
IS WORD ERROR RATE A GOOD INDICATOR FOR SPOKEN LANGUAGE
UNDERSTANDING ACCURACY

Ye-Yi Wang, Alex Acero and Ciprian Chelba
Speech Technology Group, Microsoft Research

ABSTRACT

It is a conventional wisdom in the speech community that
better speech recognition accuracy is a good indicator for
better spoken language understanding accuracy, given a
fixed understanding component. The findings in this work
reveal that this is not always the case. More important
than word error rate reduction, the language model for
recognition should be trained to match the optimization
objective for understanding. In this work, we applied a
spoken language understanding model as the language
model in speech recognition. The model was obtained
with an example-based learning algorithm that optimized
the understanding accuracy. Although the speech
recognition word error rate is 46% higher than the trigram
model, the overall slot understanding error can be reduced
by as much as 17%.

1. INTRODUCTION

Speech recognition technology has made tremendous
progress over the past decades. Accompanying its
maturity and its potentials for commercial applications,
extensive research has been devoted to the learning
technologies that can ease the development of a speech
understanding system [1]. Researchers have been
investigating example-based grammar learning, ranging
from unsupervised grammar induction [2], to the semi-
supervised grammar learning [3], to the supervised
acquisition of statistical understanding model [4], and to
the “learning-by-doing” paradigm for grammar
development [5]. Most (if not all) of the approaches treat
understanding as a separate problem, independent of
speech recognition. A two pass approach is often adopted,
in which a domain-specific n-gram language model is
constructed and used for speech recognition in the first
pass, and the understanding model obtained with various
learning algorithms is applied in the second pass to
“understand” the output from the speech recognizer.
While this is a practical solution, we believe it is
suboptimal due to the following two reasons: first, the
objective function being optimized when building an n-
gram language model is the reduction of the test data
perplexity, which is related to the reduction of the speech

recognition word error rate, although that is not always the
case. It does not necessarily imply the reduction of overall
understanding error rate. Secondly, a large amount of
training data is rarely available for the developments of
many speech applications. An n-gram trained on a small
amount of data often yields poor accuracy. It is thus
desirable to include prior knowledge (e.g., domain
knowledge and grammar models for domain-independent
concepts) in a language model whenever this is possible.
Constrained domains, such as the air travel information
system (ATIS) [6], may allow the use of prior knowledge
to compensate for the lack of language modeling training
data.

In the past couple of years, we have developed SGStudio,
an example-based grammar learning/development tool [7].
The goal is to help developers create a high quality model
for text-based understanding. Different from many pure
data-driven studies, it combines example-based learning
with prior knowledge. The prior knowledge includes
manually developed reusable grammars for domain
independent concepts, such as date, time, credit card
number, etc.; as well as the domain knowledge that can be
obtained from the application database, including the
application schema and the domain specific concepts, e.g.
the airport names in the ATIS domain. Given an input
sentence, SGStudio “guesses” its meaning and represents
it in a structure according to the schema of the domain.
Grammar developers will either acknowledge the guess or
make necessary corrections, such that the tool can modify
the underlying model to increase the likelihood of the new
example. Over the course of the investigation, we have
come up with several different underlying understanding
models. The last and the best one is a statistical model that
is a composition of HMM and CFGs, which had around
50% error reduction over a manually developed grammar.
Unlike its predecessors, this model does not depend on a
robust parser for robust understanding. Instead, the
robustness feature is built-in in the model itself, which
allows us to use it as a language model for speech
recognition.

This paper investigates the new language model’s impact
on word error rate and language understanding error rate.

IEEE Workshop on Automatic Speech Recognition and Understanding, St. Thomas, US Virgin Islands, 2003

The next section reviews the new statistical models
adopted by SGStudio for language understanding.
Following that we introduce its context-free grammar
representation that can be accepted by speech-recognizers.
Finally we discuss the experimental setting and results.

2. SEMANTIC UNDERSTANDING MODEL

The semantic understanding model uses an HMM to
encode the structural information of the application
schema, and uses a CFG to model the emissions of some
HMM states. Here we use an example to illustrate the
topology of the model. Assume that we are interested in
the ATIS domain, which has the following (simplified)
application schema:

<task name=”ShowFlight”>
 <slot type=”City” name=”ACity”/>
 <slot type=”City” name=”DCity”/>
</task>
<task name=”GroundTransport”>
 <slot type=”City” name=”City”/>
 <slot type=”Transport_Type” name=”TType”/>
</task>

The schema simply states that the application supports
two types of information queries: those for flight
information (the ShowFlight task) and those for ground
transportation information (the GroundTransport task). To
get flight information, a user has to provide information
about the arrival city (ACity) and/or the departure city
(DCity) slots, so the system can search for the information
according to the user’s specification. The type of a slot
specifies the requirement for its “fillers”. For both ACity
and DCity slots, the filler must be an expression modeled
in the grammar library that refers to an object of the type
“City”.

The semantic constraints in the schema are incorporated
in the understanding grammar with the HMM illustrated
in Figure 1. The top level HMM has two branches to the
ShowFlight and GroundTransport sub-networks. The
transition weights on the branches are the probabilities for
the two tasks. The ShowFlight network in the bottom
models the linguistic expressions that users may use to
issue a ShowFlight command. It starts with a command
part (e.g., “Show me the flight”), followed by the
expressions for the slots. Each slot is bracketed by a
preamble and a post-amble, which serve as the linguistic
context for the slot. For example, the word “from” is a
preamble for the DCity slot. It signals that the city
following it is likely to be a departure city. The slots are
inter-connected. The connections are weighted with the
bigram probability for slot transitions, which is estimated
from the training data.

In the network, the command, preambles and post-ambles
are modeled with statistical n-gram models. The slot
fillers are modeled with probabilistic CFG rules from a
grammar library. The probabilities for the rules in the
grammar library are tuned with the domain specific data
and smoothed properly. Because of the inclusion of the
CFG library, the model is a composition of HMM and
CFG.

The n-grams in the model are trained with partially
labeled training data. An example of the labeled data is
illustrated in Figure 2. It labels the task and slot
information in a training sentence. The alignment between
the rest of the words in the sentence and the model states
(commands, preambles and post-ambles) is not provided.
An EM algorithm was used to train the n-grams in the
network [8], where the alignments are treated as hidden
variables. The training will result in a model that
maximizes the likelihood of the observed data --- the
semantic structures in the annotated training data.

Figure 1. The HMM structure created according to the
semantic schema. The upper network is the top level
grammar that has two sub-networks. The lower network
shows the details of the ShowFlight model. The
probabilities are estimated from the training data. The
rectangular blocks are modeled with CFG rules; the
rounded rectangular blocks are modeled with n-grams.

<ShowFlight text=”show me the flight from Seattle to Boston”>
 <DCity text=”Seattle”/>
 <ACity text=”Boston”/>
</ShowFlight>

Figure 2. A labeled training data sample.

A dynamic-programming algorithm [7] was introduced to
find the best semantic interpretation of an input sentence.
The model achieved 32% error reduction over our
previous CFG model/robust parsing technology.

The overall structure of our model is very similar to that
of the Hidden Understanding Model [4]. The “indicators”
in HUM functions similarly as our preambles. Both were
modeled with n-grams. The major difference is that our
model does not try to learn everything from data. Instead
we take advantage of grammar library. Because of that,
the semantic structure exposed to the user is much
simpler. For example, it is up to the library grammar to
“understand” what type of Date the word “Friday” is,
while the HUM requires developers explicitly annotate it
as DayOfWeek. For the same reason, our model requires
much less data to get satisfactory accuracy. On the other
hand, since there is no guarantee that a third party library
grammar is finite state, our model has to be a composite
of HMM and CFG, which requires a more complicated
decoder; while the HUM is purely an HMM. The
inclusion of post-ambles in our model makes it more
precise --- a preamble-only model will not account for the
words appearing after the last slot. Modeling in finer
granularity also makes the model generalize better.

3. SGSTUDIO GRAMMAR AS THE UNIFIED
LANGUAGE MODEL

Unlike our previous robust understanding technology,
which relied on a robust parser to skip the words not
covered by a grammar, the use of n-gram models for the
pre-terminals in a grammar makes the model robust in
itself. This offers a new opportunity for using the
HMM/CFG composite model in speech recognition. Since
the optimization objective of the training algorithm is to
maximize the likelihood of the observed semantic
structures in the annotated training data instead of
reducing the perplexity (in other words, maximizing the
likelihood of the training sentences,) we can overcome the
sub-optimality problem we discussed previously. The
model uses prior knowledge. Therefore it can potentially
generalize better.

To use the model for speech recognition, we have to
convert it into a format that the recognizers can accept as
a language model. Although in our previous unified
language model work [9] we have implemented a decoder
that supports an n-gram language with embedded CFG
rules, there is no decoder that supports a language model
with multiple n-grams inside a CFG. Our solution to this
problem is to convert the n-gram sub-models into
probabilistic finite state automata. The converted n-grams
and the top-level HMM structure, together with the rules
in the library grammar, form a PCFG language model.
The n-gram to CFG conversion is similar to the algorithm
described in [10], with a minor modification to make the
model more compact: since the n-grams in the HMM/CFG

model are HMM state specific, the training data for each
n-gram is very sparse. Many words in the vocabulary are
unseen in the EM training for a specific n-gram. Every
unseen word results in a self loop over the back-off state
due to the smoothing with a uniform LM. Instead of
adding a loop for each unseen word, we made an
approximation by adding a single loop that refers to a
shared uniform distribution (Figure 3).
The resulting automata are represented in the SAPI [11]
binary CFG format as well as the HTK [12] Standard
Lattice Format for the use in the experiments.

Figure 3. Finite state representation of a bigram language
model with two observed words (a,b). The label on an arc
shows its weight and output symbol. I represents the
initial state, O represents the back-off state, and F
represents the final state. Instead of looping over the back-
off state for every unseen word, the model is smoothed
approximately with a self loop labeled with the uniform
distribution over the back-off state.

4. EXPERIMENTAL RESULTS

The experiments were conducted in the ATIS domain. We
constructed the semantic schema for ATIS by abstracting
the CMU Phoenix grammar for ATIS. 5798 sentences
from the class A (utterances that can be understood
without context) of the ATIS2 and ATIS3 training data
were used to train a trigram language model. The
vocabulary of the model contained 780 words. The
HMM/CFG model covered the same vocabulary, although
it was trained with only ~1700 sentences from class A of
the ATIS3 training data. The sentences were annotated in
a format similar to the example in Figure 2. The 469
sentences from the class A of the 1993 ATIS3 test data

were also annotated. It was used as the reference semantic
structures in the language understanding evaluation. The
commands, preambles and post-ambles in the HMM/CFG
model were modeled with bigrams. Two HMM/CFG
models were trained. In the first model the bigrams were
not smoothed. In the second model, the bigrams were
smoothed with the uniform distribution with deleted
interpolation [13]. The test data perplexity of the trigram
model is 15.4. For the smoothed HMM/CFG model, the
test data perplexity is 16.2 when the likelihood of a
sentence is summed over all possible paths in the network.
We call it the Baum-Welch perplexity. When the
likelihood of a sentence is only calculated over the Viterbi
path, the resulting Viterbi perplexity is 24.1.

We used the three language models for speech
recognition. The recognizer was the commercial product
that came with Microsoft SAPI 5. The outputs from the
recognizer were sent to the HMM/CFG decoder for
language understanding. The outputs were then compared
to the manual annotation. The statistics of task
classification (henceforth task ID) and slot identification
(henceforth slot ID) error rate were collected. Task ID
performance was measured by comparing the top-level
task (ShowFlight, GroundTransport, etc.) found by the
model with the manual label. There were six top-level
tasks in the ATIS domain. In slot ID evaluation, slots
were extracted by listing all the paths from the root to the
pre-terminals in the semantic parse tree, and the resulting
list was compared with that from the manually annotated
semantic tree. Hence a task ID error will make all the slots
in a parse tree being counted as errors in the slot ID
evaluation. The total insertion-deletion-substitution error
rates are reported for slot ID. Table 1 shows the result.

 n-gram
LM

HMM/
CFG
(US)

HMM/
CFG
(S)

Transcription

WER 8.2% 12.3% 12.0% ---
Task ID 7.9% 7.1% 5.6% 2.3%
Slot ID 11.6% 11.1% 9.8% 5.1%

Table 1. Recognition word error rate, task classification
error rate and slot identification error rate of the trigram
model, the unsmoothed HMM/CFG model and the
smoothed HMM/CFG model. The results were obtained
with the commercial recognizer in SAPI 5. The
mismatched acoustic model and aggressive pruning
attributed to the high word error rate.

Even though the word error rate is over 46% higher than
the trigram model, the HMM/CFG model achieved the
task classification error rate that is almost 30% lower than
the trigram model, and the slot identification error rate
17% lower. We noticed that the understanding error rate

reduction was even bigger as the word error rates for all
the three models became higher when a larger vocabulary
was used.

The recognition error for the HMM/CFG model often
occurs in the command, preamble and post-amble part.
Naturally this is due to the split of training data over many
different pre-terminals. The sparseness of the training data
for a pre-terminal makes the recognition of words
underneath the pre-terminal less accurate. However, since
the understanding model is robust, a word error inside this
pre-terminal doesn’t matter too much as long as it will not
flip to another pre-terminal. An example of this is given
below:

Reference find me a flight that flies from
Memphis to Tacoma

Trigram find me a flight that flies from
Memphis to Tacoma

HMM/CFG find me a flight the flights from
Memphis to Tacoma

Here although “that flies” was misrecognized as “the
flights” with the HMM/CFG model, it did not change its
status as the preamble of a flight slot. The meaning was
not affected at all.

On the other hand, the trigram model lacks the stricter
constraints imposed by the rules in CFG library, therefore
the content of a slot often get recognized incorrectly. This
will cause slot ID errors. Since the task ID also depends
on the correct slot information, this may adversely affect
the task ID accuracy too. Below is the example of this
case.

Reference list the originating cities for Alaska
airlines

Trigram list the originating is the cities for
last the airlines

HMM/CFG list the originating fit cities for Alaska
airlines

Compared to the best recognition performance for ATIS,
the word error rate in the experiment is a bit too high. We
believe it can be attributed to the mismatched acoustic
model as well as the aggressive pruning of the commercial
recognizer --- The decoder takes only one third of the time
used by the HapiVite decoder (see the experiment below)
when trigram is used as the language model, and 4% of
the time consumed by HapiVite when the smoothed
HMM/CFG model is used.

We would like to compare the models for understanding
accuracy when the recognition error is lower. So we
repeated the experiment using an acoustic model trained

using HTK [12] on ATIS data and the HapiVite decoder.
Table 2 shows the results.

The optimal language model weight for the HMM/CFG
model is 26, which is much higher than that for the
trigram model (16). This is because the language model
probability mass is split and distributed over multiple
ambiguous paths in the HMM/CFG state space, while with
the trigram model a word sequence corresponds to a
single language model state sequence. Therefore the
language model score in a path in the HMM/CFG state
space needs to be boosted.

 n-gram
LM

HMM/
CFG
(US)

HMM/
CFG
(S)

Transcription

WER 6.0% 9.2% 7.6% ---
Task ID 6.8% 4.9% 3.8% 2.3%
Slot ID 9.0% 10.3% 8.8% 5.1%

Table 2. Recognition word error rate, task classification
error rate and slot identification error rate of the trigram
model, the unsmoothed HMM/CFG model and the
smoothed HMM/CFG model. The results were obtained
with the HTK decoder. The matched acoustic model and
less aggressive pruning resulted in the better word error
rate. It took tremendously longer time to recognize an
utterance.

The word error rate of the HMM/CFG model is about
27% higher than the trigram model. However, the task
classification error rate is more than 40% lower. The
advantage of the HMM/CFG in slot error rate diminished
to 2.5% improvement over the trigram model. It appears
that the slot error rate, which depends more on the actual
text being recognized, is more correlated to the word error
rate when the word error rate is low. When the word error
rate is higher due to reasons other than the language
model, the advantage of the HMM/CFG model is more
obvious.

Several slot errors are related to the context free nature of
the new language model. For example, “New York City
area” was misrecognized as “New York City Arizona,”
and “Arizona” was further taken as a slot. The model
properly learned that it is likely to have a city name
followed by a state name, while it lacked the lexical
constraints to restrict Arizona from being recognized as
the state where the New York City is.

The decoder using the n-gram model ran much faster than
the HMM/CFG language model. While the commercial
decoder using trigram as the language model recognized
utterances in about 0.5x real-time, it took about 85x real-

times to decode a sentence when the unsmoothed
HMM/CFG was used, and 180x real-times when the
smoothed model was used. The HTK decoder, which
searched much bigger spaces, took 1.5x real-times to
decoder an utterance with the trigram language model,
215x real-times with the unsmoothed HMM/CFG model,
and 1200x real-times with the smoothed HMM/CFG
model. We are currently optimizing the model structure to
make it work faster with the decoders. We believe that the
proper optimization, together with the advances in CFG
decoding technology and the continuing growth of
computing power, will make this model ready for practical
use.

5. DISCUSSION

Researchers from AT&T Labs-Research have noticed the
divergence between word accuracy and understanding
accuracy in [14]. They interpolated the word n-gram with
n-grams containing phrases that were salient for the call-
routing task, and observed that a slight word accuracy
improvement resulted in a disproportionately substantial
improvement in understanding accuracy.

Although the AT&T paper was published in 1998, many
researchers in the speech recognition field we have talked
to still believe that better word accuracy implies better
understanding accuracy. Perhaps the divergence in their
paper was less obvious. In this study, we use a language
model that is directly optimized for spoken language
understanding without interpolating with the word n-gram
to retain good word accuracy. The divergence between the
word accuracy and the understanding accuracy becomes
more drastic: the impact on the word accuracy is very
negative; while the overall understanding accuracy
improves substantially. We hope that this result will
induce more recognition for understanding researches in
the speech community and more effective models that
optimize the ultimate goal of accurate understanding.

Recently researchers from University of Avignon studied
“conceptual decoding” for speech understanding [15].
They had the similar idea of encoding domain knowledge
in a finite state language model. Although they didn’t
compare their results with the n-gram language model,
their finding also reveals that word error rate may not be a
good indicator for language understanding accuracy:
while the word error rate was as high as 38.7%, the
sentence interpretation error was only 12%.

6. SUMMARY

The HMM/CFG models, originally trained to optimize
spoken language understanding accuracy, have been used

as the language model for speech recognition. Thanks to
the use of domain knowledge and grammar library, the
models use much less training data than the trigram
model; but they do require supervised information such as
the labeling of the training data. Although the word error
rate is much higher than a trigram model, the
understanding accuracy is much better. This demonstrates
that model training criteria that matches the optimization
objective for understanding is as important as, if not more
important than, the reduction of word error rate for speech
understanding.

7. ACKNOWLEDGEMENTS

The authors would like to thank Julian Odell, Li Jiang,
Mei-Yuh Hwang and the members of the Speech
Technology Group for their helps in this work.

8. REFERENCES

[1] S. Young, "Talking to Machines (Statistically

Speaking)." In the Proceedings of ICSLP 2002,
Denver, Colorado, 2002.

[2] A. Stolcke and S. M. Omohundro, "Best-first
Model Merging for Hidden Markov Model
Induction." International Computer Science
Institute, Berkeley, California TR-94-003, 1994
1994.

[3] C.-C. Wong and H. Meng, "Improvements on a
Semi-Automatic Grammar Induction
Framework." In the Proceedings of ASRU 2001,
Madonna di Campiglio, Italy, 2001.

[4] S. Miller, R. Bobrow, R. Ingria, and R. Schwartz,
"Hidden Understanding Models of Natural
Language." In the Proceedings of the 31st
Annual Meeting of the Association for
Computational Linguistics, New Mexico State
University, 1994.

[5] M. Gavaldà, "Growing Semantic Grammars."
Ph.D. Thesis. Language Technology Institute.
Pittsburgh: Carnegie Mellon University, 2000.

[6] P. Price, "Evaluation of Spoken Language
System: the ATIS domain." In the Proceedings of
DARPA Speech and Natural Language
Workshop, Hidden Valley, PA, 1990.

[7] Y.-Y. Wang and A. Acero, "Combination of
CFG and N-gram Modeling in Semantic
Grammar Learning." In the Proceedings of
Eurospeech 2003, Geneva, Switzerland, 2003.

[8] Y.-Y. Wang and A. Acero, "Concept Acquisition
in Example-Based Grammar Authoring." In the
Proceedings of ICASSP, Hong Kong, China,
2003.

[9] Y.-Y. Wang, M. Mahajan, and X. Huang, "A
Unified Context-Free Grammar and N-Gram
Model For Spoken Language Processing." In the
Proceedings of ICASSP, Istanbul, Turkey, 2000.

[10] G. Riccardi, R. Pieraccini, and E. Bocchieri,
"Stochastic Automata for Language Modeling."
Computer Speech and Language, vol. 10, pp.
265-293, 1996.

[11] Microsoft Corporation, "Speech SDK 5.1 for
Windows® applications."

 http://www.microsoft.com/speech
[12] S. Young, "The HTK hidden Markov model

toolkit: design and philosophy." Department of
Engineering, Cambridge University, Cambridge,
UK TR.153, 1993.

[13] F. Jelinek and E. L. Mercer, "Interpolated
Estimation of Markov Source Parameters from
Sparse Data," in Pattern Recognition in Practice,
D. Gelsema and L. Kanal, Eds.: North-Holland,
1980.

[14] G. Riccardi and A. L. Gorin, "Stochastic
Language Models for Speech Recognition and
Understanding." In the Proceedings of ICSLP,
Sidney, Australia, 1998.

[15] Y. Estève, C. Raymond, F. Bechet, and R. De
Mori, "Conceptual Decoding for Spoken Dialog
Systems." In the Proceedings of Eurospeech
2003, Geneva, Switzerland, 2003.

