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ABSTRACT 
 
It is a conventional wisdom in the speech community that 
better speech recognition accuracy is a good indicator for 
better spoken language understanding accuracy, given a 
fixed understanding component. The findings in this work 
reveal that this is not always the case.  More important 
than word error rate reduction, the language model for 
recognition should be trained to match the optimization 
objective for understanding. In this work, we applied a 
spoken language understanding model as the language 
model in speech recognition. The model was obtained 
with an example-based learning algorithm that optimized 
the understanding accuracy. Although the speech 
recognition word error rate is 46% higher than the trigram 
model, the overall slot understanding error can be reduced 
by as much as 17%. 
 

1. INTRODUCTION 
 
Speech recognition technology has made tremendous 
progress over the past decades. Accompanying its 
maturity and its potentials for commercial applications, 
extensive research has been devoted to the learning 
technologies that can ease the development of a speech 
understanding system [1]. Researchers have been 
investigating example-based grammar learning, ranging 
from unsupervised grammar induction [2], to the semi-
supervised grammar learning [3], to the supervised 
acquisition of statistical understanding model [4], and to 
the “learning-by-doing” paradigm for grammar 
development [5]. Most (if not all) of the approaches treat 
understanding as a separate problem, independent of 
speech recognition. A two pass approach is often adopted, 
in which a domain-specific n-gram language model is 
constructed and used for speech recognition in the first 
pass, and the understanding model obtained with various 
learning algorithms is applied in the second pass to 
“understand” the output from the speech recognizer. 
While this is a practical solution, we believe it is 
suboptimal due to the following two reasons: first, the 
objective function being optimized when building an n-
gram language model is the reduction of the test data 
perplexity, which is related to the reduction of the speech 

recognition word error rate, although that is not always the 
case. It does not necessarily imply the reduction of overall 
understanding error rate. Secondly, a large amount of 
training data is rarely available for the developments of 
many speech applications. An n-gram trained on a small 
amount of data often yields poor accuracy. It is thus 
desirable to include prior knowledge (e.g., domain 
knowledge and grammar models for domain-independent 
concepts) in a language model whenever this is possible. 
Constrained domains, such as the air travel information 
system (ATIS) [6], may allow the use of prior knowledge 
to compensate for the lack of language modeling training 
data. 
 
In the past couple of years, we have developed SGStudio, 
an example-based grammar learning/development tool [7]. 
The goal is to help developers create a high quality model 
for text-based understanding. Different from many pure 
data-driven studies, it combines example-based learning 
with prior knowledge. The prior knowledge includes 
manually developed reusable grammars for domain 
independent concepts, such as date, time, credit card 
number, etc.; as well as the domain knowledge that can be 
obtained from the application database, including the 
application schema and the domain specific concepts, e.g. 
the airport names in the ATIS domain. Given an input 
sentence, SGStudio “guesses” its meaning and represents 
it in a structure according to the schema of the domain.  
Grammar developers will either acknowledge the guess or 
make necessary corrections, such that the tool can modify 
the underlying model to increase the likelihood of the new 
example. Over the course of the investigation, we have 
come up with several different underlying understanding 
models. The last and the best one is a statistical model that 
is a composition of HMM and CFGs, which had around 
50% error reduction over a manually developed grammar. 
Unlike its predecessors, this model does not depend on a 
robust parser for robust understanding. Instead, the 
robustness feature is built-in in the model itself, which 
allows us to use it as a language model for speech 
recognition.  
 
This paper investigates the new language model’s impact 
on word error rate and language understanding error rate. 
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The next section reviews the new statistical models 
adopted by SGStudio for language understanding. 
Following that we introduce its context-free grammar 
representation that can be accepted by speech-recognizers. 
Finally we discuss the experimental setting and results. 
 

2. SEMANTIC UNDERSTANDING MODEL 
 

The semantic understanding model uses an HMM to 
encode the structural information of the application 
schema, and uses a CFG to model the emissions of some 
HMM states. Here we use an example to illustrate the 
topology of the model. Assume that we are interested in 
the ATIS domain, which has the following (simplified) 
application schema:  
 
<task name=”ShowFlight”> 
        <slot type=”City” name=”ACity”/> 
        <slot type=”City” name=”DCity”/> 
</task> 
<task name=”GroundTransport”> 
         <slot type=”City” name=”City”/> 
         <slot type=”Transport_Type” name=”TType”/> 
</task> 
 
The schema simply states that the application supports 
two types of information queries: those for flight 
information (the ShowFlight task) and those for ground 
transportation information (the GroundTransport task). To 
get flight information, a user has to provide information 
about the arrival city (ACity) and/or the departure city 
(DCity) slots, so the system can search for the information 
according to the user’s specification. The type of a slot 
specifies the requirement for its “fillers”. For both ACity 
and DCity slots, the filler must be an expression modeled 
in the grammar library that refers to an object of the type 
“City”. 
 
The semantic constraints in the schema are incorporated 
in the understanding grammar with the HMM illustrated 
in Figure 1. The top level HMM has two branches to the 
ShowFlight and GroundTransport sub-networks. The 
transition weights on the branches are the probabilities for 
the two tasks. The ShowFlight network in the bottom 
models the linguistic expressions that users may use to 
issue a ShowFlight command. It starts with a command 
part (e.g., “Show me the flight”), followed by the 
expressions for the slots. Each slot is bracketed by a 
preamble and a post-amble, which serve as the linguistic 
context for the slot. For example, the word “from” is a 
preamble for the DCity slot. It signals that the city 
following it is likely to be a departure city. The slots are 
inter-connected. The connections are weighted with the 
bigram probability for slot transitions, which is estimated 
from the training data. 

In the network, the command, preambles and post-ambles 
are modeled with statistical n-gram models. The slot 
fillers are modeled with probabilistic CFG rules from a 
grammar library. The probabilities for the rules in the 
grammar library are tuned with the domain specific data 
and smoothed properly. Because of the inclusion of the 
CFG library, the model is a composition of HMM and 
CFG. 
 
The n-grams in the model are trained with partially 
labeled training data. An example of the labeled data is 
illustrated in Figure 2. It labels the task and slot 
information in a training sentence. The alignment between 
the rest of the words in the sentence and the model states 
(commands, preambles and post-ambles) is not provided. 
An EM algorithm was used to train the n-grams in the 
network [8], where the alignments are treated as hidden 
variables. The training will result in a model that 
maximizes the likelihood of the observed data --- the 
semantic structures in the annotated training data. 
 

 

 

Figure 1. The HMM structure created according to the 
semantic schema. The upper network is the top level 
grammar that has two sub-networks. The lower network 
shows the details of the ShowFlight model. The 
probabilities are estimated from the training data. The 
rectangular blocks are modeled with CFG rules; the 
rounded rectangular blocks are modeled with n-grams. 

<ShowFlight text=”show me the flight from Seattle to Boston”> 
          <DCity text=”Seattle”/> 
          <ACity text=”Boston”/> 
</ShowFlight> 

Figure 2. A labeled training data sample. 

A dynamic-programming algorithm [7] was introduced to 
find the best semantic interpretation of an input sentence. 
The model achieved 32% error reduction over our 
previous CFG model/robust parsing technology. 



The overall structure of our model is very similar to that 
of the Hidden Understanding Model [4]. The “indicators” 
in HUM functions similarly as our preambles. Both were 
modeled with n-grams. The major difference is that our 
model does not try to learn everything from data. Instead 
we take advantage of grammar library. Because of that, 
the semantic structure exposed to the user is much 
simpler. For example, it is up to the library grammar to 
“understand” what type of Date the word “Friday” is, 
while the HUM requires developers explicitly annotate it 
as DayOfWeek. For the same reason, our model requires 
much less data to get satisfactory accuracy. On the other 
hand, since there is no guarantee that a third party library 
grammar is finite state, our model has to be a composite 
of HMM and CFG, which requires a more complicated 
decoder; while the HUM is purely an HMM. The 
inclusion of post-ambles in our model makes it more 
precise --- a preamble-only model will not account for the 
words appearing after the last slot. Modeling in finer 
granularity also makes the model generalize better.  
 
 

3. SGSTUDIO GRAMMAR AS THE UNIFIED 
LANGUAGE MODEL 

 
Unlike our previous robust understanding technology, 
which relied on a robust parser to skip the words not 
covered by a grammar, the use of n-gram models for the 
pre-terminals in a grammar makes the model robust in 
itself. This offers a new opportunity for using the 
HMM/CFG composite model in speech recognition. Since 
the optimization objective of the training algorithm is to 
maximize the likelihood of the observed semantic 
structures in the annotated training data instead of 
reducing the perplexity (in other words, maximizing the 
likelihood of the training sentences,) we can overcome the 
sub-optimality problem we discussed previously. The 
model uses prior knowledge. Therefore it can potentially 
generalize better. 
 
To use the model for speech recognition, we have to 
convert it into a format that the recognizers can accept as 
a language model. Although in our previous unified 
language model work [9] we have implemented a decoder 
that supports an n-gram language with embedded CFG 
rules, there is no decoder that supports a language model 
with multiple n-grams inside a CFG. Our solution to this 
problem is to convert the n-gram sub-models into 
probabilistic finite state automata. The converted n-grams 
and the top-level HMM structure, together with the rules 
in the library grammar, form a PCFG language model. 
The n-gram to CFG conversion is similar to the algorithm 
described in [10], with a minor modification to make the 
model more compact: since the n-grams in the HMM/CFG 

model are HMM state specific, the training data for each 
n-gram is very sparse. Many words in the vocabulary are 
unseen in the EM training for a specific n-gram. Every 
unseen word results in a self loop over the back-off state 
due to the smoothing with a uniform LM.  Instead of 
adding a loop for each unseen word, we made an 
approximation by adding a single loop that refers to a 
shared uniform distribution (Figure 3). 
The resulting automata are represented in the SAPI [11] 
binary CFG format as well as the HTK [12] Standard 
Lattice Format for the use in the experiments. 
 

 

Figure 3. Finite state representation of a bigram language 
model with two observed words (a,b). The label on an arc 
shows its weight and output symbol. I represents the 
initial state, O represents the back-off state, and F 
represents the final state. Instead of looping over the back-
off state for every unseen word, the model is smoothed 
approximately with a self loop labeled with the uniform 
distribution over the back-off state.  

 
4. EXPERIMENTAL RESULTS 

 
The experiments were conducted in the ATIS domain. We 
constructed the semantic schema for ATIS by abstracting 
the CMU Phoenix grammar for ATIS. 5798 sentences 
from the class A (utterances that can be understood 
without context) of the ATIS2 and ATIS3 training data 
were used to train a trigram language model. The 
vocabulary of the model contained 780 words. The 
HMM/CFG model covered the same vocabulary, although 
it was trained with only ~1700 sentences from class A of 
the ATIS3 training data. The sentences were annotated in 
a format similar to the example in Figure 2. The 469 
sentences from the class A of the 1993 ATIS3 test data 



were also annotated. It was used as the reference semantic 
structures in the language understanding evaluation. The 
commands, preambles and post-ambles in the HMM/CFG 
model were modeled with bigrams. Two HMM/CFG 
models were trained. In the first model the bigrams were 
not smoothed. In the second model, the bigrams were 
smoothed with the uniform distribution with deleted 
interpolation [13].  The test data perplexity of the trigram 
model is 15.4. For the smoothed HMM/CFG model, the 
test data perplexity is 16.2 when the likelihood of a 
sentence is summed over all possible paths in the network. 
We call it the Baum-Welch perplexity. When the 
likelihood of a sentence is only calculated over the Viterbi 
path, the resulting Viterbi perplexity is 24.1.  
 
We used the three language models for speech 
recognition. The recognizer was the commercial product 
that came with Microsoft SAPI 5. The outputs from the 
recognizer were sent to the HMM/CFG decoder for 
language understanding. The outputs were then compared 
to the manual annotation. The statistics of task 
classification (henceforth task ID) and slot identification 
(henceforth slot ID) error rate were collected. Task ID 
performance was measured by comparing the top-level 
task (ShowFlight, GroundTransport, etc.) found by the 
model with the manual label. There were six top-level 
tasks in the ATIS domain. In slot ID evaluation, slots 
were extracted by listing all the paths from the root to the 
pre-terminals in the semantic parse tree, and the resulting 
list was compared with that from the manually annotated 
semantic tree. Hence a task ID error will make all the slots 
in a parse tree being counted as errors in the slot ID 
evaluation. The total insertion-deletion-substitution error 
rates are reported for slot ID. Table 1 shows the result. 
 

 n-gram 
LM 

HMM/ 
CFG 
(US) 

HMM/ 
CFG 
(S) 

Transcription 

WER 8.2% 12.3% 12.0% --- 
Task ID 7.9% 7.1% 5.6% 2.3% 
Slot ID 11.6% 11.1% 9.8% 5.1% 

Table 1.  Recognition word error rate, task classification 
error rate and slot identification error rate of the trigram 
model, the unsmoothed HMM/CFG model and the 
smoothed HMM/CFG model. The results were obtained 
with the commercial recognizer in SAPI 5. The 
mismatched acoustic model and aggressive pruning 
attributed to the high word error rate.  

Even though the word error rate is over 46% higher than 
the trigram model, the HMM/CFG model achieved the 
task classification error rate that is almost 30% lower than 
the trigram model, and the slot identification error rate 
17% lower. We noticed that the understanding error rate 

reduction was even bigger as the word error rates for all 
the three models became higher when a larger vocabulary 
was used.  
 
The recognition error for the HMM/CFG model often 
occurs in the command, preamble and post-amble part. 
Naturally this is due to the split of training data over many 
different pre-terminals. The sparseness of the training data 
for a pre-terminal makes the recognition of words 
underneath the pre-terminal less accurate. However, since 
the understanding model is robust, a word error inside this 
pre-terminal doesn’t matter too much as long as it will not 
flip to another pre-terminal. An example of this is given 
below: 
 

Reference find me a flight that flies from 
Memphis to Tacoma 

Trigram find me a flight that flies from 
Memphis to Tacoma 

HMM/CFG find me a flight the flights from 
Memphis to Tacoma 

 
Here although “that flies” was misrecognized as “the 
flights” with the HMM/CFG model, it did not change its 
status as the preamble of a flight slot. The meaning was 
not affected at all.  
 
On the other hand, the trigram model lacks the stricter 
constraints imposed by the rules in CFG library, therefore 
the content of a slot often get recognized incorrectly. This 
will cause slot ID errors. Since the task ID also depends 
on the correct slot information, this may adversely affect 
the task ID accuracy too. Below is the example of this 
case.  
 

Reference list the originating  cities for Alaska 
airlines 

Trigram list the originating is the cities for 
last the airlines 

HMM/CFG list the originating fit cities for Alaska 
airlines 

 
Compared to the best recognition performance for ATIS, 
the word error rate in the experiment is a bit too high. We 
believe it can be attributed to the mismatched acoustic 
model as well as the aggressive pruning of the commercial 
recognizer --- The decoder takes only one third of the time 
used by the HapiVite decoder (see the experiment below) 
when trigram is used as the language model, and 4% of 
the time consumed by HapiVite when the smoothed 
HMM/CFG model is used.  
 
We would like to compare the models for understanding 
accuracy when the recognition error is lower. So we 
repeated the experiment using an acoustic model trained 



using HTK [12] on ATIS data and the HapiVite decoder. 
Table 2 shows the results. 
 
The optimal language model weight for the HMM/CFG 
model is 26, which is much higher than that for the 
trigram model (16). This is because the language model 
probability mass is split and distributed over multiple 
ambiguous paths in the HMM/CFG state space, while with 
the trigram model a word sequence corresponds to a 
single language model state sequence. Therefore the 
language model score in a path in the HMM/CFG state 
space needs to be boosted. 
 

 n-gram 
LM 

HMM/ 
CFG 
(US) 

HMM/ 
CFG 
(S) 

Transcription 

WER 6.0% 9.2% 7.6% --- 
Task ID 6.8% 4.9% 3.8% 2.3% 
Slot ID 9.0% 10.3% 8.8% 5.1% 

Table 2. Recognition word error rate, task classification 
error rate and slot identification error rate of the trigram 
model, the unsmoothed HMM/CFG model and the 
smoothed HMM/CFG model. The results were obtained 
with the HTK decoder. The matched acoustic model and 
less aggressive pruning resulted in the better word error 
rate.  It took tremendously longer time to recognize an 
utterance. 

 
The word error rate of the HMM/CFG model is about 
27% higher than the trigram model. However, the task 
classification error rate is more than 40% lower. The 
advantage of the HMM/CFG in slot error rate diminished 
to 2.5% improvement over the trigram model. It appears 
that the slot error rate, which depends more on the actual 
text being recognized, is more correlated to the word error 
rate when the word error rate is low. When the word error 
rate is higher due to reasons other than the language 
model, the advantage of the HMM/CFG model is more 
obvious. 
 
Several slot errors are related to the context free nature of 
the new language model. For example, “New York City 
area” was misrecognized as “New York City Arizona,” 
and “Arizona” was further taken as a slot. The model 
properly learned that it is likely to have a city name 
followed by a state name, while it lacked the lexical 
constraints to restrict Arizona from being recognized as 
the state where the New York City is. 
 
The decoder using the n-gram model ran much faster than 
the HMM/CFG language model. While the commercial 
decoder using trigram as the language model recognized 
utterances in about 0.5x real-time, it took about 85x real-

times to decode a sentence when the unsmoothed 
HMM/CFG was used, and 180x real-times when the 
smoothed model was used. The HTK decoder, which 
searched much bigger spaces, took 1.5x real-times to 
decoder an  utterance with the trigram language model, 
215x real-times with the unsmoothed HMM/CFG model, 
and 1200x real-times with the smoothed HMM/CFG 
model. We are currently optimizing the model structure to 
make it work faster with the decoders. We believe that the 
proper optimization, together with the advances in CFG 
decoding technology and the continuing growth of 
computing power, will make this model ready for practical 
use.  
 

5. DISCUSSION 
 

Researchers from AT&T Labs-Research have noticed the 
divergence between word accuracy and understanding 
accuracy in [14]. They interpolated the word n-gram with 
n-grams containing phrases that were salient for the call-
routing task, and observed that a slight word accuracy 
improvement resulted in a disproportionately substantial 
improvement in understanding accuracy.   
 
Although the AT&T paper was published in 1998, many 
researchers in the speech recognition field we have talked 
to still believe that better word accuracy implies better 
understanding accuracy. Perhaps the divergence in their 
paper was less obvious. In this study, we use a language 
model that is directly optimized for spoken language 
understanding without interpolating with the word n-gram 
to retain good word accuracy. The divergence between the 
word accuracy and the understanding accuracy becomes 
more drastic: the impact on the word accuracy is very 
negative; while the overall understanding accuracy 
improves substantially. We hope that this result will 
induce more recognition for understanding researches in 
the speech community and more effective models that 
optimize the ultimate goal of accurate understanding. 
 
Recently researchers from University of Avignon studied 
“conceptual decoding” for speech understanding [15]. 
They had the similar idea of encoding domain knowledge 
in a finite state language model. Although they didn’t 
compare their results with the n-gram language model, 
their finding also reveals that word error rate may not be a 
good indicator for language understanding accuracy: 
while the word error rate was as high as 38.7%, the 
sentence interpretation error was only 12%. 
  

6. SUMMARY 
 

The HMM/CFG models, originally trained to optimize 
spoken language understanding accuracy, have been used 



as the language model for speech recognition. Thanks to 
the use of domain knowledge and grammar library, the 
models use much less training data than the trigram 
model; but they do require supervised information such as 
the labeling of the training data. Although the word error 
rate is much higher than a trigram model, the 
understanding accuracy is much better. This demonstrates 
that model training criteria that matches the optimization 
objective for understanding is as important as, if not more 
important than, the reduction of word error rate for speech 
understanding. 
 

7. ACKNOWLEDGEMENTS 
 

The authors would like to thank Julian Odell, Li Jiang, 
Mei-Yuh Hwang and the members of the Speech 
Technology Group for their helps in this work. 
 

8. REFERENCES 
 
 
[1] S. Young, "Talking to Machines (Statistically 

Speaking)." In the Proceedings of ICSLP 2002, 
Denver, Colorado, 2002. 

[2] A. Stolcke and S. M. Omohundro, "Best-first 
Model Merging for Hidden Markov Model 
Induction." International Computer Science 
Institute, Berkeley, California TR-94-003, 1994 
1994. 

[3] C.-C. Wong and H. Meng, "Improvements on a 
Semi-Automatic Grammar Induction 
Framework." In the Proceedings of ASRU 2001, 
Madonna di Campiglio, Italy, 2001. 

[4] S. Miller, R. Bobrow, R. Ingria, and R. Schwartz, 
"Hidden Understanding Models of Natural 
Language." In the Proceedings of the 31st 
Annual Meeting of the Association for 
Computational Linguistics, New Mexico State 
University, 1994. 

[5] M. Gavaldà, "Growing Semantic Grammars." 
Ph.D. Thesis. Language Technology Institute. 
Pittsburgh: Carnegie Mellon University, 2000. 

[6] P. Price, "Evaluation of Spoken Language 
System: the ATIS domain." In the Proceedings of 
DARPA Speech and Natural Language 
Workshop, Hidden Valley, PA, 1990. 

[7] Y.-Y. Wang and A. Acero, "Combination of 
CFG and N-gram Modeling in Semantic 
Grammar Learning." In the Proceedings of 
Eurospeech 2003, Geneva, Switzerland, 2003. 

[8] Y.-Y. Wang and A. Acero, "Concept Acquisition 
in Example-Based Grammar Authoring." In the 
Proceedings of ICASSP, Hong Kong, China, 
2003. 

[9] Y.-Y. Wang, M. Mahajan, and X. Huang, "A 
Unified Context-Free Grammar and N-Gram 
Model For Spoken Language Processing." In the 
Proceedings of ICASSP, Istanbul, Turkey, 2000. 

[10] G. Riccardi, R. Pieraccini, and E. Bocchieri, 
"Stochastic Automata for Language Modeling." 
Computer Speech and Language, vol. 10, pp. 
265-293, 1996. 

[11] Microsoft Corporation, "Speech SDK 5.1 for 
Windows® applications."  

              http://www.microsoft.com/speech 
[12] S. Young, "The HTK hidden Markov model 

toolkit: design and philosophy." Department of 
Engineering, Cambridge University, Cambridge, 
UK TR.153, 1993. 

[13] F. Jelinek and E. L. Mercer, "Interpolated 
Estimation of Markov Source Parameters from 
Sparse Data," in Pattern Recognition in Practice, 
D. Gelsema and L. Kanal, Eds.: North-Holland, 
1980. 

[14] G. Riccardi and A. L. Gorin, "Stochastic 
Language Models for Speech Recognition and 
Understanding." In the Proceedings of ICSLP, 
Sidney, Australia, 1998. 

[15] Y. Estève, C. Raymond, F. Bechet, and R. De 
Mori, "Conceptual Decoding for Spoken Dialog 
Systems." In the Proceedings of Eurospeech 
2003, Geneva, Switzerland, 2003. 

 


