
Automating Type Soundness Proofs via De
isionPro
edures and Guided Redu
tionsDon Syme and Andrew D. GordonMi
rosoft Resear
h, Cambridge, U.K.Abstra
t. Operational models of fragments of the Java Virtual Ma-
hine and the .NET Common Language Runtime have been the fo
us of
onsiderable study in re
ent years, and of parti
ular interest have beenspe
i�
ations and ma
hine-
he
ked proofs of type soundness. In this pa-per we aim to in
rease the level of automation used when 
he
king typesoundness for these formalizations. We present a semi-automated te
h-nique for redu
ing a range of type soundness problems to a form that
an be automati
ally 
he
ked using a de
idable �rst-order theory. De
id-ing problems within this fragment is exponential in theory but is ofteneÆ
ient in pra
ti
e, and the time required for proof 
he
king 
an be 
on-trolled by further hints from the user. We have applied this te
hnique totwo 
ase studies, both of whi
h are type soundness properties for sub-sets of the .NET CLR. These 
ase studies have in turn aided us in ourinformal analysis of that system.1 Introdu
tionFormalizations of virtual ma
hines su
h as the Java Virtual Ma
hine (JVM) orthe .NET Common Language Runtime (CLR) have been the fo
us of 
onsiderablestudy in re
ent years [4, 11, 13, 14℄. Of parti
ular interest have been spe
i�
ationsand proofs of type soundness for these systems, frequently involving ma
hine-
he
ked proofs using intera
tive theorem provers [15{17℄. While the automationavailable in intera
tive theorem provers has in
reased, both the kind of automa-tion applied (e.g. rewriting) and the manner of its appli
ation (e.g. ta
ti
s) tendto be substantially ad ho
. The proof s
ripts needed to 
he
k these propertiesare often many thousands of lines long.In this paper we aim to in
rease the level of automation applied to this prob-lem, fo
using on one parti
luar automated de
ision pro
edure and one parti
ularform of user guidan
e. We isolate out the user's guidan
e into a 
omponent 
alleda guided redu
tion, whi
h indi
ates how to extra
t the relevant fa
ts that makethe proof go through for parti
ular 
ases. Applying the redu
tion is an auto-mated pro
ess that transforms the type soundness problem into a form that
an be automati
ally 
he
ked using 
ase-splitting and validity 
he
king within a
ombination of de
idable �rst-order theories. The parti
ular de
ision pro
edureused in this paper is the algorithm used by the Stanford Validity Che
ker (SVC)[1℄, whi
h has been su

essfully applied to large hardware veri�
ation proofs. We



have applied this te
hnique to models of subsets of the CLR, whi
h has in turnaided our informal analysis of that system.This paper is stru
tured as follows. In the remainder of this se
tion we 
on-sider the ba
kground to this work, in
luding a number of studies of the JVM. Inx2 we des
ribe Spark, a model of a fragment of the IL of the CLR, whi
h is usedfor explanatory purposes in this paper. In x3 we des
ribe guided redu
tions, ournew te
hnique for semi-automati
ally 
onverting high-level statements of typesoundness into a form suitable for analysis by an automated de
ision pro
edure.In x4 we apply this 
ombination of te
hniques to two 
ase studies, and in x5 wedis
uss interesting potential avenues for future work.1.1 Ba
kground: Type Soundness for Virtual Ma
hinesIn this se
tion we 
onsider the typi
al stru
ture of a type soundness spe
i�
ationfor a virtual ma
hine. A good supply of examples exists against whi
h to 
omparethis stru
ture, e.g. [10{12, 15℄, and we have examined these examples to 
he
kthat they fall within the general stru
ture des
ribed here.A stru
tured operational semanti
s (SOS) used in a type soundness prooftypi
ally has the following 
omponents: (a) a formal des
ription of programs;(b) a formal des
ription of type
he
king; (
) a formal des
ription of exe
ution;and (d) a type soundness property. The property typi
ally spe
i�es (i) 
ertainerrors do not o

ur during exe
ution and (ii) the ma
hine always makes progress.Formal des
riptions of systems as 
omplex as the JVM or the CLR vary sub-stantially a

ording to the spe
i�
ation methodology used, the exa
t logi
 inwhi
h the system is formalized, and individual 
hoi
es about how to model op-erations in the logi
. However, the 
omponents above are always re
ognisable.The primary points of departure between di�erent des
riptions of the same sys-tem are the use of big-step v. small-step models of exe
ution; the representationof error 
onditions; the atomi
ity of exe
ution steps, and the degree of realismof the model of exe
ution, e.g. whether it models features su
h as optimizations.We now give example forms of the terms and predi
ates for the di�erent
omponents of a spe
if
ation. We stress that the exa
t form of the fun
tions andpredi
ates di�er in detail between systems, but the essen
e of the te
hniquesused do not.Programs: a type Prog or programs p where Prog is de�ned via stru
turaltypes su
h as lists, �nite maps, re
ords, integers, strings, produ
ts and sums;Che
king: a predi
ate p : �p, indi
ating that the program p has the given type�p. This is usually de�ned 
ompositionally in terms of a number of predi
atesp ` item : �item indi
ating that various sub-
omponents item of p are well-typed given the 
ontext of the whole program.Exe
ution: a type State of states s, an initial state s0, a set of terminal states,and a relation p ` s; s0 indi
ating that if the ma
hine is in state s runningprogram p then it may take a step to state s0.Given the relations and fun
tions above, type soundness 
an be de�ned as in-habitation of the transition relation:



Proposition 1. If p : � and p ` s0 ;� s then either s is terminal or thereexists an s0 su
h that p ` s; s0.Propositions like this are typi
ally proved via an invariant that spe
i�es goodstates, i.e. a type StateType re
ording expe
ted shapes S of state stru
tures aris-ing at runtime (sta
k frames, heap entries et
.), and a predi
ate p ` s �: Sindi
ating when a state 
onforms to a state type. Then the statement be
omes:Proposition 2. If p : � and p ` s �: S then either s is terminal or there existsan s0 su
h that p ` s; s0 and furthermore p ` s0 �: S.Whether the proof of su
h a property is e�e
tively automatable obviouslydepends on the nature of the relations :,; and �:. We stress that previous workon ma
hine-
he
king su
h propositions has applied essentially ad ho
 automationte
hniques. While this paper does not attempt to a
hieve 
omplete automationof the proofs of su
h properties, it o�ers a �rst step in that dire
tion.Related Work Wright and Felleisen's 1994 work presented a systemati
 syn-ta
ti
 approa
h to a range of type soundness proofs for sour
e languages [18℄,and we have used many aspe
ts of their methodology in this paper.No prior work has attempted to systemati
ally apply de
ision pro
eduresor other parti
ular automated te
hniques to type soundness proofs. However,there has been 
onsiderable work on using intera
tive theorem proving for thesekinds of proofs [9, 11, 16, 17℄. Syme's work on Java used a more restri
tive proofstyle and applied de
ision pro
edures to prove resulting obligations [15℄. Therehave been other e�orts to formalize aspe
ts of virtual ma
hine des
riptions butwithout me
hanized proof 
he
king [12, 4℄, as well as a set of extensive Abstra
tState Ma
hine (ASM) des
riptions of the JVM [13℄. The work presented in thispaper has also been inspired by Norrish's treatment of C [10℄ and the generalba
kground of HOL theorem proving [5℄.2 SparkWe now give a 
on
rete example of a type soundness spe
i�
ation that servesto motivate our te
hniques to substantially automate type soundness proofs. Alarger 
ase study is dis
ussed in x4.2. Our example is motivated by the instru
tionset of the CLR [8℄ and is 
alled Spark.We des
ribe exe
ution and veri�
ation of Spark programs by programmingfun
tions in the Caml diale
t of ML [7℄. Our 
ode avoids all the imperative fea-tures of ML and use no re
ursion. Hen
e, we 
an dire
tly interpret our ML datastru
tures and pro
edures as mathemati
al sets and total fun
tions, respe
tively.We import our 
ode into the DECLARE theorem prover [15℄, interpreting theML de�nitions as phrases of higher order logi
.A program in the Spark byte
ode language 
onsists of a single method imple-mentation, itself 
onsisting of an array of instru
tions, paired with a signature.We use ML type de�nitions to des
ribe indexes for parti
ular program addresses,



arguments, and lo
al variables, and to de�ne numeri
 
onstants and the instru
-tion set. Here the types int and float are the primitive type of integers andIEEE 
oating point numbers.The Spark intermediate language:type addr = int byte
ode addresstype arg_idx = int argument indextype lo
_idx = int lo
al variable indextype 
onst = 
onstant| Const_I of int integer| Const_F of float IEEE f.p. numbertype instr = instru
tion| I_ret exit the method| I_ldarg of arg_idx load an argument| I_starg of arg_idx store into an argument| I_ld
 of 
onst load an integer or 
oat| I_ldlo
 of lo
_idx load a lo
al| I_stlo
 of lo
_idx store into a lo
al| I_br of addr un
onditional bran
h| I_ble of addr 
onditional bran
h| I_pop pop an element o� the sta
k| I_add addition| I_mul multipli
ationThe metadata a

ompanying a method implementation is a signature, whi
hdes
ribes the number and types of its arguments, the type of its result, and thenumber and types of its lo
al variables.Item types, method signatures, methods:type itemT item type= I signed integer| F IEEE f.p. numbertype msig = method signaturefargsT: itemT list; argument typesretT: itemT; return typeslo
sT: itemT listg lo
al variable typestype meth = methodfmsig: msig; method signatureinstrs: instr listg method implementation2.1 The Spark Exe
ution and Veri�
ation Semanti
sOur des
ription of the exe
ution of individual instru
tions is a 30 line ML fun
-tion step that a
ts as a fun
tional des
ription of a deterministi
 transition rela-tion. Its type involves the types item and state as follows:



Items, states, steps:type 'a option = None | Some of 'atype item item= Int of int integer| Float of float IEEE f.p. numbertype state = exe
ution statefargs: item list; items in argumentslo
s: item list; items in lo
al variablessta
k: item list; items on the sta
kp
: addrg program 
ounterval step: meth -> state -> state option type of step fun
tionFor spa
e reasons we omit the full de�nition of step in this paper.We represent veri�
ation 
he
ks by a relation that relies on being given asummary of information that would typi
ally be inferred during the exe
utionof a series of veri�
ation 
he
ks. Pus
h and Nipkow have shown how to formal-ize the link between a veri�
ation algorithm and a relational view of the 
he
ksmade during veri�
ation [11℄. We follow their approa
h of de�ning the veri�
a-tion 
he
ks at parti
ular instru
tions so that they 
ould be shared between analgorithmi
 and relational spe
i�
ation.A pre
ondition on an address is simply a list of types representing the shapeof the sta
k prior to exe
ution of that address. The ML type sta
kT representsa pre
ondition. Pre
onditions for all or some of the addresses in a method arerepresented by ML values of type methT, a list indexed by addresses.Sta
k and method typings:type sta
kT = itemT list types of items on sta
ktype addrT = addr � sta
kT address with its typetype methT = sta
kT list sta
k type for ea
h addrOur main subroutine is a fun
tion dests that simulates an instru
tion and
omputes its destinations. It depends on a subroutine effe
t to simulate thee�e
t of running an instru
tion on a pre
ondition.effe
t: msig � instr � sta
kT -> sta
kT optiondests: meth � addr � sta
kT -> addrT list optionThe de�nition of these fun
tions takes 30 lines of ML 
ode. We omit thesede�nitions for spa
e reasons, though it is important to note that they do 
ontainmany details and 
he
ks whi
h do not need to be mentioned by our later proofs
ripts.The remainder of the 
he
ks are de�ned in relational form (we 
ontinue to useprogram-like syntax for 
onsisten
y). The relation hastype(m; �m) is the primarytyping predi
ate and means that the method m is well-typed with respe
t to thesta
k type �m. For the relation to hold, ea
h of the instru
tions of the methodmust be well-typed with respe
t to the pre
onditions �m.121 In our a
tual formulation the pre
ondition on the �rst instru
tion is the empty sta
k.2 In the de�nition, read : 'a list -> int -> 'a option indexes into a list.



Typing predi
ates:let destOK (methT, (daddr, daddrT)) $mat
h (read methT daddr) with| None -> false| Some daddrT' -> daddrT = daddrT'let addr_hastype (addr,m,mT) $mat
h (read m addr) with| None -> true| Some(sta
kT) ->mat
h (dests (m,addr,sta
kT)) with| Some(dests) -> 8d 2 dests. destOK (mT,d)| _ -> falselet hastype (m,mT) $8addr. addr_hastype (addr,m,mT)2.2 Type Soundness for Spark and the Conforman
e RelationsIn this se
tion, we de�ne what it means for an exe
ution state to 
onform toa method typing, m� . The relation stateOK(s;m� ) is the primary 
onforman
epredi
ate and means that the exe
ution state s 
onforms to the pre
onditionsm� . For the relation to hold, the arguments and lo
als must 
onform to thesignature of the method, and there must be a pre
ondition sta
kT assigned tothe 
urrent program 
ounter by m� su
h that s:sta
k 
onforms to sta
kT .Conformant items, sta
k, lo
als, arguments and states:let valOK(v,vT) $mat
h v,vT with| Int _, I -> true| Float _, F -> true| _,_ -> falselet sta
kOK(sta
k,sta
kT) $(length(sta
k) = length(sta
kT)) ^8j < length(sta
k). valOK(nth sta
k j,nth sta
kT j)Likewise for argsOK and lo
sOK.let stateOK(s,sT) $argsOK(s.args,sT.argsT) ^lo
sOK(s.lo
s,sT.lo
sT) ^mat
h read methT s.p
 with| Some(sta
kT) -> sta
kOK (s.sta
k,sta
kT)| _ -> falseThe key type soundness propositions 
an now be stated:Proposition 3. If hastype(m; �m) and stateOK(s;m� ) then there exists ands0 su
h that step(s) = Some(s0) and stateOK(s0;m� ).We now want to substantially automate the proof of this and similar, more
omplex propositions by using a de
ision pro
edure 
ombined with user guidan
e.



3 Controlling De
ision Pro
edures via Guided Redu
tionsRe
ent e�orts have shown that it is feasible to ma
hine-
he
k type soundnessproperties for non-trivial models of exe
ution and veri�
ation, 
ertainly in
ludingpropositions su
h as Proposition 3. However, the te
hniques 
urrently requiresubstantial amounts of human guidan
e.We reiterate that it is an open question as to whether pra
ti
al fully au-tomated te
hniques exist for 
he
king 
lasses of type soundness properties, ofwhi
h Proposition 3 is but one simple example. It is important to rememberthat the exe
ution and veri�
ation 
he
ks 
an be almost arbitrarily more 
om-plex than the example shown in the previous se
tion, all the way up to doingproofs about realisti
 implementations of fully featured virtual ma
hines. Thusthese properties are likely to remain a 
hallenging and fertile area for applyingautomated te
hniques for some time to 
ome. However in this paper we do notaim for full automation but rather seek to redu
e and limit the amount of humanintervention required in the proof e�ort.For pragmati
 reasons we are interested in using de
ision pro
edures to per-form our automated reasoning, as it is ne
essary to produ
e simple 
ounterex-amples for failed proof e�orts. We will apply the te
hnique implemented by theSVC [1℄ (equally appli
able would be its su

essor, CVC [2℄). This pro
edure
he
ks the validity of quanti�er-free formula �rst-order logi
 with respe
t totheories for arithmeti
, produ
ts, arrays (maps), sums and 
onditionals. Good
ounterexamples 
an be generated when proofs fail. SVC does not make use ofaxioms for �nite dis
rimination or indu
tion over datatypes, and the axioms ituses for indexed data stru
tures apply equally to lists a

essed using indexingfun
tions, partial fun
tions, total fun
tions and �nite maps. SVC has been su
-
essfully used for proofs about abstra
ted des
riptions of mi
ropro
essors. It isan open question if other de
ision pro
edures (e.g. [6℄) 
an be applied to the kindof proofs des
ribed in this paper.Variations on the \transform and give to a de
ision pro
edure" theme areused on an ad ho
 basis in theorem proving and the 
ombination of automati
transformations with de
ision pro
edures o

urs often in 
omputing. Howeverour transformations are not automati
: i.e. they are non-trivial and representinsight on the part of the user. So in order to demonstrate that we have notresorted to full-blown intera
tive theorem proving we need a 
hara
terization ofthe input spe
i�ed by the user.In this paper we rigorously separate proof 
he
king into three steps:1. The user spe
i�es a transformation that redu
es the problem to one withina re
ognised, de
idable logi
;2. The system automati
ally applies the transformation;3. The resulting formula is passed to a de
ision pro
edure, whi
h returns OKor a 
ounterexample.When proof is divided in this away we 
all it guided proof 
he
king, and we
all our parti
ular te
hnique guided redu
tion. In 
ontrast, we 
all te
hniqueswhere the user intera
tively applies further proof methods to residue problems



intera
tive proof 
he
king. Te
hniques where no human intera
tion is requiredare just 
alled de
ision pro
edures.3.1 Motivating Guided Redu
tionsUnfortunately, not all type soundness problems may be solved immediately bythe appli
ation of an SVC-like de
ision pro
edure. Consider the following:A Problem Not Immediately Provable by SVClet valOK(v,vT) $ some large expressionlet sta
kOK(sta
k,sta
kT) $(length(sta
k) = length(sta
kT)) ^8j < length(sta
k). valOK(el(j,sta
k),el(j,sta
kT))sta
k0T <> [℄ ^sta
k1T = hd(sta
k0T)::hd(sta
k0T)::(tl(sta
k0T)) ^sta
k0 <> [℄ ^sta
k1 = hd(sta
k0)::hd(sta
k0)::(tl(sta
k0)) ^sta
kOK(sta
k0,sta
k0T) (A)! sta
kOK(sta
k1,sta
k1T) (B)This is based on the 
ase for the dup (dupli
ate) instru
tion when proving Propo-sition 1 from x2.2.Su
h a problem is not immediately solvable via the SVC te
hnique for tworeasons. First, the operators length, nth and 8 lie in theories not understood bythe de
ision pro
edure, so the pro
edure regards them as uninterpreted. Look-ing at this another way, the way sta
kOK has been de�ned as a universal �rstorder predi
ate has lead us into reasoning about both �rst-order and equationaltheories simultaneously. If we were using a �rst-order theorem prover, we 
ouldthrow in axioms about these operations and perform a proof sear
h. However itis well known that 
ombining su
h problems is diÆ
ult, and while progress hasbeen made re
ently to determine forms of su
h problems that are tra
table [3℄, itis not yet 
lear if the te
hniques will s
ale up to very large veri�
ation problemswhile providing the high-quality 
ounterexample feedba
k that is required.Se
ond, the problem statement may in
lude large, irrelevant de�nitions su
has that for valOK. A heuristi
-based 
ase-splitting de
ision pro
edure su
h as SVC
an be easily misled by the presen
e of su
h terms. Better heuristi
s 
an help,but ultimately these de�nitions are only needed for some bran
hes of a proofand their presen
e on other bran
hes greatly hinders both the automation andthe interpretation of 
ounterexamples.The predi
ate sta
kOK 
ould be de�ned re
ursively, e.g. from left-to-rightalong the list. However the automated routine must then determine how manytimes to unwind that re
ursion. In addition, the number of unwindings dependsupon the bran
h of the problem, and on some bran
hes may be indexed by aparameter, for example when n arguments are 
onsumed at a 
all instru
tion ina virtual ma
hine. Furthermore, our te
hniques must 
ope with random a

essstru
tures su
h as �nite maps, whi
h do not �t ni
ely into a re
ursive framework.



3.2 Our Proof Guidan
eWe now des
ribe our te
hnique to let the user avoid the problems asso
iatedwith un
ontrolled unwinding of large de�nitions and �rst-order quanti�ers.A proof s
ript is made up of three parts:{ The spe
i�
ation of a set of problemati
 predi
ates and fun
tions.{ The spe
i�
ation of how and where to apply the fundamental rules asso
iatedwith problemati
 predi
ates. This is 
alled a guided redu
tion.{ The spe
i�
ation of any additional heuristi
 information ne
essary for theeÆ
ien
y of the de
ision pro
edure, for example 
ase-split orderings.This 
onstitutes the full input spe
i�ed by the user. The well-formedness ofthe guided redu
tion 
an be 
he
ked automati
ally. The pro
ess of applying theredu
tion involves: (a) expanding all de�nitions of all terms representing appli-
ations of rules; (b) expanding the de�nitions of all non-problemati
 predi
atesand fun
tions; and (
) repla
ing pattern mat
hing by the equivalent test/getform. The problem is then submitted to the de
ision pro
edure.The problemati
 predi
ates and fun
tions spe
i�ed in the �rst part of theproof s
ript are typi
ally: those whose de�nition is re
ursive; those whose de�-nition involves operators su
h as 8 that lie outside the theory supported by thetarget de
ision pro
edure; those whose un
ontrolled expansion 
reates an una
-
eptable blow-out in proof 
he
king times; and those whi
h are used in rules forother problemati
 predi
ates. The non-problemati
 predi
ates and fun
tions aretypi
ally those whi
h have a lone equational axiom of the form p(x1; : : : ; xn) =Q[x1; : : : ; xn℄ where Q 
ontains no problemati
 predi
ates.In our problem domain, problem spe
i�
ations are \
omplex but shallow",and the majority of predi
ates are not problemati
. Those in the example fromx3.1 are valOK and sta
kOK. There are no problemati
 fun
tions.We assume that a set of rules is available for problemati
 predi
ates. Oftena rule is simply the de�nitions of a predi
ate, but it may also be a useful lemma,often one that follows immediately from its de�nition|see [15℄ for how su
hresults 
an be derived automati
ally from de�nitional forms su
h as equationsinvolving quanti�ers or least-�xed-point operators. We 
onsider the followingforms of rules for a problemati
 predi
ate p:De�nitional. A rule of the form p(�x)$ Q[�x℄.Weakening. A rule of the form p(�x)! Q[�x℄.Strengthening. A rule of the form Q[�x℄! p(�x).Indexed (Weakening). A rule of the form 8�y: p(�x)! Q[�x; �y℄.Indexed (Strengthening). A rule of the form 8�y: Q[�x; �y℄! p(�x).Multiple su
h rules 
an exist for ea
h problemati
 predi
ate and fun
tion. Forexample, here are two rules for sta
kOK, derived from the de�nition in x3.1.sta
kOKHead |- sta
kOK(sta
k,sta
kT) $mat
h (sta
k,sta
kT) with| [℄,[℄ -> true



| (h::t),(hT::tT) -> valOK(h,hT) ^ sta
kOK(t,tT)| _,_ -> falsesta
kOKHeadW |- sta
kOK(sta
k,sta
kT) ^sta
k <> [℄ ^sta
kT <> [℄! valOK(hd sta
k,hd sta
kT) ^sta
kOK(tl sta
k,tl sta
kT)After a trivial rearrangement of quanti�ers, sta
kOKHead is a de�nitional ruleand sta
kOKHeadW is weakening rule. We rely on rules being in one of the aboveforms: this paper does not 
onsider indu
tion prin
iples for indu
tive relationsor re
ursive term stru
tures, for example.3.3 The Algebra of Guided Redu
tionsThe se
ond part of a proof s
ript is a spe
i�
ation of how and where to applythe fundamental rules asso
iated with problemati
 predi
ates, 
alled a guidedredu
tion. Consider the following informal spe
i�
ation of a guided redu
tionfor the problem spe
i�ed in x3.1 above: \If the instru
tion is dup, apply thesta
kOKHead rule on
e to the input sta
k (as 
hara
terized by fa
t (A)) and twi
eto the output sta
k (as 
hara
terized by fa
t (B))."Informally, applying this redu
tion to the problem in x3.1 means repla
ing thespe
i�ed fa
ts and goals with the right of rule sta
kOKHead and leaving remaininginstan
es of sta
kOK and valOK uninterpreted. The problem is then immediatelysolvable by a de
ision pro
edure su
h as SVC. In this example we have e�e
-tively used guided redu
tions for 
ontrolled rewriting of sta
kOKHead. Note thatun
ontrolled rewriting using rule sta
kOKHead would not terminate.The above example indi
ates that guided redu
tions should be 
ombinatorsthat 
an be used together in meaningful ways, for example 
haining, disjun
tionand 
onditionals, where the 
onditionals are based on abstra
ted 
riteria (a bi-nary instru
tion) rather than primitive synta
ti
 
riteria (e.g. a list of spe
i�
instru
tions).Formally, a guided redu
tion r for a predi
ate p is a spe
i�
ation of a re-pla
ement predi
ate for p using one of the following forms:Identity. The predi
ate p itself.A Rule Operator. An operator 
orresponding to one of the rules for p suppliedwith appropriate guided redu
tions as arguments, as spe
i�ed below.A Monotone Combinator. Guided redu
tions 
an be 
ombined using 
om-binators monotone or anti-monotone in ea
h of their arguments: examplesare given in below.Guided redu
tions are 
ategorized as weakening and/or strengthening. An in-formation preserving rule is one that is both weakening and strengthening. Thefundamental property required of a guided redu
tion is that a weakening redu
-tion r for p must satisfy 8�x:p(�x) ! r(�x), and a strengthening redu
tion mustsatisfy 8�x:r(�x) ! p(�x). This is easily demonstrated for ea
h of the forms wedes
ribe below.



Identity Redu
tions Ea
h problemati
 predi
ate 
an itself be used as a guidedredu
tion indi
ating that no redu
tion should be performed. These are informa-tion preserving. For example, the guided redu
tion sta
kOK is an informationpreserving guided redu
tion.Rule Redu
tions Ea
h de�nitional rule r of the form p(�x)$ P [�x; q1; : : : ; qm℄for problemati
 predi
ates p; q1; : : : ; qm gives rise to an operator R parameter-ized by predi
ate variables V1; : : : ; Vn, one for ea
h o

urren
e of a problemati
predi
ate in P (i.e. we have n � m). R(Q1; : : : ; Qn)(�x) holds if and only ifP [�x; V1; : : : ; Vn℄. Here the repla
ement of Q1; : : : ; Qn repla
es the n individualo

urren
es of q1; : : : ; qm in P .For example, the rule sta
kOKHead gives rise to the following operator:3sta
kOKHead V1 V2 (sta
k,sta
kT) ::=mat
h (sta
k,sta
kT) with[℄,[℄ -> true| (h::t),(hT::tT) -> V1(h,hT) ^ V2(t,tT)| _,_ -> falseA position within a nesting of �rst order 
onne
tives is de�ned as positive, neg-ative or neutral in the usual way, i.e. a

ording to the markup s
heme: + ^ +;+_+; � ! +; 0$ 0; :�; 8+; 9+. For example, the variables V1 and V2 o

urin positive positions on the right side of the de�nition of sta
kOKHead.A guided redu
tion of the formR(A1; : : : ; An) is weakening (likewise strength-ening) if ea
h Ai is: weakening (likewise strengthening) when the 
orrespond-ing position in P is positive; and strengthening (likewise weakening) when the
orresponding position in P is negative; and information-preserving when the
orresponding position in P is neutral.For example, the guided redu
tion sta
kOKHead(p1; p2) is weakening if bothp1 and p2 are weakening, and strengthening if both p1 and p2 are strengthening.In other words, ea
h rule de�nes an operator that is monotone, anti-monotoneor neutral in ea
h of its predi
ate arguments a

ording to the way the predi
ates
orresponding to the arguments are used in the body of that rule.Weakening (likewise strengthening) indexed rules of the form 8�y:p(�x) !Q[�x; �y℄ for a problemati
 predi
ate p give rise to an operator for building weak-ening (likewise strengthening) guided redu
tions. For example, the following in-dexed rule justi�es random a

ess into a list:argsOKPoint |- 8 i. argsOK(args,argsT) !mat
h (read args i, read argsT i) with| None,None -> true| Some v, Some vT -> valOK(v,vT)| _,_ -> falseFor Spark this rule follows from the de�nition of argument 
onforman
e in x2.2.This gives the following operator for building weakening guided redu
tions:3 Here we use 
urried syntax for the extra higher-order arguments.



argsOKPointW i V (args,argsT) ::=mat
h (read args i, read argsT i) with| None,None -> true| Some v, Some vT -> V(v,vT)| _,_ -> falseIn other words, this operator lets us pi
k out an index i at whi
h to reveal the fa
tthat valOK holds, and furthermore to reveal additional information about thatvalue by giving an appropriate argument for V . Thus the operators give a 
om-pa
t notation for supplying important instantiations and 
haining inferen
es. Ine�e
t we are taking advantage of the fa
t that in \
omplex but shallow" problemdomains spe
ifying a few 
riti
al inferen
es 
an open the way for automation todo very useful amounts of work.On
e again 
onditions apply for the argument given to predi
ate variablessu
h as V . In parti
ular, if they are used in a positive (likewise negative) po-sition on the right of the de�nition then they must be given a weakening (likewisestrengthening) guided redu
tion. For example, the guided redu
tion argsOKPointW3 argsOK is a weakening redu
tion, be
ause argsOK is information preserving.Combining Redu
tions It is now easy to write operators to 
ombine guidedredu
tions:(p1 OR p2) ::= �x. p1(x) _ p2(x)(p1 AND p2) ::= �x. p1(x) ^ p2(x)The operator OR is typi
ally applied to guided redu
tions used to transform goals,and e�e
tively des
ribes multiple ways of proving the same goal. The operatorAND is applied to guided redu
tions used to transform fa
ts, and e�e
tively de-s
ribes how to derive multiple pie
es of information from the same fa
t. Guidedredu
tions built using these operators are weakening/strengthening if both ar-guments weakening/strengthening.The following redu
tions dis
ard fa
ts/goals and are weakening/strengthening:DoNotUse ::= �x. trueDoNotProve ::= �x. falseThe if/then/else operator lets the user 
hoose an appropriate redu
tion basedon a 
ondition. It is strengthening if both p1 and p2 are strengthening, likewiseweakening. The => operators let us 
onditionally extra
t extra information froma fa
t or goal for use on bran
hes of a proof where the guard holds:(if g then p1 else p2) ::= �x. (if g then p1(x) else p2(x))(g => p1) && p2 ::= (if g then p1 else DoNotUse) AND p2(g => p1) || p2 ::= (if g then p1 else DoNotProve) OR p23.4 Guided Redu
tions as Term Repla
ement and an ExampleWhen authoring a guided redu
tion the user dire
tly repla
es uses of problemati
predi
ates by appli
ations of these operators. The 
orre
tness of this pro
ess 
an



be determined synta
ti
ally, by 
he
king that the weakening (likewise strength-ening) guided redu
tions are only applied to fa
ts (likewise goals).Guided redu
tions 
ould be authored in other forms, e.g. as ta
ti
s in a theo-rem prover su
h as HOL or Isabelle. However, there are important pra
ti
al ben-e�ts to representing guided redu
tions by predi
ate-repla
ement: (a) the termsare type-
he
ked in 
ombination with the term de�ning the problem itself, whi
h
aptures many errors early on; (b) the terms may involve proof 
onstants fromthe problem spe
i�
ation; and (
) the terms o

ur dire
tly in position rather thanas a later, disasso
iated operation, redu
ing the fragility of the guided-redu
tionvis-a-vis reorderings and restru
turings of the problem statement.Finally, ba
k to our example. The guided redu
tion in x3.3 
an be formalizedby repla
ing the predi
ate sta
kOK in formulae (1) and (2) in x3.1 by(i = I_dup) => (sta
kOKHead valOK sta
kOK) && sta
kOK(i = I_dup) => (sta
kOKHead valOK (sta
kOKHead valOK sta
kOK)) || sta
kOKrespe
tively. This repla
ement is justi�ed be
ause the guided redu
tions are re-spe
tively weakening and strengthening, whi
h 
an be automati
ally 
he
ked.The appli
ation of the guided redu
tion simply involves expanding all de�ni-tions of operators and non-problemati
 predi
ates and fun
tions and applyingthe de
ision pro
edure, whi
h then 
he
ks the validity of the resulting formula.4 Case Studies4.1 Case Study 1: SparkWe now 
onsider the use of our te
hniques to prove Proposition 3. The overallproof s
ript required to prove the �rst part of Proposition 3 is:4Proof s
ript for Spark Soundness (1)Proposition:hastype(1) (m,methT) ^stateOK(2) (s0,methT)--> step (m,s0) <> NoneProblemati
 predi
ates: stateOK, sta
kOK, hastype, lo
sOK, argsOKRepla
e (1) by: hastypePointW p
0Repla
e (2) by:stateOKRule((is_stlo
 i) => sta
kOKHead1 sta
kOK &&(is_starg i) => sta
kOKHead1 sta
kOK &&(is_binop i) => sta
kOKHead2 sta
kOK &&(is_ret i) => sta
kOKHead2 sta
kOK &&(is_ble i) => sta
kOKHead1 sta
kOK &&(is_pop i) => sta
kOKHead1 sta
kOK &&sta
kOK)((is_stlo
 i or is_ldlo
 i) => lo
sOKPointW lo
0 &&4 This is a tidied-up version of the a
tual proof s
ript, whi
h is a little more ar
ane.



lo
sOK)((is_starg i or is_ldarg i) => argsOKPointW arg0 &&argsOK)Where p
0 ::= s0.p
i ::= mat
h (read m.instrs p
0) with Some(i) -> ilo
0 ::= (mat
h i with I_stlo
 x -> x | I_ldlo
 x -> x)arg0 ::= (mat
h i with I_starg x -> x | I_ldarg x -> x)The rules for the problemati
 predi
ates hastypePointW, sta
kOKHead1, sta
kOKHead2,argsOKPointW and lo
sOKPointW are derived immediately from the de�nitionsgiven in x2. The rule stateOKRule is also derived from the de�nition of stateOKin x2.2 and 
omposes guided redu
tions for the input sta
k, lo
als and arguments.In pra
ti
e we prove the full soundness property in one step using a similars
ript, the proposition being:hastype(m,methT) ^ stateOK(s0,methT)! mat
h step(s0) with| None -> false| Some(s1) -> state_ok(s1,methT)The really promising thing about these proof s
ripts is just how mu
h has notbeen mentioned. In parti
ular, if we examine the de�nitions in x2, no mentionhas been made of fun
tions su
h as step, dests or effe
t. The de
ision pro
edureis fed a very large term with all the de�nitions of these fun
tions expanded. Thepro
ess of 
ase-splitting through all the instru
tions and all the failure/su

ess
ases impli
it in the exe
ution and veri�
ation semanti
s happens automati
ally.After applying this redu
tion, the resulting formula is passed to the de
isionpro
edure and a 
ounterexample, if any, is returned. The the expanded problemsent to the de
ision pro
edure would run for hundreds of pages (many sub-terms are shared within the problem). Our implementation of the SVC de
isionpro
edure takes 14.4s to prove the �rst part of the soundness proof (using a 750MHz Pentium III), with 5217 
ase-splits and 1377 unique terms 
onstru
ted.We have found that proof times 
an be dramati
ally redu
ed by simple andnatural 
ase-split orderings. For example, if we spe
ify that the �rst split shouldbe on the kind of instru
tion, the time redu
es to 0.25s with 109 
ase-splits.Produ
ing Counterexamples. Consider what happens if we omit a 
he
kfrom our veri�
ation rules, in parti
ular if we omit the 
he
k that the type ofthe item on the sta
k for the instru
tion stargmat
hes the type expe
ted for theargument slot. Type soundness no longer holds, and a 30 line 
ounterexample isprinted, 
ontaining, among other things:is_starg i0is_F (nth m.mref.argsT (starg_get0 i0))is_Int (hd s0.sta
k)This suggests that the veri�er is unsound when the instru
tion is a starg, a
oating point number is expe
ted, but the �rst value on the sta
k is an integer



value|the bug has been dete
ted! Counterexample predi
ates like these 
analso be solved to give a sample input (with some unknowns) that exposes theerror. The 
ounterexample 
ould be made 
on
rete by sear
hing for arbitraryterms whi
h satisfy any remaining non-stru
tural 
onstraints, but we have notimplemented this.4.2 Case Study 2: Investigating BILOur se
ond 
ase study 
onsists of verifying the type soundness of a small-stepterm rewriting system 
orresponding to the BIL fragment des
ribed in [4℄. Thefragment in
luded a subtyping relation with appropriate rules. Some aspe
ts ofthis proof are beyond the s
ope of this paper, in parti
ular the use of guidedredu
tions in the presen
e of indu
tively de�ned relations over re
ursive termstru
tures. Apart from this the 
ore te
hnique used was as des
ribed in x3.The BIL instru
tions for whi
h we have veri�ed the 
orresponding soundnessproperty in
lude loading a 
onstant; sequen
ing; 
onditionals; loops; virtual 
allinstru
tions; loading/storing arguments; boxing inline values to obje
ts; allo
at-ing new obje
ts; 
reating new inline obje
ts; loading the address of an argument;loading the address of a �eld in an obje
t; loading/storing via a pointer.The 
omponents of the spe
i�
ation are: (a) a term model of programs 
on-sisting of 20 lines of ML datatype de�nitions; (b) a pseudo-fun
tional small-stepexe
ution semanti
s 
omprising 180 lines of ML 
ode, in
luding some uninter-preted operations (e.g. a fun
tion that resolves virtual 
all dispat
h is assumed);(
) a fun
tional type 
he
ker 
omprising 90 lines of ML 
ode and some uninter-preted operations; and (d) a spe
i�
ation of 
onforman
e akin to that in [15℄.The proof assumes the following lemmas, whi
h we have proved by inspe
-tion: (a) weakening/strengthening rules about the problemati
 predi
ates; (b) 11lemmas about re
ursive operations su
h as \write into a nested lo
ation withina stru
t (inline value) given a path into that value"; (
) one lemma about theexisten
e of a heap typing that re
ords the types of all allo
ations that will o

urduring exe
ution; and (d) a lemma 
onne
ting the type
he
king pro
ess to theterm-
onforman
e predi
ate, of the kind stated and proved in Chapter 7 of [15℄.The overall guided redu
tion was spe
i�ed in tabular form, with 41 rows(ea
h 
orresponding to one rewrite a
tion in the exe
ution semanti
s), and 7
olumns (spe
ifying guided redu
tions for the input heap, sta
k frames, inputterm, exe
ution step, output heap, output sta
k frames and output term). Thetable was sparse, with 60% of entries indi
ating that no spe
ial reasoning wasneeded for that item on that bran
h of the proof. This left around 120 entriesea
h a 
ouple of identi�ers long. In 
ontrast the proof performed in [15℄ tookaround 2000 lines of proof s
ript, despite using 
onsiderable automation.We exe
uted the proof for ea
h the instru
tion independently, and ea
h in-stru
tion took under 10s to verify. We found mistakes in both our veri�er andour model of exe
ution during this pro
ess.



5 Con
lusions and Future Dire
tionsThis paper has presented a new semi-automated te
hnique for me
hani
ally
he
king the type soundness of virtual ma
hines, and two 
ase studies apply-ing that te
hnique. It is the �rst time SVC-like de
ision pro
edures have beenextensively applied to a problem domain that was previously ex
lusively ta
kledusing intera
tive theorem proving.The manual part of the proof te
hnique is based on an algebra of guidedredu
tions built using 
ombinators that are automati
ally derived from de�ni-tions and rules for the predi
ates and fun
tions being manipulated. The guidedredu
tions allow the user to 
ontrol the unwinding of re
ursive de�nitions andto give instantiations for 
ertain 
ru
ial �rst-order rules. This gives a 
ompa
tbut 
ontrolled way of spe
ifying the information ne
essary for di�erent partsof a proof, and the proof hints 
an be 
ombined to express �nite proof sear
hand 
onditional guidan
e. The automated part of the proof uses SVC-like va-lidity 
he
king for a quanti�er free theory of arithmeti
 and stru
tured terms.Although exponential in theory this has proved eÆ
ient and 
ontrollable in pra
-ti
e, sometimes by giving hints for 
ase-split orderings. This mirrors experien
eswith using these algorithms for hardware veri�
ation [1℄.We have also des
ribed two 
ase studies applying these te
hniques to frag-ments of the CLR's intermediate language. When 
ompared to intera
tive theo-rem proving, these 
ase studies have 
ertainly bene�ted from the in
reased useof automation. We found that the semi-automati
 proof 
he
king pro
ess wase�e
tive in helping us understand aspe
ts of the se
ond, larger 
ase study. Theresults from the 
ase-studies indi
ate that the problem domain is highly au-tomatable and that it is worthwhile to pursue a dis
iplined 
ombination of proofguidan
e and proof automation.With regard to future possible dire
tions, it is 
ertain that further automation
an be applied in this problem domain, perhaps even a
hieving fully automated
he
king for important 
lasses of soundness properties. It is also likely that prop-erties other than type soundness 
an bene�t from the approa
h we have taken inthis paper. In addition, applying our present 
ombination of te
hniques to newspe
i�
ations will reveal if they transfer in pra
ti
e. For example, applying thete
hniques outlined in this paper to the re
ent extensive ASM des
riptions ofthe JVM [13℄ would determine if they s
ale to larger formal models.The proof guidan
e te
hnique des
ribed in this paper is novel, espe
ially theautomati
 generation of 
ombinators for a proof algebra from a spe
i�
ation ofbasi
 axioms for problemati
 predi
ates and fun
tions. We have not des
ribedhow indu
tive and other se
ond-order proof te
hniques �t into this framework.It would also be very interesting to apply similar te
hniques to other problemdomains. In parti
ular there is a strong need for dis
iplined ways of de
omposinghardware veri�
ation properties into problems that 
an be independently model
he
ked. Guided redu
tions may have a role to play here.
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