Automating Type Soundness Proofs via Decision
Procedures and Guided Reductions

Don Syme and Andrew D. Gordon

Microsoft Research, Cambridge, U.K.

Abstract. Operational models of fragments of the Java Virtual Ma-
chine and the .NET Common Language Runtime have been the focus of
considerable study in recent years, and of particular interest have been
specifications and machine-checked proofs of type soundness. In this pa-
per we aim to increase the level of automation used when checking type
soundness for these formalizations. We present a semi-automated tech-
nique for reducing a range of type soundness problems to a form that
can be automatically checked using a decidable first-order theory. Decid-
ing problems within this fragment is exponential in theory but is often
efficient in practice, and the time required for proof checking can be con-
trolled by further hints from the user. We have applied this technique to
two case studies, both of which are type soundness properties for sub-
sets of the .NET CLR. These case studies have in turn aided us in our
informal analysis of that system.

1 Introduction

Formalizations of virtual machines such as the Java Virtual Machine (JVM) or
the .NET Common Language Runtime (CLR) have been the focus of considerable
study in recent years [4,11, 13, 14]. Of particular interest have been specifications
and proofs of type soundness for these systems, frequently involving machine-
checked proofs using interactive theorem provers [15-17]. While the automation
available in interactive theorem provers has increased, both the kind of automa-
tion applied (e.g.rewriting) and the manner of its application (e.g. tactics) tend
to be substantially ad hoc. The proof scripts needed to check these properties
are often many thousands of lines long.

In this paper we aim to increase the level of automation applied to this prob-
lem, focusing on one particluar automated decision procedure and one particular
form of user guidance. We isolate out the user’s guidance into a component called
a guided reduction, which indicates how to extract the relevant facts that make
the proof go through for particular cases. Applying the reduction is an auto-
mated process that transforms the type soundness problem into a form that
can be automatically checked using case-splitting and validity checking within a
combination of decidable first-order theories. The particular decision procedure
used in this paper is the algorithm used by the Stanford Validity Checker (SVC)
[1], which has been successfully applied to large hardware verification proofs. We

have applied this technique to models of subsets of the CLR, which has in turn
aided our informal analysis of that system.

This paper is structured as follows. In the remainder of this section we con-
sider the background to this work, including a number of studies of the JVM. In
82 we describe Spark, a model of a fragment of the IL of the CLR, which is used
for explanatory purposes in this paper. In §3 we describe guided reductions, our
new technique for semi-automatically converting high-level statements of type
soundness into a form suitable for analysis by an automated decision procedure.
In §4 we apply this combination of techniques to two case studies, and in §5 we
discuss interesting potential avenues for future work.

1.1 Background: Type Soundness for Virtual Machines

In this section we consider the typical structure of a type soundness specification
for a virtual machine. A good supply of examples exists against which to compare
this structure, e.g.[10-12,15], and we have examined these examples to check
that they fall within the general structure described here.

A structured operational semantics (SOS) used in a type soundness proof
typically has the following components: (a) a formal description of programs;
(b) a formal description of typechecking; (c) a formal description of execution;
and (d) a type soundness property. The property typically specifies (i) certain
errors do not occur during execution and (ii) the machine always makes progress.

Formal descriptions of systems as complex as the JVM or the CLR vary sub-
stantially according to the specification methodology used, the exact logic in
which the system is formalized, and individual choices about how to model op-
erations in the logic. However, the components above are always recognisable.
The primary points of departure between different descriptions of the same sys-
tem are the use of big-step v. small-step models of execution; the representation
of error conditions; the atomicity of execution steps, and the degree of realism
of the model of execution, e.g. whether it models features such as optimizations.

We now give example forms of the terms and predicates for the different
components of a specifcation. We stress that the exact form of the functions and
predicates differ in detail between systems, but the essence of the techniques
used do not.

Programs: a type Prog or programs p where Prog is defined via structural
types such as lists, finite maps, records, integers, strings, products and sums;

Checking: a predicate p : 7p, indicating that the program p has the given type
Tp. This is usually defined compositionally in terms of a number of predicates
p b item : Tier indicating that various sub-components item of p are well-
typed given the context of the whole program.

Execution: a type State of states s, an initial state sg, a set of terminal states,
and a relation p - s ~ s’ indicating that if the machine is in state s running
program p then it may take a step to state s'.

Given the relations and functions above, type soundness can be defined as in-
habitation of the transition relation:

Proposition 1. If p : 7 and p b sg ~* s then either s is terminal or there
exists an s' such that pk s~ s'.

Propositions like this are typically proved via an invariant that specifies good
states, i.e. a type StateType recording expected shapes S of state structures aris-
ing at runtime (stack frames, heap entries etc.), and a predicate p - s <: S
indicating when a state conforms to a state type. Then the statement becomes:

Proposition 2. Ifp: 7 and ptk s <: S then either s is terminal or there exists
an s’ such that p+ s~ s' and furthermore p s’ <: S.

Whether the proof of such a property is effectively automatable obviously
depends on the nature of the relations :, ~ and <:. We stress that previous work
on machine-checking such propositions has applied essentially ad hoc automation
techniques. While this paper does not attempt to achieve complete automation
of the proofs of such properties, it offers a first step in that direction.

Related Work Wright and Felleisen’s 1994 work presented a systematic syn-
tactic approach to a range of type soundness proofs for source languages [18],
and we have used many aspects of their methodology in this paper.

No prior work has attempted to systematically apply decision procedures
or other particular automated techniques to type soundness proofs. However,
there has been considerable work on using interactive theorem proving for these
kinds of proofs [9,11,16,17]. Syme’s work on Java used a more restrictive proof
style and applied decision procedures to prove resulting obligations [15]. There
have been other efforts to formalize aspects of virtual machine descriptions but
without mechanized proof checking [12,4], as well as a set of extensive Abstract
State Machine (ASM) descriptions of the JVM [13]. The work presented in this
paper has also been inspired by Norrish’s treatment of C [10] and the general
background of HOL theorem proving [5].

2 Spark

We now give a concrete example of a type soundness specification that serves
to motivate our techniques to substantially automate type soundness proofs. A
larger case study is discussed in §4.2. Our example is motivated by the instruction
set of the CLR [8] and is called Spark.

We describe execution and verification of Spark programs by programming
functions in the Caml dialect of ML [7]. Our code avoids all the imperative fea-
tures of ML and use no recursion. Hence, we can directly interpret our ML data
structures and procedures as mathematical sets and total functions, respectively.
We import our code into the DECLARE theorem prover [15], interpreting the
ML definitions as phrases of higher order logic.

A program in the Spark bytecode language consists of a single method imple-
mentation, itself consisting of an array of instructions, paired with a signature.
We use ML type definitions to describe indexes for particular program addresses,

arguments, and local variables, and to define numeric constants and the instruc-
tion set. Here the types int and float are the primitive type of integers and
IEEE floating point numbers.

The Spark intermediate language:
I 1

type addr = int bytecode address
type arg_idx = int argument index
type loc_idx = int local variable index
type const = constant
| Const_I of int integer
| Const_F of float IEEE f.p. number
type instr = instruction
| I_ret exit the method
| I_ldarg of arg_idx load an argument
| I_starg of arg_idx store into an argument
| I_ldc of const load an integer or float
| I_ldloc of loc_idx load a local
| I_stloc of loc_idx store into a local
| I_br of addr unconditional branch
| I_ble of addr conditional branch
| I_pop pop an element off the stack
| I_add addition
| I_mul multiplication

The metadata accompanying a method implementation is a signature, which
describes the number and types of its arguments, the type of its result, and the
number and types of its local variables.

Item types, method signatures, methods:

I
type itemT item type

=1 signed integer
| F IEEE f.p. number
type msig = method signature
{argsT: itemT list; argument types
retT: itemT; return types
locsT: itemT list} local variable types
type meth = method
{msig: msig; method signature
instrs: instr list} method implementation

2.1 The Spark Execution and Verification Semantics

Our description of the execution of individual instructions is a 30 line ML func-
tion step that acts as a functional description of a deterministic transition rela-
tion. Its type involves the types item and state as follows:

Items, states, steps:

I1:ype ’a option = None | Some of ’a

type item item
= Int of int integer
| Float of float IEEE f.p. number
type state = execution state
{args: item list; items in arguments
locs: item list; items in local variables
stack: item list; items on the stack
pc: addr} program counter
val step: meth -> state -> state option type of step function

For space reasons we omit the full definition of step in this paper.

We represent verification checks by a relation that relies on being given a
summary of information that would typically be inferred during the execution
of a series of verification checks. Pusch and Nipkow have shown how to formal-
ize the link between a verification algorithm and a relational view of the checks
made during verification [11]. We follow their approach of defining the verifica-
tion checks at particular instructions so that they could be shared between an
algorithmic and relational specification.

A precondition on an address is simply a list of types representing the shape
of the stack prior to execution of that address. The ML type stackT represents
a precondition. Preconditions for all or some of the addresses in a method are
represented by ML values of type methT, a list indexed by addresses.

Stack and method typings:

‘type stackT = itemT list types of items on stack '
type addrT = addr x stackT address with its type
type methT = stackT list stack type for each addr

Our main subroutine is a function dests that simulates an instruction and
computes its destinations. It depends on a subroutine effect to simulate the
effect of running an instruction on a precondition.

effect: msig X instr X stackT -> stackT option
dests: meth X addr X stackT -> addrT list option

The definition of these functions takes 30 lines of ML code. We omit these
definitions for space reasons, though it is important to note that they do contain
many details and checks which do not need to be mentioned by our later proof
scripts.

The remainder of the checks are defined in relational form (we continue to use
program-like syntax for consistency). The relation hastype(m, 7,,,) is the primary
typing predicate and means that the method m is well-typed with respect to the
stack type 7,,. For the relation to hold, each of the instructions of the method
must be well-typed with respect to the preconditions 7,,."2

! In our actual formulation the precondition on the first instruction is the empty stack.
2 In the definition, read : ’a list -> int -> ’a option indexes into a list.

Typing predicates:

&et destOK (methT, (daddr, daddrT)) <«
match (read methT daddr) with
| None -> false
| Some daddrT’ -> daddrT = daddrT’
let addr_hastype (addr,m,mT) <>
match (read m addr) with
| None -> true
| Some(stackT) ->
match (dests (m,addr,stackT)) with
| Some(dests) -> Vd € dests. destOK (mT,d)
| _ -> false
let hastype (m,mT) <
Vaddr. addr_hastype (addr,m,mT)

2.2 Type Soundness for Spark and the Conformance Relations

In this section, we define what it means for an execution state to conform to
a method typing, m.. The relation state0K(s,m,) is the primary conformance
predicate and means that the execution state s conforms to the preconditions
m,. For the relation to hold, the arguments and locals must conform to the
signature of the method, and there must be a precondition stackT assigned to
the current program counter by m, such that s.stack conforms to stackT.

Conformant items, stack, locals, arguments and states:

&et valOK(v,vT) <
match v,vT with
| Int _, I -> true
| Float _, F -> true
| _,_ -> false
let stackOK(stack,stackT) <>
(length(stack) = length(stackT)) A
Vj < length(stack). valOK(nth stack j,nth stackT j)
Likewise for argsOK and locsOK.
let stateOK(s,sT) <>
argsOK(s.args,sT.argsT) A
locsOK(s.locs,sT.locsT) A
match read methT s.pc with
| Some(stackT) -> stackOK (s.stack,stackT)
| _ => false

The key type soundness propositions can now be stated:

Proposition 3. If hastype(m,,) and stateOK(s,m,) then there exists and
s' such that step(s) = Some(s’) and stateOK(s',m).

We now want to substantially automate the proof of this and similar, more
complex propositions by using a decision procedure combined with user guidance.

3 Controlling Decision Procedures via Guided Reductions

Recent efforts have shown that it is feasible to machine-check type soundness
properties for non-trivial models of execution and verification, certainly including
propositions such as Proposition 3. However, the techniques currently require
substantial amounts of human guidance.

We reiterate that it is an open question as to whether practical fully au-
tomated techniques exist for checking classes of type soundness properties, of
which Proposition 3 is but one simple example. It is important to remember
that the execution and verification checks can be almost arbitrarily more com-
plex than the example shown in the previous section, all the way up to doing
proofs about realistic implementations of fully featured virtual machines. Thus
these properties are likely to remain a challenging and fertile area for applying
automated techniques for some time to come. However in this paper we do not
aim for full automation but rather seek to reduce and limit the amount of human
intervention required in the proof effort.

For pragmatic reasons we are interested in using decision procedures to per-
form our automated reasoning, as it is necessary to produce simple counterex-
amples for failed proof efforts. We will apply the technique implemented by the
SVC [1] (equally applicable would be its successor, CVC [2]). This procedure
checks the validity of quantifier-free formula first-order logic with respect to
theories for arithmetic, products, arrays (maps), sums and conditionals. Good
counterexamples can be generated when proofs fail. SVC does not make use of
axioms for finite discrimination or induction over datatypes, and the axioms it
uses for indexed data structures apply equally to lists accessed using indexing
functions, partial functions, total functions and finite maps. SVC has been suc-
cessfully used for proofs about abstracted descriptions of microprocessors. It is
an open question if other decision procedures (e.g. [6]) can be applied to the kind
of proofs described in this paper.

Variations on the “transform and give to a decision procedure” theme are
used on an ad hoc basis in theorem proving and the combination of automatic
transformations with decision procedures occurs often in computing. However
our transformations are mot automatic: i.e.they are non-trivial and represent
insight on the part of the user. So in order to demonstrate that we have not
resorted to full-blown interactive theorem proving we need a characterization of
the input specified by the user.

In this paper we rigorously separate proof checking into three steps:

1. The user specifies a transformation that reduces the problem to one within
a recognised, decidable logic;

2. The system automatically applies the transformation;

3. The resulting formula is passed to a decision procedure, which returns OK
or a counterexample.

When proof is divided in this away we call it guided proof checking, and we
call our particular technique guided reduction. In contrast, we call techniques
where the user interactively applies further proof methods to residue problems

interactive proof checking. Techniques where no human interaction is required
are just called decision procedures.

3.1 Motivating Guided Reductions

Unfortunately, not all type soundness problems may be solved immediately by
the application of an SVC-like decision procedure. Consider the following;:

A Problem Not Immediately Provable by SVC

let valOK(v,vT) <> some large expression
let stackOK(stack,stackT) <>
(length(stack) = length(stackT)) A
Vj < length(stack). valOK(el(j,stack),el(j,stackT))

stackOT <> [1 A

stacklT = hd(stackOT)::hd(stackOT) :: (t1(stack0T)) A
stack0 <> [1 A

stackl = hd(stack0)::hd(stack0)::(tl(stack0)) A
stackOK (stack0,stackOT) (B)
I—) stackOK (stackl,stacklT) (B)

This is based on the case for the dup (duplicate) instruction when proving Propo-
sition 1 from §2.2.

Such a problem is not immediately solvable via the SVC technique for two
reasons. First, the operators length, nth and V lie in theories not understood by
the decision procedure, so the procedure regards them as uninterpreted. Look-
ing at this another way, the way stackOK has been defined as a universal first
order predicate has lead us into reasoning about both first-order and equational
theories simultaneously. If we were using a first-order theorem prover, we could
throw in axioms about these operations and perform a proof search. However it
is well known that combining such problems is difficult, and while progress has
been made recently to determine forms of such problems that are tractable [3], it
is not yet clear if the techniques will scale up to very large verification problems
while providing the high-quality counterexample feedback that is required.

Second, the problem statement may include large, irrelevant definitions such
as that for val0K. A heuristic-based case-splitting decision procedure such as SVC
can be easily misled by the presence of such terms. Better heuristics can help,
but ultimately these definitions are only needed for some branches of a proof
and their presence on other branches greatly hinders both the automation and
the interpretation of counterexamples.

The predicate stackOK could be defined recursively, e.g. from left-to-right
along the list. However the automated routine must then determine how many
times to unwind that recursion. In addition, the number of unwindings depends
upon the branch of the problem, and on some branches may be indexed by a
parameter, for example when n arguments are consumed at a call instruction in
a virtual machine. Furthermore, our techniques must cope with random access
structures such as finite maps, which do not fit nicely into a recursive framework.

3.2 Our Proof Guidance

We now describe our technique to let the user avoid the problems associated
with uncontrolled unwinding of large definitions and first-order quantifiers.
A proof script is made up of three parts:

— The specification of a set of problematic predicates and functions.

— The specification of how and where to apply the fundamental rules associated
with problematic predicates. This is called a guided reduction.

— The specification of any additional heuristic information necessary for the
efficiency of the decision procedure, for example case-split orderings.

This constitutes the full input specified by the user. The well-formedness of
the guided reduction can be checked automatically. The process of applying the
reduction involves: (a) expanding all definitions of all terms representing appli-
cations of rules; (b) expanding the definitions of all non-problematic predicates
and functions; and (c) replacing pattern matching by the equivalent test/get
form. The problem is then submitted to the decision procedure.

The problematic predicates and functions specified in the first part of the
proof script are typically: those whose definition is recursive; those whose defi-
nition involves operators such as V that lie outside the theory supported by the
target decision procedure; those whose uncontrolled expansion creates an unac-
ceptable blow-out in proof checking times; and those which are used in rules for
other problematic predicates. The non-problematic predicates and functions are
typically those which have a lone equational axiom of the form p(z1,...,z,) =
Q[z1,...,zy] where () contains no problematic predicates.

In our problem domain, problem specifications are “complex but shallow”,
and the majority of predicates are not problematic. Those in the example from
§3.1 are val0OK and stackOK. There are no problematic functions.

We assume that a set of rules is available for problematic predicates. Often
a rule is simply the definitions of a predicate, but it may also be a useful lemma,
often one that follows immediately from its definition—see [15] for how such
results can be derived automatically from definitional forms such as equations
involving quantifiers or least-fixed-point operators. We consider the following
forms of rules for a problematic predicate p:

Definitional. A rule of the form p(x) + Q[X].

Weakening. A rule of the form p(X) — QI[X].

Strengthening. A rule of the form Q[X] — p(X).

Indexed (Weakening). A rule of the form Vy.p(x) — Q[X,¥].
Indexed (Strengthening). A rule of the form Vy. Q[x,y] — p(X).

Multiple such rules can exist for each problematic predicate and function. For
example, here are two rules for stack0K, derived from the definition in §3.1.

stackOKHead |- stackOK(stack,stackT) <>
match (stack,stackT) with
| [1,00 > true

| (h::t),(hT::tT) -> valOK(h,hT) A stackOK(t,tT)
| _,_ -> false
stackOKHeadW |- stackOK(stack,stackT) A
stack <> [] A
stackT <> []
— valOK (hd stack,hd stackT) A
stackOK(tl stack,tl stackT)

After a trivial rearrangement of quantifiers, stackOKHead is a definitional rule
and stackOKHeadW is weakening rule. We rely on rules being in one of the above
forms: this paper does not consider induction principles for inductive relations
or recursive term structures, for example.

3.3 The Algebra of Guided Reductions

The second part of a proof script is a specification of how and where to apply
the fundamental rules associated with problematic predicates, called a guided
reduction. Consider the following informal specification of a guided reduction
for the problem specified in §3.1 above: “If the instruction is dup, apply the
stackOKHead rule once to the input stack (as characterized by fact (A)) and twice
to the output stack (as characterized by fact (B)).”

Informally, applying this reduction to the problem in §3.1 means replacing the
specified facts and goals with the right of rule stackOKHead and leaving remaining
instances of stack0K and valOK uninterpreted. The problem is then immediately
solvable by a decision procedure such as SVC. In this example we have effec-
tively used guided reductions for controlled rewriting of stackOKHead. Note that
uncontrolled rewriting using rule stackOKHead would not terminate.

The above example indicates that guided reductions should be combinators
that can be used together in meaningful ways, for example chaining, disjunction
and conditionals, where the conditionals are based on abstracted criteria (a bi-
nary instruction) rather than primitive syntactic criteria (e.g.a list of specific
instructions).

Formally, a guided reduction r for a predicate p is a specification of a re-
placement predicate for p using one of the following forms:

Identity. The predicate p itself.

A Rule Operator. An operator corresponding to one of the rules for p supplied
with appropriate guided reductions as arguments, as specified below.

A Monotone Combinator. Guided reductions can be combined using com-
binators monotone or anti-monotone in each of their arguments: examples
are given in below.

Guided reductions are categorized as weakening and/or strengthening. An in-
formation preserving rule is one that is both weakening and strengthening. The
fundamental property required of a guided reduction is that a weakening reduc-
tion r for p must satisfy Vx.p(X) — r(X), and a strengthening reduction must
satisfy VX.r(x) — p(x). This is easily demonstrated for each of the forms we
describe below.

Identity Reductions Each problematic predicate can itself be used as a guided
reduction indicating that no reduction should be performed. These are informa-
tion preserving. For example, the guided reduction stackOK is an information
preserving guided reduction.

Rule Reductions Each definitional rule r of the form p(x) > P[X,q1, ..., qm)]
for problematic predicates p, q1, ..., ¢m gives rise to an operator R parameter-
ized by predicate variables Vi, ..., V,, one for each occurrence of a problematic
predicate in P (i.e.we have n > m). R(Q1,...,Q,)(X) holds if and only if
P[x,Vi,...,V,]. Here the replacement of Q1,...,Q, replaces the n individual
occurrences of q,...,¢n, in P.

For example, the rule stackOKHead gives rise to the following operator:?

stackOKHead V1 V2 (stack,stackT) ::=
match (stack,stackT) with
1,00 -> true
| (h::t),hT::tT) -> Vi(h,hT) A V2(t,tT)
| _,_ -> false

A position within a nesting of first order connectives is defined as positive, neg-
ative or neutral in the usual way, i.e. according to the markup scheme: + A +;
+V+; — = +; 0« 0; n—; V+; 3+. For example, the variables V; and V5 occur
in positive positions on the right side of the definition of stackOKHead.

A guided reduction of the form R(Ay1, ..., A,) is weakening (likewise strength-
ening) if each A; is: weakening (likewise strengthening) when the correspond-
ing position in P is positive; and strengthening (likewise weakening) when the
corresponding position in P is negative; and information-preserving when the
corresponding position in P is neutral.

For example, the guided reduction stackOKHead(p1,p2) is weakening if both
p1 and po are weakening, and strengthening if both p; and p» are strengthening.
In other words, each rule defines an operator that is monotone, anti-monotone
or neutral in each of its predicate arguments according to the way the predicates
corresponding to the arguments are used in the body of that rule.

Weakening (likewise strengthening) indexed rules of the form Vy.p(x) —
QI[X,y] for a problematic predicate p give rise to an operator for building weak-
ening (likewise strengthening) guided reductions. For example, the following in-
dexed rule justifies random access into a list:

argsOKPoint |- V i. argsOK(args,argsT) —
match (read args i, read argsT i) with
| None,None -> true
| Some v, Some vT -> valOK(v,vT)
| _,_ -> false

For Spark this rule follows from the definition of argument conformance in §2.2.
This gives the following operator for building weakening guided reductions:

% Here we use curried syntax for the extra higher-order arguments.

argsOKPointW i V (args,argsT) ::=
match (read args i, read argsT i) with
| None,None -> true
| Some v, Some vT -> V(v,vT)
| _,_ —> false

In other words, this operator lets us pick out an index 4 at which to reveal the fact
that valok holds, and furthermore to reveal additional information about that
value by giving an appropriate argument for V. Thus the operators give a com-
pact notation for supplying important instantiations and chaining inferences. In
effect we are taking advantage of the fact that in “complex but shallow” problem
domains specifying a few critical inferences can open the way for automation to
do very useful amounts of work.

Once again conditions apply for the argument given to predicate variables
such as V. In particular, if they are used in a positive (likewise negative) po-
sition on the right of the definition then they must be given a weakening (likewise
strengthening) guided reduction. For example, the guided reduction args0KPointW
3 argsOK is a weakening reduction, because args0K is information preserving.

Combining Reductions It is now easy to write operators to combine guided
reductions:

(p1 OR p2) ::= Ax. pl(x) V p2(x)
(p1 AND p2) ::= Ax. pl(x) A p2(x)

The operator 0R is typically applied to guided reductions used to transform goals,
and effectively describes multiple ways of proving the same goal. The operator
AND is applied to guided reductions used to transform facts, and effectively de-
scribes how to derive multiple pieces of information from the same fact. Guided
reductions built using these operators are weakening/strengthening if both ar-
guments weakening/strengthening.

The following reductions discard facts/goals and are weakening/strengthening:

DoNotUse ::= Ax. true
DoNotProve ::= Ax. false

The if/then/else operator lets the user choose an appropriate reduction based
on a condition. It is strengthening if both p1 and p2 are strengthening, likewise
weakening. The => operators let us conditionally extract extra information from
a fact or goal for use on branches of a proof where the guard holds:

(if g then pl else p2) ::= Ax. (if g then pl(x) else p2(x))
(g => pl) && p2 ::= (if g then pl else DoNotUse) AND p2
(g => p1) Il p2 ::= (if g then pl else DoNotProve) OR p2

3.4 Guided Reductions as Term Replacement and an Example

When authoring a guided reduction the user directly replaces uses of problematic
predicates by applications of these operators. The correctness of this process can

be determined syntactically, by checking that the weakening (likewise strength-
ening) guided reductions are only applied to facts (likewise goals).

Guided reductions could be authored in other forms, e.g. as tactics in a theo-
rem prover such as HOL or Isabelle. However, there are important practical ben-
efits to representing guided reductions by predicate-replacement: (a) the terms
are type-checked in combination with the term defining the problem itself, which
captures many errors early on; (b) the terms may involve proof constants from
the problem specification; and (c) the terms occur directly in position rather than
as a later, disassociated operation, reducing the fragility of the guided-reduction
vis-a-vis reorderings and restructurings of the problem statement.

Finally, back to our example. The guided reduction in §3.3 can be formalized
by replacing the predicate stack0K in formulae (1) and (2) in §3.1 by

(i
(i

I_dup) => (stackOKHead valOK stackOK) && stackOK
I_dup) => (stackOKHead valOK (stackOKHead valOK stackOK)) || stackOK

respectively. This replacement is justified because the guided reductions are re-
spectively weakening and strengthening, which can be automatically checked.
The application of the guided reduction simply involves expanding all defini-
tions of operators and non-problematic predicates and functions and applying
the decision procedure, which then checks the validity of the resulting formula.

4 Case Studies

4.1 Case Study 1: Spark

We now consider the use of our techniques to prove Proposition 3. The overall
proof script required to prove the first part of Proposition 3 is:*

Proof script for Spark Soundness (1)
I

Proposition:
hastypea) (m,methT) A
state0K® (s0,methT)
--> step (m,s0) <> None
Problematic predicates: stateOK, stackOK, hastype, locsOK, argsOK
Replace M by: hastypePointW pcO
Replace & by:
stateOKRule
((is_stloc i) => stackOKHeadl stackOK &&
(is_starg i) => stackOKHeadl stackOK &&
(is_binop i) => stackOKHead2 stackOK &&
(is_ret i) => stack0KHead2 stackOK &&
(is_ble i) => stackOKHeadl stack0OK &&
(is_pop i) => stackOKHeadl stackOK &&
stack0OK)
((is_stloc i or is_ldloc i) => locsOKPointW locO &&

4 This is a tidied-up version of the actual proof script, which is a little more arcane.

locsOK)
((is_starg i or is_ldarg i) => argsOKPointW arg0 &&

args0K)
Where pcO ::= s0.pc
i ::= match (read m.instrs pc0O) with Some(i) -> i
locO ::= (match i with I_stloc x -> x | I_ldloc x -> x)
arg0 ::= (match i with I_starg x -> x | I_ldarg x -> x)

The rules for the problematic predicates hastypePointW, stackOKHead1, stackOKHead2,
argsOKPointW and locsOKPointW are derived immediately from the definitions
given in §2. The rule stateOKRule is also derived from the definition of state0K
in §2.2 and composes guided reductions for the input stack, locals and arguments.

In practice we prove the full soundness property in one step using a similar
script, the proposition being:

hastype (m,methT) A stateOK(sO,methT)
— match step(s0) with

| None -> false

| Some(s1) -> state_ok(sl,methT)

The really promising thing about these proof scripts is just how much has not
been mentioned. In particular, if we examine the definitions in §2, no mention
has been made of functions such as step, dests or effect. The decision procedure
is fed a very large term with all the definitions of these functions expanded. The
process of case-splitting through all the instructions and all the failure/success
cases implicit in the execution and verification semantics happens automatically.

After applying this reduction, the resulting formula is passed to the decision
procedure and a counterexample, if any, is returned. The the expanded problem
sent to the decision procedure would run for hundreds of pages (many sub-
terms are shared within the problem). Our implementation of the SVC decision
procedure takes 14.4s to prove the first part of the soundness proof (using a 750
MHz Pentium IIT), with 5217 case-splits and 1377 unique terms constructed.

We have found that proof times can be dramatically reduced by simple and
natural case-split orderings. For example, if we specify that the first split should
be on the kind of instruction, the time reduces to 0.25s with 109 case-splits.

Producing Counterexamples. Consider what happens if we omit a check
from our verification rules, in particular if we omit the check that the type of
the item on the stack for the instruction starg matches the type expected for the
argument slot. Type soundness no longer holds, and a 30 line counterexample is
printed, containing, among other things:

is_starg i0
is_F (nth m.mref.argsT (starg_getO i0))
is_Int (hd sO.stack)

This suggests that the verifier is unsound when the instruction is a starg, a
floating point number is expected, but the first value on the stack is an integer

value—the bug has been detected! Counterexample predicates like these can
also be solved to give a sample input (with some unknowns) that exposes the
error. The counterexample could be made concrete by searching for arbitrary
terms which satisfy any remaining non-structural constraints, but we have not
implemented this.

4.2 Case Study 2: Investigating BIL

Our second case study consists of verifying the type soundness of a small-step
term rewriting system corresponding to the BIL fragment described in [4]. The
fragment included a subtyping relation with appropriate rules. Some aspects of
this proof are beyond the scope of this paper, in particular the use of guided
reductions in the presence of inductively defined relations over recursive term
structures. Apart from this the core technique used was as described in §3.

The BIL instructions for which we have verified the corresponding soundness
property include loading a constant; sequencing; conditionals; loops; virtual call
instructions; loading /storing arguments; boxing inline values to objects; allocat-
ing new objects; creating new inline objects; loading the address of an argument;
loading the address of a field in an object; loading/storing via a pointer.

The components of the specification are: (a) a term model of programs con-
sisting of 20 lines of ML datatype definitions; (b) a pseudo-functional small-step
execution semantics comprising 180 lines of ML code, including some uninter-
preted operations (e.g. a function that resolves virtual call dispatch is assumed);
(c) a functional type checker comprising 90 lines of ML code and some uninter-
preted operations; and (d) a specification of conformance akin to that in [15].

The proof assumes the following lemmas, which we have proved by inspec-
tion: (a) weakening/strengthening rules about the problematic predicates; (b) 11
lemmas about recursive operations such as “write into a nested location within
a struct (inline value) given a path into that value”; (c) one lemma about the
existence of a heap typing that records the types of all allocations that will occur
during execution; and (d) a lemma connecting the typechecking process to the
term-conformance predicate, of the kind stated and proved in Chapter 7 of [15].

The overall guided reduction was specified in tabular form, with 41 rows
(each corresponding to one rewrite action in the execution semantics), and 7
columns (specifying guided reductions for the input heap, stack frames, input
term, execution step, output heap, output stack frames and output term). The
table was sparse, with 60% of entries indicating that no special reasoning was
needed for that item on that branch of the proof. This left around 120 entries
each a couple of identifiers long. In contrast the proof performed in [15] took
around 2000 lines of proof script, despite using considerable automation.

We executed the proof for each the instruction independently, and each in-

struction took under 10s to verify. We found mistakes in both our verifier and
our model of execution during this process.

5 Conclusions and Future Directions

This paper has presented a new semi-automated technique for mechanically
checking the type soundness of virtual machines, and two case studies apply-
ing that technique. It is the first time SVC-like decision procedures have been
extensively applied to a problem domain that was previously exclusively tackled
using interactive theorem proving.

The manual part of the proof technique is based on an algebra of guided
reductions built using combinators that are automatically derived from defini-
tions and rules for the predicates and functions being manipulated. The guided
reductions allow the user to control the unwinding of recursive definitions and
to give instantiations for certain crucial first-order rules. This gives a compact
but controlled way of specifying the information necessary for different parts
of a proof, and the proof hints can be combined to express finite proof search
and conditional guidance. The automated part of the proof uses SVC-like va-
lidity checking for a quantifier free theory of arithmetic and structured terms.
Although exponential in theory this has proved efficient and controllable in prac-
tice, sometimes by giving hints for case-split orderings. This mirrors experiences
with using these algorithms for hardware verification [1].

We have also described two case studies applying these techniques to frag-
ments of the CLR’s intermediate language. When compared to interactive theo-
rem proving, these case studies have certainly benefited from the increased use
of automation. We found that the semi-automatic proof checking process was
effective in helping us understand aspects of the second, larger case study. The
results from the case-studies indicate that the problem domain is highly au-
tomatable and that it is worthwhile to pursue a disciplined combination of proof
guidance and proof automation.

With regard to future possible directions, it is certain that further automation
can be applied in this problem domain, perhaps even achieving fully automated
checking for important classes of soundness properties. It is also likely that prop-
erties other than type soundness can benefit from the approach we have taken in
this paper. In addition, applying our present combination of techniques to new
specifications will reveal if they transfer in practice. For example, applying the
techniques outlined in this paper to the recent extensive ASM descriptions of
the JVM [13] would determine if they scale to larger formal models.

The proof guidance technique described in this paper is novel, especially the
automatic generation of combinators for a proof algebra from a specification of
basic axioms for problematic predicates and functions. We have not described
how inductive and other second-order proof techniques fit into this framework.
It would also be very interesting to apply similar techniques to other problem
domains. In particular there is a strong need for disciplined ways of decomposing
hardware verification properties into problems that can be independently model
checked. Guided reductions may have a role to play here.

References

1.

10.
11.

12.

13.

14.

15.

16.

17.

18.

C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of theories
with equality. In M. Srivas and A. Camilleri, editors, Formal Methods In Computer-
Aided Design, volume 1166 of Lecture Notes in Computer Science, pages 187-201.
Springer-Verlag, November 1996. Palo Alto, California, November 6-8.

. C. Barrett, D. Dill, and A. Stump. A generalization of Shostak’s method for

combining decision procedures. In Frontiers of Combining Systems (FROCOS),
Lecture Notes in Artificial Intelligence. Springer-Verlag, April 2002.

A. Degtyarev and A. Voronkov. Equality reasoning in sequent-based calculi. In
Handbook of Automated Reasoning, Volume I, pages 611-706. Elsevier Science and
MIT Press, 2001.

A. Gordon and D. Syme. Typing a multi-language intermediate code. In 27th
Annual ACM Symposium on Principles of Programming Languages, January 2001.
M.J.C. Gordon and T.F. Melham. Introduction to HOL: A theorem-proving envi-
ronment for higher-order logic. Cambridge University Press, 1993.

J.G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, B. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. In Tools and Algo-
rithms for the Construction and Analysis of Systems, First International Work-
shop, TACAS ’95, LNCS 1019, 1995.

Xavier Leroy. The Objective Caml system, documentation and user’s guide. INRIA,
Rocquencourt, 1999. Available from http://caml.inria.fr.

Serge Lidin. Inside Microsoft .NET IL Assembler. Microsoft Press, 2002.

Tobias Nipkow, David von Oheimb, and Cornelia Pusch. pJava: Embedding a
programming language in a theorem prover. In F.L. Bauer and R. Steinbriiggen,
editors, Foundations of Secure Computation. Proc. Int. Summer School Markto-
berdorf 1999, pages 117-144. IOS Press, 2000.

M. Norrish. C formalised in HOL. PhD thesis, University of Cambridge, 1998.

C. Pusch. Proving the soundness of a Java bytecode verifier specification in Is-
abelle/HOL. In TACAS’99, Lecture Notes in Computer Science. Springer Verlag,
1999.

Z. Qian. A Formal Specification of Java Virtual Machine Instructions for Objects,
Methods and Subroutines. In J. Alves-Foss, editor, Formal Syntaz and Semantics of
Java, volume 1532 of Lecture Notes in Computer Science, pages 271-312. Springer
Verlag, 1999.

Robert Stark, Joachim Schmid, and Egon Borger. Java and the Java Virtual
Machine. Springer Verlag, 2001.

R. Stata and M. Abadi. A type system for Java bytecode subroutines. In Proceed-
ings POPL’98, pages 149-160. ACM Press, 1998.

D. Syme. Declarative Theorem Proving for Operational Semantics. PhD thesis,
University of Cambridge, 1998.

M. Vanlnwegen. The Machine-Assisted Proof of Programming Language Proper-
ties. PhD thesis, University of Pennsylvania, May 1996.

D. von Oheimb and T. Nipkow. Machine-checking the Java specification: Proving
type-safety. In J. Alves-Foss, editor, Formal Syntaz and Semantics of Java, volume
1532 of Lecture Notes in Computer Science, pages 119-156. Springer Verlag, 1999.
Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38-94, 1994.

