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COCA is a fault-tolerant and secure on-line certi�cation authority that has been built and de-
ployed both in a local area network and in the Internet. Extremely weak assumptions characterize
environments in which COCA's protocols execute correctly: no assumption is made about exe-
cution speed and message delivery delays; channels are expected to exhibit only intermittent
reliability; and with 3t + 1 COCA servers up to t may be faulty or compromised. COCA is the
�rst system to integrate a Byzantine quorum system (used to achieve availability) with proactive
recovery (used to defend against mobile adversaries which attack, compromise, and control one
replica for a limited period of time before moving on to another). In addition to tackling problems
associated with combining fault-tolerance and security, new proactive recovery protocols had to
be developed. Experimental results give a quantitative evaluation for the cost and e�ectiveness of
the protocols.
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security and protection; C.2.4 [Computer-CommunicationNetworks]: Distributed Systems�
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cryption�public key cryptosystems
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1. INTRODUCTION

In a public key infrastructure, a certi�cate [Kornfelder 1978] speci�es a binding
between a name and a public key or other attributes. Over time, public keys and
attributes can change�a private key might be compromised, leading to selection of
a new public key, for example. The old binding and any certi�cate that speci�es that
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binding then become invalid. A certi�cation authority (CA) attests to the validity
of bindings by issuing digitally signed certi�cates that specify these bindings and
by providing a means for clients to check the validity of certi�cates. With an on-

line CA, principals can check the validity of certi�cates just before using them.
COCA (Cornell On-line Certi�cation Authority), the subject of this paper, is such
an on-line CA.

COCA employs replication to achieve availability and employs proactive recovery
with threshold cryptography for digitally signing certi�cates in a way that defends
against mobile adversaries [Ostrovsky and Yung 1991] which attack, compromise,
and control one replica for a limited period of time before moving on to another.
In that, the system is not novel. What distinguishes COCA is its qualitatively
weaker assumptions about communication links and execution timing. Many denial
of service attacks succeed by invalidating stronger communication and execution-
timing assumptions; in making weaker assumptions, COCA is less vulnerable to
these attacks.

New proactive recovery protocols had to be developed for execution in this
relatively unconstrained and more realistic environment. Moreover, because im-
plementing agreement is problematic in the absence of execution-timing assump-
tions [Fischer et al. 1985], COCA employs a Byzantine quorum system [Malkhi
and Reiter 1998a] (rather than the state machine approach [Lamport 1978]) for
managing replicated state. In so doing, COCA is the �rst to tackle the problems
associated with integrating threshold cryptography and Byzantine quorum systems.
Thus, beyond its intrinsic utility for public key infrastructures, COCA has pedagog-
ical value as a vehicle for understanding how to combine mechanisms for supporting
fault-tolerance and security properties.

Besides its weak assumptions, a variety of traditional means for combating denial
of service attacks are used by COCA: (i) processing only those requests that satisfy
authorization checks, (ii) grouping requests into classes and multiplexing resources
so that demands from one class cannot impact processing of requests from another,
as well as (iii) caching results of expensive cryptographic operations. And while
resource-clogging denial of service attacks certainly remain possible, experiments
demonstrate that launching a successful attack against COCA is harder with these
mechanisms in place. In fact, simulated denial of service attacks have allowed us to
measure the e�ectiveness of the various means COCA employs to resist denial of
service attacks, so the work reported herein contributes much-needed experimental
data on the performance of traditional denial of service defenses.

The paper is organized as follows. Section 2 discusses assumptions about the
environment in which COCA operates and describes the services COCA provides.
Protocols to coordinate COCA servers are the subject of Section 3. Section 4 elab-
orates on the mechanisms COCA incorporates to defend against denial of service
attacks. Performance data for COCA deployments both in a local area network
and in the Internet are summarized in Section 5, followed by a discussion of related
work in Section 6. Section 7 contains concluding remarks.
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2. SYSTEM MODEL AND SERVICES SUPPORTED

COCA is implemented by a set of n servers, each running on a separate proces-
sor in a network. We intend COCA for use in an environment like the Internet.
Thus, COCA tolerates failures and defends against malicious attacks, subject to
the following assumptions:

Servers: Servers are either correct or compromised, where a compromised server
might stop executing, deviate arbitrarily from its speci�ed protocols (i.e.,
Byzantine failure), and/or disclose information stored locally. System ex-
ecution is viewed in terms of protocol-de�ned periods called windows of

vulnerability ; terms �correct� and �compromised� are relative to those pe-
riods. Speci�cally, a server is deemed correct in a window of vulnerability
if and only if that server is not compromised throughout that period. We
assume:

�At most t of the n COCA servers are ever compromised during each
window of vulnerability, where 3t + 1 ≤ n holds.

�Clients and servers can digitally sign messages using a scheme that is
existentially unforgeable under adaptively chosen message attacks.

�Various cryptographic algorithms (e.g., public key cryptography and
threshold cryptography) COCA employs are secure.

Fair Links: A fair link is a communication channel that does not necessarily de-
liver all messages sent, but if a process sends in�nitely many messages to
a single destination then in�nitely many of those messages are correctly
delivered. In addition, messages in transit may be disclosed to or altered
by adversaries.

The communications network is assumed to provide (only) fair links.
(Without some comparable assumption about the network, an adversary
could prevent servers from communicating with each other or with clients.)

Asynchrony: There is no bound on message delivery delay or server execution
speed.

These assumptions endow adversaries with considerable power. Adversaries can

�attack servers, provided fewer than 1/3 of the servers are compromised within a
given window of vulnerability,

�launch eavesdropping, message insertion, corruption, deletion, reordering, and
replay attacks, provided Fair Links is not violated, and

�conduct denial of service attacks that delay messages or slow servers by arbitrary
�nite amounts.

2.1 Operations Implemented by COCA

COCA supports one operation (Update) to create, update, and invalidate certi�-
cates that specify bindings; a second operation (Query) retrieves certi�cates speci-
fying those bindings. A client invokes an operation by issuing a request and then
awaiting a response. COCA expects each request to contain a nonce. Responses
from COCA are digitally signed using a COCA service key and include the client's
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request, hence the nonce1, thereby enabling a client to check whether a given re-
sponse was produced by COCA for that client's request.
A request is considered accepted by COCA once any correct COCA server receives

the request or participates in processing the request; and a request is considered
completed once some correct server has constructed the response. It might, at �rst,
seem more natural to deem a request �completed� only when the client receives
a response. However, such a de�nition would make a client action (receipt of a
response) necessary for a request to be considered completed. In the absence of
assumptions about clients, it then becomes problematic for COCA to implement

Request Completion: Every request accepted is eventually completed.

However, as will become clear, a correct client making a request will eventually
receive a response from COCA.
Each COCA certi�cate ζ is a digitally signed attestation that speci�es a binding

between some name cid and some public key or other attributes pubK . In addition,
each certi�cate ζ also contains a unique serial number σ(ζ) assigned by COCA.
The following semantics of COCA's Update and Query give meaning to the natural
ordering on these serial numbers�namely, that a certi�cate for cid invalidates
certi�cates for cid having lower serial numbers.

Update: Given a certi�cate ζ for a name cid and given a new binding pubK ′ for
cid , an Update request returns an acknowledgment after COCA has created
a certi�cate ζ′ for cid such that ζ′ binds pubK ′ to cid and σ(ζ) < σ(ζ′)
holds.

Query: Given a name cid , a Query request Q returns a certi�cate ζ for cid such
that:
(i) ζ was created by some Update request that was accepted before Q com-
pleted.

(ii) For any certi�cate ζ′ for name cid created by an Update request that
completed before Q was accepted, σ(ζ′) ≤ σ(ζ) holds.

By assuming an initial default binding for every possible name, the operation to
create a �rst binding for a given name can be implemented by Query (to retrieve
the certi�cate for the default binding) followed by Update. And an operation to
revoke a certi�cate for cid is easily built from an Update specifying a new binding
for cid .

Update creates and invalidates certi�cates, so its invocation should probably be
restricted to certain clients. Consequently, COCA allows an authorization policy
to be de�ned for Update. In principle, a CA could always process a Query, because
Query does not a�ect any binding. In practice, that policy would create a vulner-
ability to denial of service attacks, so COCA adopts a more conservative approach
discussed in Section 4.
The semantics of Update associates larger serial numbers with newer certi�cates

and, in the absence of concurrent execution, a Query for cid returns the certi�-
cate whose serial number is the largest of all certi�cates for cid . Certi�cate serial

1In the current implementation, requests contain sequence numbers which, along with the client's
name, form unique numbers. Therefore, the text of the request itself can serve as the nonce.
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numbers are actually consistent only with a service-centric causality relation: the
transitive closure of relation →, where ζ → ζ′ holds if and only if ζ′ is created by an
Update having ζ as input. Two Update requests U and U ′ submitted, for example, by
the same client, serially, and where both input the same certi�cate, are not ordered
by the → relation. So, our semantics for Update allows U to create a certi�cate ζ,
U ′ to create a certi�cate ζ′, and σ(ζ′) < σ(ζ) to hold�consistent with the service-
centric causality relation but the opposite of what is required for serial numbers
consistent with Lamport's more-useful potential causality relation [Lamport 1978]
(because execution of U is potentially causal for execution of U ′).
COCA is forced to employ the service-centric causality relation because COCA

has no way to obtain information it can trust about causality involving operations
it does not itself implement. Clients would have to provide COCA with that infor-
mation, and compromised clients might provide bogus information.

Update and Query are not indivisible and (as will become apparent in Section 3)
are not easily made so: COCA's Update involves separate actions for the invalida-
tion and for the creation of certi�cates. In implementing Update, we contemplated
either possible ordering for these actions: Execute invalidation �rst, and there is a
period when no certi�cate is valid; execute invalidation last, and there is a period
when multiple certi�cates are valid.
We wanted Query always to return a certi�cate, so avoiding periods with no

valid certi�cate for a given name would have meant synchronizing Query with con-
current Update requests. We rejected this because the synchronization creates an
execution-time cost and introduces a vulnerability to denial of service attacks�
repeated requests by an attacker for one operation could now block requests for
another operation. Our solution is to have Update create the new certi�cate before
invalidating the old one, but it too is not without unpleasant consequences. Both
of the following cannot now hold.

(i) A certi�cate for cid is valid if and only if it is the certi�cate for cid with largest
serial number.

(ii) Query always returns a valid certi�cate.

COCA clients therefore must accommodate our more-complicated semantics for
Query and program their own synchronization.

2.2 Bounding the Window of Vulnerability

The duration of COCA's window of vulnerability cannot be characterized in terms
of real time due to our Asynchrony assumption, so its duration is de�ned in terms
of events marking the completion of proactive recovery protocols that are executed
periodically to:

�reload the code (thereby eliminating Trojan horses),

�reconstitute the state of each COCA server (which might have been corrupted
during the previous window of vulnerability), and

�obsolete any con�dential information an attacker might have obtained by com-
promising servers.

Each window of vulnerability at a COCA server begins when that server starts
executing the proactive recovery protocols and terminates when that server has
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again started and �nished those protocols. Thus, every execution of the proactive
recovery protocols is part of two successive windows of vulnerability. COCA is
agnostic about when the proactive recovery protocols start. Currently, each COCA
server attempts to run these protocols after a speci�ed interval has elapsed on its
local clock but (to avoid denial of service attacks) a server will refuse to participate
in the protocols unless enough time has passed on its clock since they last executed.
In theory, using protocol events to delimit the window of vulnerability a�ords

attackers leverage. Denial of service attacks that slow servers and/or increase mes-
sage delivery delays expand the real-time duration for the window of vulnerability,
creating a longer period during which attackers can try to compromise more than
t servers. But in practice, we expect assumptions about timing can be made for
those portions of the system that have not been compromised.2 Given such infor-
mation about correct server execution speeds and message-delivery delays, real-time
bounds on the window of vulnerability can be computed.

Limiting the Utility of Compromised Keys.

Server Keys. Each COCA server maintains a private/public key pair, and the
public key is known by all COCA servers. These public keys allow servers to
authenticate the senders of messages they exchange with other servers.
In the absence of tamper-proof co-processors, server keys must be refreshed as

part of proactive recovery. One simple approach has trusted administrators for each
server invent and propagate new public keys through secure channels implemented
by having an administrative public/private key pair. The administrative public key
is known to other administrators (and all servers); the administrative private key,
kept o�-line most of the time as a defense against on-line attacks, is used to sign
noti�cation message for the new public server public key. Other rekeying schemes
are discussed in [Canetti and Herzberg 1994].
Public keys of COCA servers are not given to COCA clients so that clients need

not be informed of changed server keys�attractive in a system with a large number
of clients and where server keys are periodically refreshed.

Service Key. There is one service private/public key pair. It is used for signing
responses and certi�cates. All clients and servers know the service public key.
The service private key is held by no COCA server. Instead, di�erent shares of

the key are stored on each of the servers, and threshold cryptography [Desmedt
and Frankel 1990; 1992; Desmedt 1994; 1998; Frankel and Yung 1998] is used to
construct signatures on responses and certi�cates. To sign a message:

(1) each COCA server generates a partial signature from the message and that
server's share of the service private key;

(2) some COCA server combines these partial signatures and obtains the signed
message.3

2A server that violates these stronger execution timing assumptions might be considered compro-
mised, for example.
3Having a client combine the partial signatures instead of having COCA do it introduces a vul-
nerability to denial of service attacks. Clients, lacking COCA server public keys, do not have a
way to authenticate the origins of messages conveying the partial signatures. Therefore, a client
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With (n, t + 1) threshold cryptography, t + 1 or more partial signatures are needed
in order to generate a signature. An adversary must therefore compromise t + 1
servers in order to forge COCA signatures.

Proactive Secret Sharing. A mobile adversary might compromise t+1 servers over
a period of time and, in so doing, collect the t + 1 shares of the service private key.
Consequently, COCA employs a proactive secret sharing protocol to refresh these
shares, periodically generating a new set of shares for the service private key and
deleting the old set. New shares cannot be combined with old shares to construct
signatures. So periodic execution of this proactive secret sharing protocol ensures
that a mobile adversary can forge COCA signatures only by compromising t + 1
servers in the interval between protocol executions.
The proactive secret sharing protocol that COCA employs makes no synchrony

assumptions (which would be incompatible with the Asynchrony assumption of
Section 2), unlike prior work (e.g., [Jarecki 1995; Herzberg et al. 1995; Herzberg
et al. 1997; Frankel et al. 1997; Frankel et al. 1997]); details are discussed in [Zhou
et al. 2002; Zhou 2001]. For the discussion in this paper, it su�ces to regard the
protocols simply as services that COCA invokes.

Server Code and State Recovery. Part of proactive recovery should include re-
freshing the states and reloading the code at COCA servers. The state of a COCA
server involves a set of certi�cates. In theory, this state could be refreshed by per-
forming a Query request for each name that could appear in a certi�cate, but the
cost of such an enumeration would be prohibitive. So instead, during proactive
recovery, a list with the name and serial number for every valid certi�cate stored
by each COCA server is sent to every other server. Upon receiving this list, a server
retrieves any certi�cates that appear to be missing. Certi�cates stored by COCA
servers are signed (by COCA), so each certi�cate can be checked to make sure it
is not bogus. The certi�cate serial numbers enable servers to determine which of
their certi�cates have been invalidated (because a certi�cate for that same name
but with a higher serial number exists).
Server code should be reloaded from some read-only media or other trusted source

by proactive recovery in order to eliminate Trojan horses installed by attackers
during the previous window of vulnerability. This functionality is not currently
implemented in our prototype, however, since defending against such attacks is not
the focus of our research; see Castro [Castro 2000] for an in-depth discussion of the
issues.
There is one non-obvious point of interaction between proactive recovery and

request processing. To satisfy Request Completion, an accepted request that has
not been completed when a window of vulnerability ends must become an accepted
request in the next window of vulnerability. Therefore, such a request must be
propagated to other servers as part of proactive recovery. So each correct server,
when executing the proactive recovery protocol, resubmits to all servers any request
that is then in progress and awaits acknowledgments from at least t + 1 servers.
Some server that is correct in this next window of vulnerability necessarily receives

could be bombarded with bogus partial signatures, and only by actually trying to combine these
fragments�an expensive enterprise�could the bona �de partial signatures be identi�ed.
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that request, and that means this accepted request in the previous window of vul-
nerability also becomes an accepted request in the new window of vulnerability.
To avoid a spate of new requests from delaying termination of proactive recov-

ery (a potential denial of service attack), COCA servers could ignore such new
requests.4 In those rare cases where a re-started request has not �nished before a
new proactive recovery is started, COCA could delay proactive recovery until after
the processing of re-started requests has been completed. In practice, windows of
vulnerability will tend to be long (viz. days) relative to the time (5 seconds or less)
required for processing a Query or Update request. It is thus extremely unlikely that
a request restarted in a subsequent window of vulnerability would not be completed
before proactive recovery is again commenced.

3. PROTOCOLS

In COCA, every client request is processed by multiple servers and every certi�cate
is replicated on multiple servers. The replication is managed as a dissemination
Byzantine quorum system [Malkhi and Reiter 1998a], which is feasible because we
have assumed 3t+1 ≤ n holds. So servers are organized by COCA into sets, called
quorums, satisfying:5

Quorum Intersection: The intersection of any two quorums contains at least one
correct server.

Quorum Availability: A quorum comprising only correct servers always exists.

And every client request is processed by all correct servers in some quorum.
Detailed protocols for Query and Update appear as an Appendix; in this section,

we explain the main ideas behind the design of these protocols. Technical challenges
the protocols must address include:

�Because requests are processed by a quorum of servers but not necessarily by all
correct COCA servers, di�erent correct servers might process di�erent Update
requests. Consequently, di�erent certi�cates for a given name cid are stored by
correct servers. Certi�cate serial numbers provide a solution to the problem of
determining which of those certi�cates is the one to use.

�Because clients do not know COCA server public keys, a client making a request
cannot authenticate messages from a COCA server and, therefore, cannot deter-
mine whether a quorum of servers has processed that request. The solution is for
some COCA servers to become delegates for each request. A delegate presides
over the processing of a client request and, being a COCA server, can authen-
ticate server messages and assemble the needed partial signatures from other
COCA servers. A client request is handled by t + 1 delegates to ensure that at
least one of these delegates is correct.

�Because communication is done using fair links, retransmission of messages may
be necessary.

4The time to execute proactive recovery tends to be short, and ignoring (a �nite number of)
messages is permitted by the Fair Links assumption.
5Provided there are 3t+1 servers and at most t of those servers may be compromised, the quorum
system {Q : |Q| = 2t + 1} constitutes a dissemination Byzantine quorum system. For simplicity,
we assume n = 3t + 1 holds; the protocols are easily extended to cases where n > 3t + 1 holds.
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Fig. 1. Overview of client request processing.

Figure 1 gives a high-level view of how COCA operates by depicting one of the
t + 1 delegates and the quorum of servers working with that delegate to handle a
client request. The �gure shows a client making its request by sending a signed
message to t+1 COCA servers. Each server that receives this message assumes the
role delegate for the request. A delegate engages a quorum of servers to handle the
request (by sending that request to all COCA servers) and constructs a response to
the request based on the responses received from that quorum. The delegate then
causes this response to be signed by the service�this involves running a threshold
signature protocol in cooperation with t other servers. Once signed, the response is
sent by the delegate to the client. Upon receipt, the client checks that the response
is correctly signed by the service and contains the client's original request; if it isn't
or if no response has been received within a speci�ed period of time, then the client
simply again sends the original request to t + 1 servers.

Protocol Details

Certi�cate Serial Numbers. The serial number σ(ζ) for a COCA certi�cate ζ is
implemented as a pair 〈v(ζ), h(Rζ )〉, where v(ζ) is a version number and h(Rζ) is a
collision-resistant hash of the Update request Rζ that led to creation of ζ. Version
numbers encode the service-centric causality relation as follows.

�The �rst certi�cate created to specify a binding for a name cid is assigned version
number 0.

�A certi�cate ζ′ produced by an Update given certi�cate ζ is assigned version
number v(ζ′) = v(ζ) + 1.

Because di�erent requests have di�erent collision-resistant hashes, certi�cates cre-
ated by di�erent requests have di�erent serial numbers. The usual lexicographic
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ordering on serial numbers yields the total ordering on serial numbers we seek�an
ordering consistent with the transitive closure of the → relation.
Note that, even with serial numbers on certi�cates, the same new certi�cate will

be created by COCA if an Update request is re-submitted, and Update requests
are thus idempotent. This is because the serial number of a certi�cate is entirely
determined by the arguments in the request that creates the certi�cate.

Determining a Response for Query. It su�ces to consider an abstract description
of COCA's Update and Query protocols in order to characterize responses satisfying
parts (i) and (ii) in the speci�cation for Query. The actual protocols re�ne this
abstract description.
COCA Update requests are processed by correct servers in some quorum and

not necessarily by all correct COCA servers. Consequently, a correct COCA server
p can be ignorant of certi�cates having larger serial numbers than p stores for a
name cid . Part (ii) in the speci�cation for Query implies that all completed Update
requests (hence, all certi�cates) must be taken into account in determining the
response to a Query request Q. Therefore, a quorum of servers must be engaged
in processing Q. Responses from a quorum Q of servers is guaranteed if all COCA
servers are contacted. Provided each server in Q responds with the certi�cate
(signed by COCA) it stores having the largest serial number among all certi�cates
(for cid) known to the server, then the certi�cate ζ having the largest serial number
among the correctly signed certi�cates received in the responses from Q can serve
as the response to Q. That is, ζ will satisfy part (i) and part (ii) in the speci�cation
for Query, as we now show.

We �rst show that any certi�cate ζ obtained by re�ning the protocol outlined
above satis�es part (i). Part (i) stipulates that a certi�cate returned for Query is
created by an accepted Update; it is satis�ed by ζ if each certi�cate is signed by
COCA only after the Update request creating that certi�cate has been accepted.
This is because the (n, t + 1) threshold cryptography being employed for digital
signatures requires cooperation (collusion) by more than t servers in order to sign
a certi�cate. Given our assumption of at most t compromised servers, we conclude
that there are not enough compromised servers to create bogus signed certi�cates.
Therefore, when a certi�cate is signed, a correct server must have participated in
processing the request that created the certi�cate; the request creating the certi�-
cate had to have been accepted.
Part (ii) of the speci�cation for Query requires that, for any Update request U

naming cid and completed before Q is accepted, σ(ζ′) ≤ σ(ζ) must hold where
ζ′ is the certi�cate created by U . This holds for implementations that re�ne the
abstract description given above due to Quorum Intersection, because some correct
server p in Q must also be in the quorum that processed U . Let certi�cate ζp be
p's response for Q. Server p always chooses the certi�cate for cid with the largest
serial number, so σ(ζ′) ≤ σ(ζp) holds. And because ζ is the certi�cate that has
the largest serial number among those from all servers in Q, σ(ζp) ≤ σ(ζ) holds.
Therefore, σ(ζ′) ≤ σ(ζ) holds.

The Role of Delegates. Every request is processed by all correct servers in some
quorum; the client must be noti�ed once that has occurred. Direct noti�cation by
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servers in the quorum is not possible because clients do not know the public keys
for COCA servers and, therefore, have no way to authenticate messages from those
servers. So, instead, a COCA server is employed to detect the completion of request
processing and then to notify the client, as follows.
A delegate for a request R is a COCA server that causes R to be processed by

correct COCA servers in some quorum and then sends a response (signed by COCA)
back to the initiating client. The processing needed to construct the response
depends on the type of request being processed.

�To process a Query request Q for name cid , the delegate obtains certi�cates from
a quorum of servers, picks the certi�cate ζ having the largest serial number, and
uses the threshold signature protocol to produce a signed response containing ζ:

(1) Delegate forwards Q to all COCA servers.

(2) Delegate awaits certi�cates for cid from a quorum of COCA servers.

(3) Delegate picks the certi�cate ζ having the largest serial number of those
received in step 2.

(4) Delegate invokes COCA's threshold signature protocol to sign a response
containing ζ; that response is sent to the client.

�To process an Update request U for name cid , the delegate constructs the cer-
ti�cate ζ for the given new binding (using the threshold signature protocol to
have COCA digitally sign it) and then sends ζ to all COCA servers. A server
p replaces the certi�cate ζcid

p for cid that it stores by ζ if and only if the serial

number in ζ is larger than the serial number in ζcid
p :

(1) Delegate constructs a new certi�cate ζ for cid , using the threshold signature
protocol to sign the certi�cate.

(2) Delegate sends ζ to every COCA server.

(3) Every server, upon receipt, replaces the certi�cate for cid it had been storing
if the serial number in ζ is larger. The server then sends an acknowledgment
to the delegate.

(4) Delegate awaits these acknowledgments from a quorum of COCA servers.

(5) Delegate invokes COCA's threshold signature protocol to sign a response;
that response is sent to the client.

Quorum Availability ensures that a quorum of servers are always available, so step
2 in Query and step 4 in Update are guaranteed to terminate. Since at least t+1 of
COCA's 3t + 1 servers are correct, compromised servers cannot prevent a delegate
from using (n, t + 1) threshold cryptography in constructing the COCA signature
for a certi�cate or a response. Thus, step 4 in Query and steps 1 and 5 in Update,
which involve contacting all COCA servers, cannot be disrupted by compromised
servers.
A compromised delegate might not follow the protocol just outlined for processing

Query and Update requests. COCA ensures that such behavior does not disrupt the
service by enlisting t+1 delegates (instead of just one) for each request. At least one
of the t + 1 delegates must be correct, and this delegate can be expected to follow
the Query and Update protocols. So, we stipulate that a (correct) client making a
request to COCA submits that request to t + 1 COCA servers; each server then
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serves as a delegate for processing that request.6

With t+1 delegates, a client might receive multiple responses to each request and
each request might be processed repeatedly by some COCA servers. The duplicate
responses are not di�cult for clients to deal with�a response is discarded if it is
received by a client not waiting for a request to be processed. That each request
might be processed repeatedly by some COCA servers is not a problem either,
because COCA's Query and Update implementations are idempotent.
But a compromised client might not follow the protocol and thus might not

submit its request to t + 1 delegates. A problem then occurs if the delegates
receiving a request R execute the �rst step of Query or Update processing and
then halt. Correct COCA servers now participated in the processing of R, so (by
de�nition) R is accepted. Yet no (correct) delegate is responsible for R. Request
R is never completed, and Request Completion is violated.
The defense is straightforward:

�Messages related to the processing of a client request R contain R.

�Whenever a COCA server receives a message related to processing a client request
R, that server becomes a delegate for R if it is not already serving as one.

The existence of a correct delegate is now guaranteed for every request that is
accepted.

Self-Verifying Messages. Compromised delegates might also attempt to produce
an incorrect (but correctly signed) response to a client by sending erroneous mes-
sages to COCA servers. For example, in processing a Query request, a compromised
delegate might construct a response containing a bogus or invalidated certi�cate
and try to get other servers to sign that; in processing an Update request, a com-
promised delegate might create a �ctitious binding and try to get other servers to
sign that; or when processing an Update request, a compromised delegate might not
disseminate the updated certi�cate to a quorum (causing the response to a later
Query to contain an invalidated certi�cate).
COCA's defense against erroneous messages from compromised servers is a form

of monitoring and detection that we call self-verifying messages.7 A self-verifying
message comprises:

�information the sender intends to convey and

�evidence enabling the receiver to verify�without trusting the sender�that the
information being conveyed by the message is consistent with some given protocol
and also is not a replay.

In COCA, every message a delegate sends on behalf of a request contains a tran-
script of relevant messages previously sent and received in processing that request
(including the original client request). Because messages contained in the transcript
are signed by their senders, a compromised delegate cannot forge the transcript.

6An optimization discussed in Section 5 makes it possible for clients, in normal circumstances, to
submit requests to only a single delegate.
7Similar schemes can be found in [Kihlstrom et al. 1997; Castro and Liskov 1999; Baldoni et al.
2000; Doudou et al. 2000].

ACM Journal Name, Vol. V, No. N, Month 20YY.



COCA: A Secure Distributed On-line Certi�cation Authority · 13

And, because the members of the quorum participating in the protocol are known
to all, the receiver of such a self-verifying message can independently establish
whether messages sent by a delegate are consistent with the protocol and the mes-
sages received.8

Communicating using Fair Links. The Fair Links assumption means that not all
messages sent are delivered. To implement reliable communication in this environ-
ment, it su�ces for a sender to resend each message until a signed acknowledgment
is received from the intended recipient. In turn, the recipient returns a signed
acknowledgment for every message it receives (including duplicates, since the pre-
vious acknowledgments could have been lost). If both the sender and the receiver
are correct then (due to Fair Links) this protocol ensures that the receiver eventu-
ally receives the message, the sender eventually receives an acknowledgment from
the receiver, and the sender exits the protocol.
Each protocol in COCA is structured as a series of multicasts, with informa-

tion piggybacked on the acknowledgments. A client starts by doing a multicast to
t+1 delegates; the signed response from a single delegate can be considered the ac-
knowledgment part of that multicast. A delegate then interacts with COCA servers
by performing multicasts and awaiting responses from servers. For the threshold
signature protocol, t+1 correct responses su�ce; for retrieving and for updating cer-
ti�cates, responses from a quorum of servers are needed. Thus, with at least 2t + 1
correct servers, COCA's multicasts always terminate due to Quorum Availability
since a delegate is now guaranteed to receive enough acknowledgments at every step
and, therefore, eventually that delegate will stop retransmitting messages.

4. DEFENSE AGAINST DENIAL OF SERVICE ATTACKS

A large class of successful denial of service attacks work by exploiting an imbal-
ance between the resources an attacker must expend to submit a request and the
resources the service must expend to satisfy that request, as has been noted, for
example, in [Juels and Brainard 1999; Meadows 1999; 2001]. If making a request is
cheap but processing one is not, then attackers have a cost-e�ective way to disrupt a
service�submit bogus requests to saturate server resources. A service, like COCA,
where request processing involves expensive cryptographic operations and multiple
rounds of communication is especially susceptible to such resource-clogging attacks.
COCA implements three classic defenses to blunt resource-clogging denial of

service attacks:

(i) An authorization mechanism identi�es requests on which resources should not
be expended.

(ii) Requests are grouped into classes, and resources are scheduled in a manner
that prevents demands by one class from a�ecting requests in another class.

(iii) The results of expensive cryptographic operations are cached, and attackers
cannot destroy the locality that makes this cache e�ective.

8In [Gong and Syverson 1998], Gong and Syverson introduce the notion of a fail-stop protocol,
which is a protocol that halts in response to certain attacks. One class of attacks is thus trans-
formed into another, more benign, class. Our self-verifying messages can be seen as an instance
of this approach, transforming certain Byzantine failures to more-benign failures.
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The details for COCA's realizations of these defenses constitute the bulk of this
section.
Note that our Fair Links and Asynchrony assumptions are an important defense

against denial of service attacks, too. An attacker stealing network bandwidth or
cycles from processors that run COCA servers is not violating assumptions needed
for COCA's algorithms to work. Such a �weak assumptions� defense is not without
a price, however. Implementing real-time service guarantees on request processing
requires a system model with stronger assumptions than we are making. Conse-
quently, COCA can guarantee only that requests it receives are processed eventu-
ally. Those who equate availability with real-time guarantees (e.g., [Gligor 1984;
Yu and Gligor 1990; Millen 1992; 1995]) would not be satis�ed by an eventuality
guarantee. But a system whose correctness depends only on �weak assumptions� is
not precluded from satisfying real-time guarantees when the environment satis�es
stronger assumptions, and COCA does just that.
Finally, COCA employs connectionless protocols for communication with clients

and servers, so COCA is not susceptible to connection-depletion attacks such as
the well-known TCP SYN �ooding attack [Schuba et al. 1997]. But the proactive
secret sharing protocol in the current COCA implementation does use SSL (Secure
Socket Layer) [Freier et al. 1996] and is, therefore, subject to certain denial of
service attacks. This vulnerability could be eliminated by restricting the rate of
SSL connection requests, reprogramming the proactive secret sharing protocol, or
adopting the mechanisms described in [Juels and Brainard 1999].

4.1 Request-Processing Authorization

Each message received by a COCA server must be signed by the sender. The server
rejects messages that

�do not pass certain sanity checks,

�are not correctly signed, or

�are sent by clients or servers that, from messages received in the past, were
deemed by this server to be compromised.

An invalid self-verifying message, for example, causes the receiver r to judge the
sender s compromised, and the request-processing authorization mechanism at r
thereafter will reject messages signed by s (until instructed otherwise, perhaps
because s has been repaired).
Verifying a signature is considerably cheaper than executing an Update or Query

request (which involve threshold cryptography and multiple rounds of message ex-
change). But verifying a signature is not free, and an attacker might still attempt
to �ood COCA with requests that are not correctly signed. Should this vulnerabil-
ity ever become a concern, we would add a still-cheaper authorization check that
requests must pass before signature veri�cation is attempted. Cookies [Karn and
Simpson 1997; Oppliger 1999], hash chains [Kent et al. 1996], and puzzles [Juels
and Brainard 1999] are examples of such checks.
Of course, any server-based mechanism for authorization will consume some

server resources and thus could itself become the target of a resource-clogging at-
tack, albeit an attack that is more expensive to launch by virtue of the additional
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authorization mechanism. An ultimate solution is authorization mechanisms that
also establish the origin of the request being checked, since fear of discovery and
reprisal is an e�ective deterrent.

4.2 Resource Management

Because requests are signed, COCA servers are able to identify the client and/or
server associated with each message received. This enables each COCA server to
limit the impact that any compromised client or server can have. In particular,
each COCA server stores messages it receives in one of a set of input queues and
employs a scheduler to service those queues. The queues and scheduler limit the
fraction of a server's cycles that can be co-opted by a given source of requests.9

Others have also advocated similar approaches [Gligor 1984; Yu and Gligor 1990;
Millen 1992; 1995].
Our COCA prototype has a con�gurable number of input queues at each server.

A round-robin scheduler services these queues. Client requests are stored on one or
more queues, and messages from each COCA server are stored on a separate queue
associated with that server. Duplicates of an element already present on a queue
are never added to that queue. Each server queue has su�cient capacity so replays
of messages associated with a request currently being processed cannot cause the
queue to over�ow (since that would constitute a denial of service vulnerability).
In a production setting, we would expect to employ a more sophisticated sched-

uler and a rich method for partitioning client requests across multiple queues.
Clients might be grouped into classes, with requests from all clients in the same
administrative domain stored together on a single queue.

4.3 Caching

Replays of legitimate requests are not rejected by COCA's authorization mecha-
nism. Nor should they be, since Fair Links forces clients to resend each request until
enough acknowledgments are received. But attackers now have an inexpensive way
to generate requests that will pass COCA's authorization mechanism, and COCA
must somehow defend against such replay-based denial of service attacks.
There are actually two ways to redress an imbalance between the cost of making

requests and the cost of satisfying them. One is to increase the cost of making a re-
quest, and that is what the signature checking in COCA's authorization mechanism
does. A second is to decrease the cost of processing a request. COCA also embraces

9Clearly, this o�ers no defense against distributed denial of service attacks [Richtel and Robinson
2000] in which an attacker, masquerading as many di�erent clients, launches attacks from di�erent
locations. If the clients involved in such an attack can be detected, then their requests could be
isolated using COCA's queues and scheduler, but solving the di�cult problem�determining which
clients are involved in such an attack�is not helped by this COCA mechanism.
No host-based defense can combat an attack that saturates incoming links. Still, COCA does

enable two forms of what might be termed a distributed defense. First, distributed denial of
service attacks directed at some region of a network (rather than targeting the COCA service per
se) can be tolerated when COCA servers have been deployed so widely that a signi�cant number
reside outside the region under attack. Second, the proactive recovery protocols in COCA could
enable the service to migrate from one set of hosts to another, which then could allow the service
to outrun a distributed denial of service attack (provided su�cient bandwidth remains available
to execute proactive recovery).
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this latter alternative. Each COCA server caches responses to client requests and
caches the results of expensive cryptographic operations for requests that are in
progress, as also is suggested in [Oppliger 1999; Castro 2000]. Servers use these
cached responses instead of recalculating them when processing replays.
The cache for client responses is managed di�erently than the cache for in-

progress cryptographic results. We �rst discuss the client-response cache. With
�nite-capacity caches, responses to clients cannot be cached inde�nitely. If the
server cache is to be e�ective against replays submitted by clients, we must min-
imize the chance of such replays causing cache misses (and concomitant costly
computation by the server). The solution is to ensure that client replays are forced
to exhibit a temporal locality consistent with the information being cached. In
particular, by caching COCA's response for each client's most recent request,10 by
restricting clients to making one request at a time, and by having clients associate
ascending sequence numbers with their requests, older requests not stored in the
cache can be rejected as bogus by COCA's authorization mechanism.
Because requests are processed by only a quorum of COCA servers, a given

server's cache of client responses might not be current. A replay request signed
by client c to some server s can have a sequence number that is larger than the
sequence number for the last response cached at s for c. The larger sequence-
numbered request would not be rejected by s and could not be satis�ed from the
cache�the request would have to be processed. But with quorums comprising
2t + 1 of the 3t + 1 COCA servers, at most t such replays can lead to computation
by COCA servers. COCA's implementation further limits susceptibility to these
attacks. Whenever a COCA server sends a response to a client, that response is
also sent to all other COCA servers. Each server is thus quite likely to have cached
the most recent response for every client request.
An attacker not only can replay client requests for denial of service attacks,

but can also replay messages that servers exchange. COCA's defense here, too, is
a cache. Servers cache results from all expensive operations, such as computing
one-way hashes11 from shares for proactive secret sharing and computing partial
signatures for in-progress requests. The cache at each server is su�ciently large
to handle the maximum number of requests that all COCA servers could have in-
progress at any time. A total of 60K bytes su�ces for a cache to support one client
request, when COCA certi�cates do not exceed 1024 bytes (which seems reasonable
given observed usage).
COCA limits the number of requests that can be in-progress at any time by

having each delegate limit the number of requests it initiates. Of course, a compro-
mised delegate would not respect such a bound. But recall that COCA servers are
noti�ed when responses are sent, so a server can estimate the number of concurrent
requests that each server (delegate) has in progress. COCA servers can thus ignore
messages from servers that initiate too many concurrent requests.

10In a system with a million clients, this client cache would be roughly 5 gigabytes because
approximately 5K bytes is needed to store a client's last request and COCA's response.
11The one-way hash function involves expensive modular exponentiation and is needed to imple-
ment veri�able secret sharing [Feldman 1987].
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5. PERFORMANCE OF COCA

Our COCA prototype is approximately 35K lines of new C source; it employs
threshold and proactive threshold RSA schemes (with 1024-bit RSA keys), con-
structed using the protocol described in [Zhou 2001] from building blocks given in
[Rabin 1998].12 We implemented the protocols in OpenSSL [OpenSSL Project nd].
COCA certi�cates have the same syntax as X.509 [CCITT 1988] certi�cates, with
a COCA certi�cate's serial number embedded in the X.509 serial number.13

Much of the cost and complexity of COCA's protocols is concerned with toler-
ating failures and defending against attacks, even though failures and attacks are
infrequent today. We normally expect:

N1: Servers will satisfy stronger assumptions about execution speed.

N2: Messages sent will be delivered in a timely way.

Our COCA prototype is optimized for these normal circumstances. Wherever pos-
sible, redundant processing is delayed until there is evidence that assumptions N1
and N2 no longer hold.
In particular, our prototype delays when COCA servers start serving as the

additional delegates for client requests already in progress. This reduces the number
of delegates when N1 and N2 hold, hence it reduces the cost of request processing
in normal circumstances. The re�nements to the protocols of Section 3 are:

�A client sends its request only to a single delegate at �rst. If this delegate does
not respond within some timeout period, then the client sends its request to
another t delegates, as required by the protocols in Section 3.

�A server that receives a message in connection with processing some client request
R and that is not already serving as a delegate for R does not become a delegate
until some timeout period has elapsed.

�A delegate p sends a response to all COCA servers, in addition to sending the
response to the client initiating the request, after the request has been processed.
After receiving such a response, a server that is not yet a delegate for this request
will not become one in the future; a server that is serving as a delegate aborts
that activity.

�A cached response is forwarded to a server q whenever q instructs p to participate
in the processing of a request that has already been processed. Upon receiving
the forwarded response, q immediately terminates serving as a delegate for that
request.

Also, the threshold signature protocol COCA uses is designed to give better per-
formance when N1 and N2 hold.

12The protocols [Zhou 2001] we use employ replication of shares and subshares in achieving fault
tolerance rather than the backup scheme used in [Rabin 1998].
13Although syntactically compatible with X.509 certi�cates, COCA certi�cates are not inter-
changeable with the X.509 certi�cates in use by public key infrastructures today. First, COCA
imposes an interpretation on the serial numbers embedded in certi�cates�a COCA certi�cate
with a higher serial number invalidates one with a lower serial number for the same client. Sec-
ond, COCA, because it supports Query, has no need to and therefore does not provide the CRLs
(Certi�cation Revocation Lists) usually associated with public key infrastructures that support
X.509 certi�cates.
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Table I. Execution Time in a LAN when N1 and N2 hold.

COCA Operation Mean (msec) Std dev. (msec)

Query 629 16.7
Update 1109 9.0
PSS 1990 54.6

Table II. Breakdown of costs for Query, Update,
and proactive secret sharing (PSS) in local area
network deployment.

Query Update PSS

Partial Signature 64% 73%
Message Signing 24% 19% 22%
One-Way Function 51%

SSL 10%
Idle 7% 2% 15%
Other 5% 6% 2%

5.1 Local Area Network Deployment

The experiments reported in this subsection all involved a COCA prototype com-
prising four servers (i.e., n = 4 and t = 1) communicating using a 100Mbps Eth-
ernet. The servers were Sun E420R Sparc systems running Solaris 2.6, each with
four 450 MHz processors. The round-trip delay for a UDP packet between any two
servers on this Ethernet is usually under 300 microseconds.

Table I gives times for COCA operations executing in isolation when assumptions
N1 and N2 hold. We report the delay for Query, for Update, and for a round
of proactive secret sharing.14 The reported sample means and sample standard
deviations are based on 100 executions. All samples were within 5% of the mean.

To better understand the origin of these delays, we report in Table II the (percent-
age) contribution that can be attributed to certain CPU-intensive cryptographic
operations. For Query and Update, we measured the time spent generating par-
tial signatures and signing messages. For proactive secret sharing, we measured
the delay associated with the one-way function, with message signing, and with
computation involved in establishing an SSL (Secure Socket Layer) connection to
transmit con�dential information between servers. Notice that improved hardware
for performing cryptographic operations could have a considerable impact. Idle
time, because servers sometimes wait for one another, is also listed in Table II.
Only 2% to 6% of the total execution time is unaccounted. That time is being
used for signature veri�cation, message marshaling and un-marshaling, and task
management.

To evaluate the e�ectiveness of the optimizations outlined above for when as-
sumptions N1 and N2 hold, Figure 2 compares performance with and without the
optimizations. The results summarize 100 executions; very small sample standard
deviations are observed here. The optimizations thus can be seen to be e�ective.
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Fig. 2. E�ectiveness of optimization in Query, Update, and proactive secret sharing (PSS) when
assumptions N1 and N2 hold.
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Fig. 3. Deployment of COCA over the Internet with message delays between servers.

5.2 Internet Deployment

Communications delays in the Internet are higher than in a local area network; the
variance of these delays is also higher. To understand the extent, if any, this a�ects

14Time spent checking certi�cates and performing other state recovery at each server is not in-
cluded in these delays. ACM Journal Name, Vol. V, No. N, Month 20YY.
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Table III. Performance of COCA over the Internet. The av-
erages and sample standard deviations are from 100 repeated
executions during a 3-day period.

COCA Operation Mean (msec) Std dev. (msec)

Query 2270 340
Update 3710 440
PSS 5200 620

Table IV. Breakdown of costs for Query, Update,
and proactive secret sharing (PSS) in Internet de-
ployment.

Query Update PSS

Partial Signature 8.0% 8.7%
Message Signing 3.2% 2.5% 2.6%
One-Way Function 7.8%

SSL 1.6%
Idle 88% 87.7% 87.4%
Other 0.8% 1.1% 0.6%

performance, we deployed four COCA servers as follows.

�University of Tromsø (UIT), Tromsø, Norway. (300 MHz, Pentium II)

�University of California at San Diego (UCSD), San Diego, CA. (266 MHz, Pen-
tium II)

�Cornell University, Ithaca, NY. (550 MHz, Pentium III)

�Dartmouth College, Hanover, NH. (450 MHz, Pentium II)

All ran Linux.15 Figure 3 depicts the average message delivery delay (measured
using ping) between these servers. Delivery delays on the Internet vary considerably
[Labovitz et al. 1997] but the values observed during the experiments we report did
not di�er signi�cantly from those in Figure 3.
Table III gives measurements for the Cornell host in our 4-site Internet deploy-

ment. In comparing Table I and Table III, we see the impact of the Internet's
longer communication delays (which also lead to longer server idle times). The
sample standard deviation is also higher for the Internet deployment, due to higher
load variations on servers and due to the higher variance of delivery-delays on the
Internet; all samples are located within 25% of the mean. See Table IV for a
breakdown of delays (analogous to Table II) for our Internet deployment of COCA.

5.3 COCA Performance and Denial of Service Attacks

Any denial of service attack will ultimately involve attackers (i.e., some combination
of compromised clients and/or servers) (i) sending new messages, (ii) replaying old
messages, and (iii) delaying message delivery or processing. To evaluate how e�ec-
tive COCA's defenses are against these, we simulated attacks and measured their

15Beggars can't be choosers. For making measurements, we would have preferred having the same
hardware at every site, though we have no reason to believe that our conclusions are a�ected by the
modest di�erences in processor speeds. For a production COCA deployment, we would recommend
having di�erent hardware and di�erent operating systems at each site so that common-mode
vulnerabilities are reduced.
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impact. The results of those experiments for our local area network deployment of
COCA are discussed in this subsection.

Message-Creation Defense. New messages sent by servers are not nearly as potent
in denial of service attacks against COCA as new messages sent by clients. This is
because messages from servers are rejected unless they self-verify. So such messages
must contain a correctly signed client request as well as correctly signed messages
from all servers involved in previous protocol steps�the collusion and compromise
of more than t COCA servers is thus required to get past COCA's request-processing
authorization mechanism. Moreover, once any message from a given server is found
by a COCA server p to be invalid, subsequent messages from that server will be
ignored by p, considerably blunting their e�ectiveness in a denial of service attack
to saturate p.
In contrast, a barrage of requests from compromised clients, if correctly signed,

cannot be rejected by COCA's request-processing authorization mechanism (unless
the identities of these compromised clients is already known by the receiver). The
impact of such a barrage should be mitigated by COCA's resource management
mechanism, which ensures that messages from a small set of senders do not monop-
olize server resources. How e�ective as a defense this mechanism is depends on the
exact con�guration of COCA's resource management mechanism: the number of
input queues, on which input queues various clients are grouped, and the scheduler
used in servicing these input queues.
To measure this e�ectiveness, it su�ces to investigate the simple case of two

clients. A compromised client sends a barrage of new requests to the service at
rates we control;16 a correct client sends a request and then awaits a response or a
timeout17. Of interest is by how much the correct client's requests become delayed
due to requests the compromised client sends, since this information can then be
used in predicting COCA's behavior when there are more than two clients.
Once a client's request R is appended to some input queue on a (correct) COCA

server, two factors contribute to delay processingR. The �rst source of delay arises
from multiplexing the server as it concurrently processes a number of requests.
This number of requests is referred to as the level of concurrency. Assuming a
modest load from correct clients, the delay due to sharing the processor with other,
concurrent requests is not a�ected by actions an attacker might take and thus is
not of interest here; our experiments therefore assume servers process requests to
completion serially (viz. the level of concurrency is 1). The second source of delay
is a�ected by the compromised client's barrage of new messages�requests in input
queues whose processing will precede R. A mechanism to defend against a barrage
of client requests must control this source of delay, and it is this delay that we
measure.
Our �rst experiment adjusted the rate of requests from the compromised client

while measuring the performance of requests from the correct client. To start, each
server was con�gured to store all client requests on a single input queue. The

16Because the compromised client does not await responses before sending additional requests,
these experimental results apply directly to the case where a group of compromised clients all
share the same input queue on each server.
17The timeout is 1 second for Query and 2 seconds for Update.
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Fig. 4. Performance of Query for a correct client when a compromised client makes requests at
varying rates.

capacity of this queue was 10 requests. We found that the correct client would get
no service whenever the compromised client sent requests at a rate in excess of 10
requests per second. At 10 requests per second, requests from the compromised
client �ll the (�xed capacity) input queue virtually all the time�a Query request
from the correct client has a 9 in 10 chance of being discarded because it arrives
when there is no room in the input queue, and an Update request has half that
(due to the 1 and 2 seconds timeout respectively). The denial of service attack is a
success.
For the next experiment, each server was con�gured to have separate queues for

the correct client and the compromised client. A round-robin scheduler serviced
the two queues. Figures 4 and 5 show performance of Query and Update requests
from the correct client for various rates of requests from the compromised client.
Every reported data point is the average processing time over 100 experiments; the
error bars depict the range for 95% of the samples.
The curves for Query and Update in Figures 4 and 5 comprise two segments.

In the �rst segment, increases in the rate of requests that the compromised client
sends cause increased delays for requests from the correct client. This is because as
the rate of requests from the compromised client increases, so does the probability
that COCA�with its round-robin servicing of input queues�will have to process
one of those requests R before processing a request from the correct client. The
processing of R thus increases the processing time for a request from the correct
client. We see in this �rst segment almost identical wide ranges of samples for each
rate measured. The worst case occurs when the request from the correct server
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Fig. 5. Performance of Update for a correct client when a compromised client makes requests at
varying rates.

arrives just after a request from the compromised client starts to get processed,
while the best case occurs when the request from the correct server arrives when no
request from the compromised client is being processed. Even though we see the
same worst and best case, the means of samples increases as the rate of requests
from the compromised client increases, re�ecting an increasing probability that the
request from the correct client has to wait for the processing of a request from the
compromised client.
The second segment of the curves begins once the compromised client is sending

requests at approximately the same rate as the normal client (i.e., approximately 1
request per second for Query and 0.5 requests per second for Update). Throughout
this second segment, further increases in the request rate from the compromised
client do not further degrade the processing of requests from the correct client. This
is because requests from the two clients are being processed in alternation, and the
delay for requests from the correct client remains at about double what is measured
when there is no compromised client. Note that, as the rate of requests from the
compromised client increases, more and more of those requests are discarded by
servers�the �xed-capacity input queue for the compromised client is full when
those requests arrive.
COCA's request-processing authorization mechanism starts saturating at 100

requests per second, due to the time required for a server to perform signature
veri�cation on each incoming message. With 100 requests per second, a server has
diminished processing capacity to execute protocols for Query and Update. There
was thus little point in exploring higher request rates in performance experiments,
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and we didn't.
In an actual deployment, clients will be partitioned over a set of input queues.

But the worst-case performance for this case is easy to bound in light of the above
experiments for two clients. Suppose b queues are serving only compromised clients,
c queues are serving only correct clients, and d queues are serving both kinds of
clients. Requests from compromised clients will starve requests from correct clients
that share the same input queue, because the �rst experiment above established
that if the rate of requests to a single input queue from compromised clients exceeds
10 requests per second then requests from correct clients to that input queue are
unlikely to succeed. And the second experiment established that COCA's resource-
management mechanisms will guarantee that c/(b+c+d) of each server's processing
time and other resources are devoted to processing requests on the queues that serve
only correct clients.

Message-Replay Defense. COCA employs caching to defend against denial of
service attacks involving message replays. We need not consider replays of client
requests in our experiments, because their impact is considerably smaller than the
impact of processing new requests from a compromised client. Speci�cally, for new
requests, COCA must expend resources in executing the protocol for the operation
being requested, but for replays of client requests, processing (by design) involves
considerably fewer resources�the request is one that can be rejected because its
sequence number is too small, one that can be be satis�ed from the server's cache,
or one that can be ignored because it is already being processed. Assuming that
the requests being replayed are from the same (compromised) client that launches
the denial of service attacks in the experiments of Figures 4 and 5, those curves give
the bounds we seek on the worst-case performance of COCA when client-request
replays form the basis for a denial of service attack.
Replays of messages from servers in COCA are not immobilizing, because rela-

tively expensive cryptographic computations are cached. To validate this, we sim-
ulated an attacker replaying server messages at varying rates to all other COCA
servers. The message being replayed was designed to cause a defenses-disabled
COCA server to compute partial signatures, which takes approximately 200 mil-
liseconds on a 450 MHz Sun E420 Sparc server�a relatively expensive operation
and thus particularly e�ective in a denial of service attack.
We measured the average delay for Query, Update, and proactive secret sharing

as a function of the rate of message replay sent by the compromised server. We
compared the performance in the case where caching is enabled to that in the case
where caching is disabled. This information appears in Figures 6 through 8.
For the case where caching is enabled, the average delay for each operation is

largely una�ected as the rate of message replay increases, because caches satisfy
most of the computational needs in handling those messages. We witnessed a slight
increase in the average delay when the rate of message replay reaches 100 messages
per second. This is the point where the request-processing authorization mechanism
becomes saturated by incoming messages.
For the case where caching is disabled, each curve consists of two segments.

The �rst segment (which ends at approximately 3 replays per second for Query
and Update, and 10 replays per second for PSS) resembles the �rst segment in the
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Fig. 6. Performance of Query processing under the simulated denial of service attack from a
compromised server: with cache vs. without cache.

curves of Figures 4 and 5, and it re�ects the increased use of processing resources by
replays to recompute values that were not cached as the replay rate increases. The
second segment only gradually increases. Over this range, additional computation
is not required (so additional delay is not incurred) since the resource management
mechanism bounds the number of attacker messages that are processed.
Even without the compromised server launching the attack (i.e., when the rate

of replay messages is 0), the average delay for each operation in the case where
caching is enabled is lower than that in the case where caching is disabled. This is
because, with one fewer server participating, repeated executions of certain expen-
sive operations is necessary since assumption N1 no longer holds, so correct servers
are unable to �nish processing in an optimized execution. The switch back to the
fault-tolerant version causes repeated executions of certain expensive cryptographic
operations, which can be avoided when caching is enabled.

Delivery-Delay Defense. To measure the impact of message transmission and
processing delays on the performance of COCA, we instrumented each server so
that messages delivered to a client or server could be delayed a speci�ed amount
before becoming available for receipt. We investigated both the case where messages
sent to one speci�c server are delayed and the case where messages sent to all servers
are delayed.
Figure 9 gives the average time and the interval containing 95% of the samples

for COCA to process three operations of interest�Query, Update, and a round of
proactive secret sharing�when messages from a single server are delayed. The case
where this server is unavailable is also noted as inf on the abscissa.

ACM Journal Name, Vol. V, No. N, Month 20YY.



26 · Lidong Zhou et al.

 0 0.5  1  2  5  10  20  33  50 100
2

4

6

8

10

12

14

16

Rate of Replay Messages from a Compromised Server (message/second), logarithmic scale

U
pd

at
e 

P
ro

ce
ss

in
g 

T
im

e 
(s

ec
on

ds
)

w/o Cache 
with Cache

Fig. 7. Performance of Update processing under the simulated denial of service attack from a
compromised server: with cache vs. without cache.

As delay increases, the processing time is seen to move through three phases.
During the �rst phase, as server p (say) increases its delay in processing messages,
so does the delay for the operation of interest. This occurs because COCA protocols
initially assume N1 and N2 hold, and the optimized protocols require participation
by p. A delay in messages from p thus slows the protocols.
The second phase is entered after the delay for p causes servers to suspect that

assumptions N1 and N2 do not hold. These servers initiate redundant processing,
creating additional delegates for in-process operations, for example. Participation
by p is no longer required for the operation to terminate; increasing the delay at p
does not delay completion of the operation. But p will continue to send messages
requiring servers to compute replies. The time that servers devote to generating
these replies decreases as the delay for p increases, simply because p sends fewer
such messages when the delay is greater. Servers thus have more cycles to devote
to generating replies for servers other than p; these are the replies needed in order
for the protocols to terminate. So, the increasing delay for p frees server resources
to speed the termination of the protocol, and average processing time decreases in
this second phase.18

The third phase�a plateau in response time�is reached when the delay for p is

18We see that the decrease in processing time is more signi�cant in the case of proactive secret
sharing than in the cases of Query and Update. In the case of proactive secret sharing, processing
messages from server p involves some new (therefore not cached) expensive cryptographic oper-
ations, while, in the other two cases, expensive cryptographic operations can be avoided due to
caching.
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Fig. 8. Performance of proactive secret sharing under the simulated denial of service attack from
a compromised server: with cache vs. without cache.

su�ciently high so that it imposes little load on other servers.
Figure 10 gives average measured delay and the interval containing 95% of the

samples when message delay increases at all servers. Observe that the execution
time increases linearly with the increase of message delay. The curves are consistent
with how the protocols operate: processing a Query involves 6 message delays,
processing an Update involves 8 message delays, and a round of proactive secret
sharing involves 6 message delays.

6. RELATED WORK

Systems. A fault-tolerant authentication substrate [Reiter et al. 1994] for sup-
porting secure groups in the Horus system appears to be the �rst use of threshold
cryptography along with replication for implementing a CA. That led to the design
and implementation of Ω [Reiter et al. 1996], a stand-alone general-purpose CA
having more ambitious functionality, performance, and robustness goals. Unlike
COCA, none of this early work was intended to resist denial of service attacks or
mobile adversaries. Ω does provide clients with key escrow operations, something
that COCA does not currently support.19

Ω was built using middleware (called Rampart [Reiter 1995; 1996]) that imple-
ments process groups in an asynchronous distributed system where compromised
processors can exhibit arbitrary behavior. Rampart manages groups of replicas

19The same threshold decryption and blinding [Chaum 1983; 1985; 1988] that Ω uses for support-
ing this additional functionality would allow COCA to support these features too.
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Fig. 9. Performance of COCA vs. message delay for one server. Message delay of inf indicates
the case where this one server is unavailable.
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Fig. 10. Performance of COCA vs. message delay for all servers.
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and removes non-responsive members from process groups to ensure the system
does not stall due to compromised replicas. However, it is impossible to distinguish
between slow and halted processors in an asynchronous system, so Rampart uses
timeouts for identifying processors that might be compromised. A correct but slow
server might thus be removed from a process group, and this constitutes a denial of
service vulnerability. In addition, because making group membership changes in-
volves expensive protocols, an adversary can launch denial of service attacks against
Rampart by instigating membership changes. Furthermore, neither Rampart nor Ω
employs proactive recovery, so these systems are vulnerable to mobile adversaries.

An approach related to Rampart is embodied in the Byzantine Fault Tolerance
work (BFT) discussed in [Castro and Liskov 1999]. BFT employs an ordering
mechanism that not only de�nes a total ordering on requests but also enables a
server to know, given some request R received for processing, whether processing
R should be delayed because some request whose ordering precedes R exists. But
like COCA, BFT is unable to guarantee that requests are processed in an order
consistent with Lamport's causality relation�that would require trusting all clients.
BFT's stronger ordering mechanism is not needed for implementing COCA's Query
and Update; it would be needed if the speci�cation of Update were changed so that
a copy of the certi�cate being updated were no longer passed as an argument. BFT
is extremely fast because, wherever possible, it uses MACs (message authentication
codes) instead of public key cryptography. Employing MACs would also boost
COCA's performance, although public key cryptographic operations are needed by
COCA for signing certi�cates and responses to clients.

As with COCA, BFT employs proactive recovery [Castro and Liskov 2000]. Even
though BFT replicas do not store shares of a service private key, these replicas do
refresh shared secret keys to combat mobile adversaries. BFT takes denial of service
attacks into account and employs defenses similar to the mechanisms discussed for
COCA in Section 4 [Castro 2000].

An approach to implementing secure and fault-tolerant services based on replica-
tion in asynchronous systems with potentially malicious adversaries has also been
proposed in [Cachin 2001], and this seems to be a basis for the Hydra asynchronous
group communication primitives [Cachin and Poritz 2001]. State machine repli-
cation [Lamport 1978] is intended here, with randomized Byzantine agreement
to circumvent the impossibility result concerning agreement in asynchronous sys-
tems [Fischer et al. 1985]. The Hydra work does not, at present, address mobile
adversary or denial of service attacks; COCA's solutions would apply.

The PASIS (Perpetually Available and Secure Information Systems) architec-
ture [Wylie et al. 2000] is intended to support a variety of approaches�decentralized
storage system technologies, data redundancy and encoding, and dynamic self-
maintenance�that have been used in constructing survivable information storage
systems. Once PASIS has been implemented, it should be possible to use it and
program COCA's Query and Update in any number of ways. What is not clear
is whether PASIS will support COCA's optimizations or defense against denial of
service attacks, since doing so would depend on PASIS selecting a weak model of
computation and supporting access to low-level details of the PASIS building-block
protocols.

ACM Journal Name, Vol. V, No. N, Month 20YY.



30 · Lidong Zhou et al.

Replication and secret sharing are the basis for a fault-tolerant and secure key dis-
tribution center (KDC) described in [Gong 1993]. In this design, each client/KDC-
server pair shares a separate secret key. The KDC allows two clients to establish
their own shared secret key, and does so using protocols in which no single KDC-
server ever knows that shared secret key. In fact, an attack must compromise a
signi�cant fraction of the KDC's servers before any keys the KDC establishes to
link clients would be revealed.
Also related to COCA are various distributed systems that implement data repos-

itories with operations analogous to Query and Update. Phalanx [Malkhi and Reiter
1998b] is particularly relevant, because it is intended for a setting quite similar to
COCA's (viz. asynchronous systems in which compromised servers exhibit arbitrary
behavior) and can be used to implement shared variables having similar semantics
to COCA's certi�cates. (COCA's certi�cates can be regarded as shared variables
that are being queried and updated.)
Phalanx supports two di�erent implementations of read (Query) and write (Update)

for shared variables. One implementation is optimized for honest writers, clients
that follow speci�ed protocols or exhibit benign failures (crash, omission, or tim-
ing failures); a second implementation tolerates dishonest writers, clients that can
exhibit arbitrary behavior when faulty. Phalanx employs a masking Byzantine
quorum system [Malkhi and Reiter 1998a] for dishonest writers and employs a dis-
semination quorum system for honest writers.20

In Phalanx's honest writer protocol, writers must be trusted to sign the objects
being stored. Although, as with this honest writer protocol, COCA also uses a dis-
semination quorum system, COCA's protocols do not require clients to be trusted�
COCA servers store objects (certi�cates) that are signed by COCA's service key,
and that prevents compromised COCA servers from undetectably corrupting ob-
jects they store. Another point of di�erence between COCA and Phalanx is the
manner in which clients verify responses from the service. In Phalanx, every client
must know the public key of every server, whereas in COCA each client need know
only the single public key for the service.
The e-vault data repository [Iyengar et al. 1998; Garay et al. 2000] at IBM

T.J. Watson Research Center implements M. Rabin's information dispersal algo-
rithm [Rabin 1989] for storing and retrieving �les. Information is stored in e-vault
with optimal space e�ciency. But the e-vault protocols assume a synchronous
model of computation and, thus, involve stronger assumptions about execution
timing and delivery delays than we make for COCA. An attacker that is able to
overload processors or clog the network can invalidate these assumptions and cause
the e-vault protocols to fail. Like with COCA, clients of e-vault communicate with
the system through a single server (there called a gateway).

Cryptographic Building Blocks and Public Key Infrastructure. COCA employs
threshold cryptography [Desmedt and Frankel 1990; 1992; Desmedt 1994; 1998;
Frankel and Yung 1998] and proactive secret sharing [Jarecki 1995; Herzberg et al.

20In a masking Byzantine quorum system, Quorum Intersection is strengthened to stipulate that
the intersection of any two quorums always contains more correct replicas than compromised
replicas. A masking Byzantine quorum system can tolerate compromise of as many as one quarter
of its servers. Recall, a dissemination quorum system tolerates one third compromised servers.
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1995; Herzberg et al. 1997; Frankel et al. 1997; Frankel et al. 1997] as building
blocks. Because existing protocols were not intended for systems in which (only)
our Fair Links and Asynchrony assumptions hold, it was necessary to design new
protocols for COCA [Zhou et al. 2002; Zhou 2001]. Implementations of threshold
cryptography and proactive secret sharing schemes for stronger system models are
reported in [Barak et al. 1999; Wu et al. 1999; Draelos et al. 1998; CertCo, Inc.
nd].
Most previous work on public key infrastructure (e.g., [Gasser et al. 1989; Tardo

and Algappan 1991; Lampson et al. 1992; Kaufman 1993]) advocates o�-line CAs,
which issue certi�cates and certi�cate revocation lists (CRLs). Trade-o�s asso-
ciated with CRLs and related mechanisms are discussed in [Rivest 1998; Myers
1998; Kocher 1998; Fox and LaMacchia 1998; McDaniel and Rubin 2000]. Stub-
blebine [Stubblebine 1995] compares di�erent mechanisms to deal with revoked
certi�cates and argues that a single on-line service is impractical for both perfor-
mance and security reasons, advocating a solution with an o�-line identi�cation
authority and an on-line revocation authority. COCA could be used to implement
the on-line part of such a solution.
In [Byrd et al. 2001], a security infrastructure consisting of a distributed CA and a

certi�cate revocation noti�cation service is discussed, although the implementation
does not yet appear to be complete. As with COCA, the distributed CA employs
threshold cryptography. However, the proposed CA does not support Query or
Update, instead promptly notifying clients about invalidated certi�cates.
Alternatives to using an o�-line CA include on-line certi�cate status checking

(OCSP) [Myers et al. 1999; Myers 1998; Kocher 1998] and on-demand revoca-
tion lists [McDaniel and Rubin 2000]. The DVCS data validation and certi�cation
server [Adams et al. 2001] extends OCSP for checking arbitrary digitally signed
documents. All of these services rely on some sort of trusted on-line service (a
responder, a validation authority, and so on), so our experience implementing and
deploying COCA is directly applicable.
Some believe that scalability in a global public key infrastructure would dictate

deploying a hierarchy of certi�cation authorities. Previous work (e.g., [Maurer 1996;
Reiter and Stubblebine 1997; Burmester et al. 1998]) has applied the notion of �web
of trust�, �rst adopted in PGP [Zimmerman 1995], and exploited independent hosts
or paths to establish trust in such an infrastructure. Services like those provided
by COCA might still be desired in such an infrastructure, since that would allow
clients to verify, on demand, certi�cate validity.

7. CONCLUDING REMARKS

O�-line operation of a CA�an air gap�is clearly an e�ective defense against
network-borne attacks. For that reason, the traditional wisdom has been to keep a
CA o�-line as much as possible. This approach, however, trades one set of vulnera-
bilities for another. A CA that is o�-line cannot be attacked using the network but
it also cannot update or validate certi�cates on demand. Vulnerability to network-
borne attacks is decreased at the expense of increased client vulnerability to attacks
that exploit recently invalidated certi�cates.
By staying on-line, COCA makes the trade-o� between vulnerabilities di�erently.
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COCA's vulnerability to network-borne attacks is greater, but its clients' vulnera-
bility to attacks based on invalidated certi�cates is reduced. Marrying COCA with
an o�-line CA would exhibit the advantages of both [Lampson et al. 1992; Stub-
blebine 1995; Myers et al. 1999]. The o�-line CA issues certi�cates for clients, and
COCA validates (on demand) these certi�cates. Revocation of a certi�cate is thus
achieved by notifying COCA; issuance of a new certi�cate requires interacting with
the o�-line CA. We are now trading performance for security. In particular, while
it becomes harder for an adversary to create a new, valid certi�cate (because that
requires compromising the o�ine CA), it also now takes longer for a client to have
a new certi�cate issued (because that requires interacting with the o�ine CA).

Looking to the Future

The development of COCA has led to more than a prototype on-line CA, more than
speci�c protocols and denial of service defenses, and more than a set of experimental
data documenting the performance of a system under certain attacks. In composing
mechanisms for fault-tolerance and security, COCA implements a secure multi-
party computation [Yao 1982; Goldreich et al. 1987; Ben-Or et al. 1988; Chaum
et al. 1988]. Just as agreement protocols and their kin have become part of the
vocabulary of system builders concerned with fault-tolerance, so too must protocols
for secure multi-party computation if we aspire to build trustworthy systems. Query
and Update have relatively simple semantics. For building richer services that are
fault-tolerant and secure, we must become facile with implementing richer forms
of secure multi-party computation�protocols that enable n mutually distrusted
parties to compute a publicly known function on a secret input they share without
disclosing the input or what input shares are held by the parties.
If one lesson from COCA is a call to investigate practical, secure, multi-party

computation, a second is the value of weak assumptions�rather than speci�c
mechanisms�for a principled approach to defending against attacks. Defenses
based on weak assumptions are, by construction, accompanied by a characteri-
zation of vulnerabilities�the assumptions themselves. And, by their very nature,
weak assumptions are di�cult to violate. So, for example, careful attention paid
to the assumptions that characterize COCA's environment led to a system with in-
herent defenses to denial of service attacks. New assumptions, however, invariably
require the development of new protocols and perhaps also involve new kinds of
guarantees which we must then learn to build on.
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APPENDIX

A. DETAILED DESCRIPTION OF PROTOCOLS

This appendix gives details for the protocols described in Section 3.21 We describe
the protocol initiated by a delegate p. In practice, more than one delegate could
initiate the protocol for the same given request because a server p starts acting as
a delegate when p �rst receives the request or when p receives any message related
to the processing of the request. The optimizations outlined in Sections 4 and 5
are not included in this presentation.
The following notational conventions are used throughout the appendix:

p, q: COCA servers

c: COCA client

〈m〉k: message m signed by COCA using its service private key k

〈m〉p: message m signed by a server p using p's private key

〈m〉c: message m signed by a client c using c's private key

PS (m, sp): a partial signature for a message m generated by a server p using p's
share sp

[h1 −→ h2 : m]: message m is sent from host (a server or a client) h1 to host h2

[∀q. p −→ q : mq]: message mq is sent from server p to server q for every COCA
server q

Each message includes a type identi�er to indicate the purpose of the message.
These type identi�ers are presented in the sans serif font.

A.1 Client Protocol

Every client request has the form:

〈type, c, seq , parm, cred〉c
where type indicates the type of the request, c is the client issuing the request, seq
is a unique sequence number for the request, parm contains parameters related to
the request, and cred is credentials that authorize the request.
Clients use the following protocol to communicate with COCA.

(1) To invoke Query for the certi�cate associated with name cid , client c composes
a request:

R = 〈query, c, seq, cid , cred〉c
To invoke Update to establish a new binding of key with name cid based on a
given certi�cate ζ′ for cid , client c composes a request:

R = 〈update, c, seq, ζ′, 〈cid , key〉, cred〉c
(2) Client c sends R to t + 1 servers. It periodically re-sends R until it receives a

response to its request. For a Query, the response will have the form 〈R, ζ〉k,
where ζ is a certi�cate for cid . For an Update, the response will have the form
〈R, done〉k.

21See [Zhou et al. 2002] for a description of the proactive secret sharing protocol used by COCA.

ACM Journal Name, Vol. V, No. N, Month 20YY.



34 · Lidong Zhou et al.

A.2 Threshold Signature Protocol

The following describes threshold signature protocol22 threshold sign(m, E), where
m is the message to be signed and E is the evidence used in self-verifying messages
to convince receivers to generate partial signatures for m. As detailed in Appen-
dices A.3 and A.4, di�erent evidence is used in the protocols for Query and Update.

(1) Server p sends to each server q a sign request message with message m to be
signed and evidence E .

[∀q. p −→ q : 〈sign request, p, m, E〉p] (i)

(2) Each server q, upon receiving a sign request message (i), veri�es evidence E
with respect to m. If E is valid, then q generates a partial signature using its
share sq and sends the partial signature back to p.

[q −→ p : 〈sign response, q, p, m,PS(m, sq)〉q]
(3) Server p periodically repeats step 1 until it receives partial signatures from a

quorum of servers23 (which includes a partial signature from p itself). Server p
then selects t+1 partial signatures to construct signature 〈m〉k. If the resulting
signature is invalid (which would happen if compromised servers submit erro-
neous partial signatures), then p tries another combination of t+1 signatures.24

This process continues until the correct signature 〈m〉k is obtained.

A.3 Query processing protocol

(1) Upon receiving a request R = 〈query, c, seq, cid , cred〉c from a client c, server p
�rst checks whether R is valid based on the credentials cred provided. If R is
valid then p sends a query request message to all servers:

[∀q. p −→ q : 〈query request, p,R〉p] (ii)

(2) Each server q, upon receiving a query request message (ii), checks the validity
of the request. If the request is valid, then q fetches the current signed local
certi�cate associated with name cid : ζq = 〈cid , σ(ζq), keyq〉k. Server q then
sends back to p the following message:

[q −→ p : 〈query response, q, p,R, ζq〉q]

22While this protocol is appropriate for schemes such as threshold RSA, the protocol might not
be applicable to other threshold signature schemes, such as those based on discrete logarithms
(e.g., [Cerecedo et al. 1993; Harn 1994]). Those schemes may require an agreed-upon random
number in generating partial signatures. Such schemes can be implemented by adding a new �rst
step, in which a delegate decides a random number based on suggestions from t + 1 servers (to
ensure randomness) and noti�es others of this random number before servers can generate partial
signatures.
23In fact, p can try to construct the signature as soon as it has received t + 1 partial signatures.
p has to wait for more partial signatures only if some partial signatures it received are incorrect.
24In the worst case, p must try

�2t+1
t+1

�
combinations. The cost is insigni�cant when t is small.

There are robust threshold cryptography schemes [Gennaro et al. 1996a; 1996b] that can reduce
the cost by using error correction codes.
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(3) Server p repeats step 1 until it receives query response messages from a quorum
of servers (including p itself). p veri�es that the certi�cates in these messages
are correctly signed by COCA. Let ζ = 〈cid , σ, key〉k be the certi�cate with
the largest serial number in these query response messages. Server p invokes
threshold sign(m, E), where m is (R, ζ) and E is the query response messages
collected from a quorum of servers, thereby obtaining 〈R, ζ〉k.

(4) Server p sends the following response to client c:25

[p −→ c : 〈R, ζ〉k].

A.4 Update processing protocol

(1) Upon receiving a request R = 〈update, c, seq , ζ′, 〈cid , key〉, cred〉c from a client
c, server p �rst checks whether R is valid, based on the credentials cred pro-
vided. If R is valid then p computes serial number σ(ζ) = (v+1, h(R)) for new
certi�cate ζ, where v is the version number of ζ′ and h is a public collision-free
hash function. Then, p invokes threshold sign(m, E), where m is 〈cid , σ(ζ), key〉
and E is R, thereby obtaining ζ = 〈cid , σ(ζ), key〉k.

(2) Server p then sends an update request message to every server q.

[∀q. p −→ q : 〈update request, p,R, ζ〉p] (iii)

(3) Each server q, upon receiving an update request message (iii), updates its cer-
ti�cate for cid with ζ if and only if σ(ζq) < σ(ζ), where ζq is the certi�cate for
cid stored by the server. Server q then sends back to p the following message:

[q −→ p : 〈update response, q, p,R, done〉q]
(4) Server p repeats step 2 until it receives the update response messages from a quo-

rum of servers. p then invokes threshold sign(m, E), where m is (R, done) and
E is the update response messages collected from a quorum of servers, thereby
obtaining 〈R, done〉k.

(5) Server p sends the following response to client c:

[p −→ c : 〈R, done〉k]
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