that of 
the manual annotation. Hence a task ID error makes all the 
slots in the parse tree incorrect. The total insertion-deletion-
substitution error rates are reported for slot ID. 
 

Table 1. Task classification and slot ID error rates. 

Table 1 compares the error rates between the CFG and the 
combined models. For reference, we also list the error rates of 
the n-gram (n=1, 2) classifiers for task ID. For the model that 
uses bigrams for the pre-terminals, the task ID error rate is 
about the same as the CFG/robust parser --- the new model is 
one sentence worse, which is not statistically significant 
according to the sign test. The CFG/bigram model reduced slot 
ID error rate by 32%. Compared to the n-gram classifiers that 
use words as input features, the CFG/unigram model achieved 
the same task ID error rate as the unigram classifier, while the 
CFG/bigram model reduced the classification error by 26% 
over the bigram classifier. This suggests that correctly 
identifying slot helps improve task classification. 

 Task ID Slot ID 
Unigram Classifier 3.68 --- 
Bigram Classifier 3.22 --- 
SGStudio CFG 2.07 7.67 
Combined/Unigram 3.68 7.50 
Combined/Bigram 2.30 5.14 

NewAppt 
NewApptCmd 
PreAttendee 
Attendee 
PostAttendee 
PreStartTime 
StartTime 
PostStartTime 
</s> 

New  meeting  with   Peter    at    five 

                                <Person>           <Time> 
                                                             <Num>



0

5

10

15

0 500 1000 1500

Number of Sentences

Ta
sk

 E
rro

r R
at

e

 
Figure 3. Task ID error vs. amount of training data. The 
dashed curve represents the SGStudio trained CFG; the solid 
curve represents the CFG/n-gram combined model. The 
horizontal line represents manually authored grammar. 

0

10

20

30

0 500 1000 1500

Number of Sentences

S
lo

t E
rro

r R
at

e

 
Figure 4. Slot error rate (ins-del-sub) vs. amount of training 
data. The dashed curve represents the SGStudio trained CFG; 
the solid curve represents the CFG/n-gram model. The 
horizontal line represents manually authored grammar. 

We also investigated the effect of the amount of training data 
on the understanding accuracy (Figure 3 and Figure 4). Both 
models have error rate dropped significantly at the early stage 
of learning. It is interesting to note that the curves for the new 
model are smoother than the curves for the CFG/robust parser. 
This is due to the fact that the new decoder directly uses the 
statistical model and abides by its constraints, therefore the 
more the training data are, the better the accuracy is. The 
robust parser, on the other hand, does not do exactly what the 
model expects due to model relaxation. Therefore the 
correlation of the training data and the accuracy is not as 
strong as the new model. 

6. Discussions and Conclusions 
HMM has been used for SLU in conversational systems before 
[8, 9]. Our model resembles the Hidden Understanding Model 
(HUM) [9]. The “indicators” in HUM functions similarly as 
our preambles. Both were modeled with n-grams. The major 
difference is that our model does not try to learn everything 

from data. Instead we take advantage of grammar library. 
Because of that, the semantic structure exposed to the user is 
much simpler. For example, it is up to the library grammar to 
figure out what type of Date the word “Friday” is, while the 
HUM requires developers explicitly annotate it as 
DayOfWeek. For the same reason, our model requires much 
less data to get satisfactory accuracy. On the other hand, since 
there is no guarantee that a third party library grammar is finite 
state, our model has to be a composite of HMM and CFG; 
while HUM is purely an HMM. The inclusion of post-ambles 
in our model makes it more precise --- a preamble-only model 
will not account for the words appearing after the last slot. 
Modeling in finer granularity also makes the model generalize 
better. The introduction of post-ambles in our model results in 
segmentation ambiguities. So we have to use the EM 
algorithm to estimate the n-gram parameters, while HUM uses 
direct ML estimation.  

In conclusion, the combined CFG/N-gram model overcomes 
the robustness and the scalability problem of the semantic 
grammar model used in SGStudio. It improves the 
understanding accuracy. The dynamic programming decoder 
runs an order of magnitude faster than the robust parser. 

7. Acknowledgements 
The authors would like to thank Ciprian Chelba for providing 
the n-gram training code, Asela Gunawardana for providing 
the FST toolkit used in an early experiment, and the members 
of the Microsoft speech group for the feedback.  

8. References 
[1] Ward, W. Recent Improvements in the CMU Spoken 

Language Understanding System. Human Language 
Technology Workshop. 1994. Plainsboro, New Jersey. 

[2] Wang, Y.-Y. Robust Spoken Language Understanding in 
MiPad. Eurospeech. 2001. Aalborg, Denmark. 

[3] Wang, Y.-Y. and A. Acero. Grammar Learning for 
Spoken Language Understanding. IEEE workshop on 
Automatic Speech Recognition and Understanding. 2001. 
Madonna di Campiglio, Italy. 

[4] Wang, Y.-Y. and A. Acero. Evaluation of Spoken 
Language Grammar Learning in ATIS Domain. ICASSP. 
2002. Orlando, Florida. 

[5] Wang, Y.-Y. and A. Acero. Concept Acquisition in 
Example-Based Grammar Authoring. ICASSP. 2003. 
Hong Kong, China. 

[6] Wang, Y.-Y., et al. Combination of Statistical and Rule-
Based Approaches for Spoken Language Understanding. 
ICSLP. 2002. Denver, Colorado. 

[7] Jelinek, F. and E.L. Mercer, Interpolated Estimation of 
Markov Source Parameters from Sparse Data, Pattern 
Recognition in Practice, D. Gelsema and L. Kanal, 
Editors. 1980, North-Holland. 

[8] Pieraccini, R. and E. Levin, Stochastic Representation of 
Semantic Structure for Speech Understanding. Speech 
Communication, 1992. 11. 

[9] Miller, S., et al. Hidden Understanding Models of 
Natural Language. The 31st Annual Meeting of the 
Association for Computational Linguistics. 1994. New 
Mexico State University. 


