
Implementing IPv6 as a Peer-to-Peer Overlay Network�

Lidong Zhou Robbert van Renesse Michael Marsh

Dept. of Computer Science, Cornell University, Ithaca, NY 14853
E-mail:fldzhou,rvr,mmarshg@cs.cornell.edu

Abstract

This paper proposes to implement an IPv6 routing in-
frastructure as a self-organizing overlay network on top of
the current IPv4 infrastructure. The overlay network builds
upon a distributed IPv6 edge routerwith a master/slave ar-
chitecture. We show how different slaves can be constructed
to tunnel through NATs and firewalls, as well as to improve
the robustness of the routing infrastructure and to provide
efficient and resilient implementations for features such as
multicast, anycast, and mobile IP, using currently available
peer-to-peer (P2P) protocols. The resulting IPv6 overlay
network would restore the end-to-end property of the orig-
inal Internet, support evolution and dynamic updating of
the protocols running on the overlay network, make avail-
able IPv6 and the associated features to network applica-
tions immediately, and provide an ideal underlying infras-
tructure for P2P applications, without changing networking
hardware and software in the core Internet.

1. Introduction

IPv6 [7], when deployed on a large scale, would solve
many current networking problems. Its 128-bit addresses
would adequately solve the address shortage problem. This
in turn would eliminate the currently widespread use of Net-
work Address Translation (NAT) [21] that destroys the end-
to-end property of the Internet—the loss of the end-to-end
property consequently prevents the use of IPSec [15] and
complicates the deployment of true peer-to-peer (P2P) ap-
plications [16].

Unfortunately, adoption of IPv6 has been slow. This is

because NAT has already solved many of the security and
address shortage problems, thus supporting network appli-
cations without requiring the deployment of new network-
ing hardware and software. As a result, there is little incen-
tive to switch. Nevertheless, many popular operating sys-
tems do support IPv6 already.

In this paper, we propose to implement an IPv6 routing
infrastructure as an Overlay Network (ON) on top of the
current IPv4 + NAT infrastructure using existing P2P pro-
tocols such as Chord [22] and Astrolabe [24]. We believe
our ON would have the following advantages:

� it would allow network applications to adopt IPv6 im-
mediately;

� it would support IPSec, multicast, anycast, and mo-
bile IP;

� it would support P2P applications without the need
for special-purpose Application Level Gateways
(ALGs) and non-standard P2P protocols such as used
both in JXTA [10] and Groove [16];

� it would not require any network hardware or soft-
ware changes (as a routing infrastructure, IPv4 works
well—why change it?);

� it would be easily evolvable.

We intend this ON to be reliable, efficient, and integrate
seamlessly with existing or future deployments of a native
IPv6 network. While the 6bone [1] is also an ON, the 6bone
has been designed primarily as a testbed for IPv6 protocols.
Unlike the 6bone, which requires manually configured tun-
nels, our proposed ON is designed to be self-organizing.

�This work was funded in part by ARPA/RADC grant F30602-96-1-0317, AFOSR grant F49620-00-1-0198, Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory, Air Force Material Command, USAF, under agreement number F30602-99-1-0533, National Science
Foundation Grant 9703470, a grant from Intel Corporation, AFRL-IFGA Information Assurance Institute under grant AFOSR F49620-01-1-0312, DARPA
grant F30620-98-2-0198, DARPA/AFRL-IFGA grant F30602-99-1-0532, a grant under NASA’s REE program administered by JPL, NSF-CISE grant
9703470, and CIPIA, CIPIAF for Information Assurance Institute grant F49620-01-1-0312. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of these organizations or
the U.S. Government.



Routing Table

Address

Netmask

Interface

ON−Master

On−Slaves

Figure 1. Router Architecture.

Our proposition is interesting to the P2P community for
two reasons. First, our ON is an application of P2P proto-
cols. Second, our ON supports P2P protocols and applica-
tions, as it eliminates problems with NAT. This paper fo-
cuses on the first reason and describes the architecture of
our proposed solution, as well as how current P2P protocols
can be exploited to implement the multicast, anycast, and
mobile IP features of IPv6.

2. Architecture

Our IPv6 ON is implemented at or near the edge of the
Core Internet (CI). The CI consists of those machines that
are not residing behind NAT boxes or firewall routers and
that have static IPv4 addresses. Its edge consists of the end-
hosts on the core Internet, and includes server and worksta-
tion machines, as well as NAT boxes and firewall routers,
but not internal routers. We will call the collection of ma-
chines behind a NAT box or a firewall router a site. We as-
sume that all servers and workstations support IPv6 already,
and thus all they need is an IPv6 routing infrastructure.

How to construct such an ON poses some interesting and
challenging research questions. The objectives are as fol-
lows:

� Self-organization: The ON requires no centralized
administration and minimum maintenance, even as
the set of participants grows or changes.

� Robustness: The ON is resilient to certain broken
routes through adaptation.

� IPv6 Features: The ON supports IPv6 multicast,
anycast, mobility, and IPSec.

Our technology builds on a distributed IPv6 edge router.
This router has a master/slave architecture, as depicted in
Figure 1. It consists of a single ON-master, and several ON-
slaves. Each ON-slave is responsible for part of the IPv6
address space. The ON-master receives messages from ON-
slaves, and routes messages to ON-slaves based on its local
routing table. ON-slaves can be added or removed dynam-
ically at any time. The ON-master implements the usual
longest prefix matching routing policy.

Our architecture is agnostic about where an ON-slave re-
sides with respect to the ON-master. An ON-slave could
reside on a different machine behind a NAT box or a fire-
wall router, in which case communication between the ON-
slaves and the ON-master could be through HTTP, where
the ON-master acts as a web server. The first HTTP request
from the ON-slave reports its IPv6 address range to the ON-
master, who can then update its routing table accordingly.
(Similarly, if a connection to an ON-slave breaks, the ON-
master removes the corresponding entry from its routing ta-
ble.) An ON-slave could also run on the same machine as
the ON-master, in which case IPC, which incurs less over-
head, could be used for communication between the two.

We envision a large collection of ON-slaves, for exam-
ple:

� Gateway Slaves:

A Gateway Slave typically resides within a site—it
acts as an IPv6 gateway for the other machines within
the site, but it may also be deployed on the CI to act as
an IPv6 gateway for IPv6 hosts on the CI. (In the lat-
ter case, the Gateway Slave can be deployed on the



same machine as the ON-master.) If the Gateway
Slave is deployed within a site, then the connection
to the ON-master is from inside a firewall or NAT
box to the outside. There is almost always some way
of establishing such a connection. Our current imple-
mentation uses HTTP 1.1 over IPv4, which can run
through an HTTP proxy if necessary.

� DHT Slaves:

A DHT Slave tunnels IPv6 messages over IPv4 to
other DHT Slaves. For this, the DHT Slave maps
IPv6 addresses to IPv4 addresses using a Distributed
Hash Table protocol [19, 22, 20, 25]. In fact, we
will use a different Slave for each DHT implementa-
tion, and so the IPv6 address range can be subdivided
among the different protocols.

The way the mapping works is as follows. First, each
DHT Slave installs its local IPv6 aggregate address in
the DHT. To look up an IPv6 address, a DHT Slave
first attempts to look the address up as is. If this fails,
the Slave zeroes the last set bit in the address, and
makes another attempt. This continues until the ad-
dress is all zeroes, at which point the Slave gives up.
If successful, the Slave caches the mapping for some
limited amount of time. (Actually, failed mappings
are also cached, but for a smaller amount of time.)

Note that this technique also supports mobile IP [18]
in a trivial way, simply by updating the DHT for the
moving address.

� Multicast Slaves:

Another class of ON-slaves is responsible for mul-
ticasting messages. There are many so-called
Application-Level Multicast protocols available for
this [5, 9, 14, 3, 4, 17, 26]). Similar to point-to-
point routing, the multicast address space can be sub-
divided among the various protocols. In order to fully
support IPv6 multicast, the Gateway Slave is required
to implement Multicast Listener Discovery [6]. As
IPv4 multicast is poorly supported in today’s IPv4
network, we plan to support IPv4 multicast in our ar-
chitecture as well.

� Anycast Slaves: Anycast is a routing facility where
an address is mapped to the most appropriate receiver.
For example, all DNS servers could share the same
address, and messages would be routed to the nearest
one. Astrolabe [24] provides a framework for keep-
ing track of and managing resources in a large-scale
network. This framework can serve as a basis for sup-
porting anycast, where a request needs to be routed to
one of a set of possible servers that is most appropri-
ate based on certain metrics.

� Resiliency Slaves: RON [2] is an IPv4 ON that im-
proves the robustness of the connectivity of the core
Internet. This technique may be exploited in an IPv6
ON as well by implementing the appropriate ON-
slave.

� Bridge Slaves: Bridge Slaves connect our ON with
other existing overlay or native networks, such as the
6bone. A Bridge Slave is often both a slave in our
ON and a router in another network. Therefore, the
Bridge Slave can move packets from one network to
another through standard routing.

� Management Slaves: The dynamic addition and re-
moval of ON-slaves are the responsibility of Manage-
ment Slaves. The default entry of the routing table
on an ON-master points to a Management Slave, so
that the Management Slave is invoked when no ON-
slave is found for a certain address. The Management
Slaves could then look up the software for the appro-
priate ON-slave being requested, download the soft-
ware, and install the ON-slave on-demand.

The Management Slaves could form a software dis-
tribution overlay to facilitate the distribution, lookup,
and management of ON-slave software. Existing
techniques, such as dynamic loading [11] and gos-
siping [8] for distributing new protocols, could be
used to implement these functions of the Manage-
ment Slaves.

The Management Slaves also removes ON-slaves
when appropriate. For example, a Multicast Slave
could be removed if no machine in the domains con-
trolled by the ON-master is interested in using the
multicast facility.

Figure 2 illustrates the architecture of our proposed IPv6
ON. A Gateway Slave connects a local site to the rest of the
ON. The ON-master for the Gateway Slave maintains other
ON-slaves. Every such ON-slave, jointly with the corre-
sponding ON-slaves of other ON-masters, forms an overlay
network. (In the case of Bridge Slaves, the ON-slaves are
part of an existing overlay or native network.)

The large IPv6 address space makes it possible to have
multiple overlay networks of ON-slaves to coexist in dif-
ferent address spaces. Consequently, our ON provides an
ideal platform for testing and comparing a set of protocols
of the same type; for example, different DHT protocols or
different application-level multicast protocols.

The IPv6 addressing architecture [12] provides a conve-
nient way to manage these different address spaces. Ser-
vices such as multicast and anycast already have their own
address spaces. Furthermore, different TLA IDs (Top-Level
Aggregation Identifier) or NLA IDs (Next-Level Aggrega-
tion Identifier) [12] could be assigned to different ON-slave



Site

IPv6 Tunnel over IPv4 or over HTTPS/IPv4

Site

Site

Tunneling using Peer−to−Peer protocol
ON−Master

ON−Slave

Core Internet

Gateway Slave

1 machine

������

��

����

��
��
��
��
��

����

���
�
�
�

��

��

������

����

�
�
�
�

Figure 2. An IPv6 Overlay Network.

overlays.1 Consequently, a local machine might have mul-
tiple IPv6 addresses (with different TLA IDs or NLA IDs),
one for each ON-slave overlay in which it participates.

Note that we only intend to use these peer-to-peer pro-
tocols on our routers. As the set of routers is a relatively
stable collection, many instability concerns that exist with
these protocols when deployed on a dynamic set of work-
stations do not apply here. Furthermore, by not including in
the ON the end hosts of each site, the proposed architecture
preserves locality within a site, which would otherwise be
lost.

The flexibility of our ON comes in part from the fact that
our routers can run any protocols we deploy, especially with
the help of Management Slaves. The design with Manage-
ment Slaves is, to some extent, similar to Active Networks
[23], which advocate dynamically programmable routers.
However, an ON does circumvent some difficulties that Ac-
tive Networks have faced. Most importantly, our ON does
not require changes to, or overheads in the core Internet
routers. Nonetheless, our ON does introduce some over-
head due to tunneling between the ON-slaves and the ON-
master. Implementation and detailed measurements are un-
derway to quantify such costs.

3. Conclusion

Our proposed IPv6 Overlay Network implements a net-
work with the following desirable features:

� End-to-End: Because of the large address space of
IPv6, each node in the network can have a unique
(IPv6) address, at least in space if not in time. The
Internet’s original end-to-end property can thus be re-
stored. Mechanisms such as IPSec, whose operations
hinge on the end-to-end property, are now possible,
as are true peer-to-peer applications.

� IPv6 features: Applications can take advantage of
IPv6 features, such as multicast, anycast, mobile IP,
and IPSec. Applications developed using the IPv6
API can run not only on our ON, but may continue to
run as IPv6 is deployed in various other forms.

� Robustness: Application-level routing techniques
can exploit the redundancy in underlying connectiv-
ity to improve robustness.

� Flexibility: Active Networking-like technology al-
lows the network to be upgraded or extended with
new protocols, and is thus able to evolve quickly as
new peer-to-peer routing technology emerges.

We believe all these feature can be implemented effi-
ciently without changes to the existing IPv4 Internet.

Acknowledgments

We would like to thank Adrian Bozdog for discussions
on integrating multicast and the anonymous reviewers for
helpful comments.

1This is consistent with the standard practice. For example, the 6bone is assigned a TLA ID 0x1FFE [13].



References

[1] The 6bone. http://www.6bone.net.
[2] D. G. Andersen, H. Balakrishnan, M. Frans Kaashoek, and

R. Morris. Resilient overlay networks. In Proceedings of
the 18th ACM Symposium on Operating System Principles
(SOSP’2001), pages 131–145, Chateau Lake Louise, Banff,
Alberta, Canada, October 2001. ACM.

[3] Y. Chawathe. Scattercast: An Architecture for Internet
Broadcast Distribution as an Infrastructure Service. PhD
thesis, University of California, Berkeley, December 2000.

[4] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling
conferencing applications on the Internet using an overlay
multicast architecture. In Proceedings of ACM SIGCOMM,
pages 55–67, San Diego, CA USA, August 2001. ACM.

[5] Y. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In Proceedings of ACM SIGMETRICS, pages 1–
12, Santa Clara, CA USA, June 2000. ACM.

[6] S. Deering, W. Fenner, and B. Haberman. Multicast listener
multicast (MLD) for IPv6. Request for Comments: 2710,
October 1999.

[7] S. Deering and R. Hinden. Internet Protocol, version 6
(IPv6) specification. Request for Comments: 2460, Decem-
ber 1998.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintenance. In
Proceedings of the 6th ACM Symposium on Principles
of Distributed Computing, pages 1–12, Vancouver, BC
Canada, August 1987. ACM.

[9] P. Francis. Yoid: Extending the Internet multicast architec-
ture. http://www.icir.org/yoid/docs/index.html, April 2000.

[10] L. Gong. JXTA: A network programming environment.
IEEE Internet Computing, 5(3):88–95, May/June 2001.

[11] M. Hicks. Dynamic Software Updating. PhD thesis, Com-
puter and Information Science Department, the University
of Pennsylvania, August 2001.

[12] R. Hinden and S. Deering. IP version 6 addressing architec-
ture. Request for Comments: 2373, July 1998.

[13] R. Hinden, R. Fink, and J. Postel. IPv6 testing address allo-
cation. Request for Comments: 2471, December 1998.

[14] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O’Toole, Jr. Overcast: Reliable multicasting with
an overlay network. In Proceedings of the 4th USENIX
Symposium on Operating System Design and Implementa-
tion (OSDI’00), pages 197–212, San Diego, CA USA, Oc-
tober 2000. USENIX Association, IEEE TCOS, and ACM
SIGOPS.

[15] S. Kent and B. Atkinson. Security architecture for the In-
ternet protocol. Request for Comments: 2401, November
1998.

[16] A. Oram, editor. Peer-To-Peer: Harnessing the Power of
Disruptive Technologies. O’Reilly, 2001.

[17] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI:
An application level multicast infrastructure. In Proceedings
of the 3rd USENIX Symposium on Internet Technologies and
Systems (USITS), pages 49–60. USENIX Association, 2001.

[18] C. Perkins. IP mobility support. Request for Comments:
2002, October 1996.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In Pro-
ceedings of ACM SIGCOMM, pages 161–172, San Diego,
CA USA, August 2001. ACM.

[20] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, Heidel-
berg, Germany, Nov. 2001.

[21] P. Srisuresh and K. Egevang. Traditional IP network address
translator (traditional NAT). Request for Comments: 3022,
January 2001.

[22] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. In ACM SIGCOMM 2001,
pages 149–160, San Diego, CA USA, August 2001. ACM.

[23] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A survey of active network
research. IEEE Communications Magazine, 35(1):80–86,
January 1997.

[24] R. van Renesse and K. Birman. Scalable management
and data mining using Astrolabe. In Electronic Pro-
ceedings for the 1st International Workshop on Peer-to-
Peer Systems (IPTPS ’02), Cambridge, MA USA, 2002.
http://www.cs.rice.edu/Conferences/IPTPS02/.

[25] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing.
Technical Report UCB/CSD-01-1141, University of Califor-
nia at Berkeley, Computer Science Department, 2001.

[26] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatow-
icz. Bayeux: An architecture for scalable and fault-tolerant
wide area data dissemination. In Proceedings of the Eleventh
International Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV 2001), Port
Jefferson, NY USA, June 2001. ACM.


