
Staged Mixture Modeling and Boosting

Christopher Meek, Bo Thiesson and David Heckerman
Microsoft Research

Redmond, WA 98052-6399
{meek,thiesson,heckerma}@microsoft.com

Abstract

In this paper, we introduce and evaluate a
data-driven staged mixture modeling tech-
nique for building density, regression, and
classification models. Our basic approach is
to sequentially add components to a finite
mixture model using the structural expec-
tation maximization (SEM) algorithm. We
show that our technique is qualitatively sim-
ilar to boosting. This correspondence is a
natural byproduct of the fact that we use
the SEM algorithm to sequentially fit the
mixture model. Finally, in our experimental
evaluation, we demonstrate the effectiveness
of our approach on a variety of prediction
and density estimation tasks using real-world
data.

1 Introduction

In this paper, we introduce and evaluate what we call
the staged mixture modeling (SMM) approach: a data-
driven staged mixture modeling technique for building
density, regression, and classification models. Our ap-
proach is to add components to a finite mixture model
in stages using the structural expectation maximiza-
tion (SEM) algorithm. More specifically, at the nth

stage, we fix the relative mixture weights and param-
eters of the first n − 1 components of the mixture
model, and add the nth component with a prespec-
ified initial mixture weight. We then learn the new
component and mixture weight using a criterion such
as the Bayesian Information Criterion (BIC); a penal-
ized maximum likelihood.

We show that our method is qualitatively similar to
a variety of boosting methods. Boosting methods are
ensemble methods in which one sequentially adds new
predictor components to the ensemble (e.g., Freund &
Schapire, 1997). The new predictor components are

trained on the basis of a reweighted version of the
data set in which cases that are not predicted well
are given a higher weight. The connection to boosting
is a natural byproduct of the fact that we use the SEM
algorithm to sequentially fit the mixture model. Effec-
tively, the SEM algorithm reweights the cases by com-
puting a membership probability for the new compo-
nent. The membership probability reflects the degree
to which the data are not well-predicted by the mix-
ture model without the current component—the worse
the prediction, the more weight the case is given. The
reweighted data is then used to learn the new com-
ponent. Although our method is qualitatively similar
to many approaches for boosting, it differs in many
specific details. We highlight some of the differences
by contrasting our approach with the popular boost-
ing methods of Friedman, Hastie, & Tibshirani (1998)
and Friedman (1999).

Our approach has several benefits over alternative ap-
proaches to boosting. First, our method can easily be
applied to any learning method that can learn from
fractionally weighted data. Second, our method al-
lows one to boost density models as well as regression
and classification models. In addition, our method
provides a principled means of optimizing both the
weights and the structures of the component models.

In our experimental evaluation, we evaluate the perfor-
mance of our approach on a variety of prediction and
density estimation tasks using real-world data. We use
the following types of component models: For classifi-
cation, we use decision trees with a bounded number
of leaves; and for density estimation, we use Bayesian
networks whose local distributions are regression trees
with a bounded number of leaves. We also evaluate
various alternative versions of our algorithm to high-
light which aspects are crucial to successful implemen-
tation.

2 Algorithm

Throughout the paper, we use the following syntactic
conventions. We denote a variable by an upper case
token (e.g. A, Bi ,Y) and a state or value of that
variable by the same token in lower case (e.g. a, bi, y).
We denote sets with bold-face capitalized tokens (e.g.
A, X) and corresponding sets of values by bold-face
lower case tokens (e.g. a, x).

Our approach is based on mixture models. An n com-
ponent mixture model is a model of the form

pn(y|x, θ) =
n∑

i=1

p(C = i|θ0) pi(y|C = i,x, θi)

where θ are the parameters, p(C = i|θ0) is the mixture
weight of the ith component, and pi(·| · · ·) is the ith

component. For compactness, we will often write pn(·)
for an n-component mixture model, pi(·) for a com-
ponent model, and πi for the ith component’s mixture
weight. Special cases of interest are (1) density estima-
tion, in which X is empty, (2) regression, in which Y
is a single continuous-valued variable, and (3) classifi-
cation, in which Y is a single discrete-valued variable.
All three of these cases are popular uses of mixture
modeling; our methods apply to each of these cases.
To simplify the presentation, we assume that the data
used to train our model is complete data for X and Y
(i.e. there is no missing data).

Our approach is a staged approach to constructing a
mixture model. At each stage, we add a prespecified
initial component to our mixture model with a pre-
specified initial mixture weight, while fixing the pre-
vious component structures, parameters, and relative
mixture weights. We then use a structural expectation
maximization (SEM) algorithm to modify the initial
component and initial mixture weight in the staged
mixture model.

A SEM algorithm is an EM type algorithm in which
one computes expected sufficient statistics for poten-
tial component models and interleaves structure and
parameter search. SEM approaches have been applied
to learning of mixtures of Bayesian networks by Thies-
son, Meek, Chickering, & Heckerman (1999), to mix-
tures of trees by Meilă and Jordan (2000), and to the
learning of Bayesian networks with missing data by
Friedman (1997) who also coined the name.

The concept of a (fractionally) weighted data set for a
set of variables is central to the description of our ap-
proach. A data set d = {z1, . . . , zN} for a set of vari-
ables Z = X∪Y is a set of cases zi (i = 1, . . . , N) where
zi is a value for Z. A weighted case wci = {zi, wi} for
a set of variables Z has a value zi for the variables Z
and a real-valued weight wi. A weighted data set for

Z (denoted wd = {wc1, . . . , wcN}) is a set of weighted
cases for Z.

In a traditional approach to learning an n-component
finite mixture model, the E-step of the EM (or SEM)
algorithm results in n weighted data sets. If the train-
ing data set is d = {z1, . . . , zN}, then the weighted
data set wdi associated with the ith component has
weighted cases wcj = {zj , p(C = i|zj , θ)} (j =
1, . . . , N) where θ are the current parameters of the
staged-mixture model and p(C = i|zj , θ) is the mem-
bership probability for case j in component i. We call
the quantity

∑
i wi the fractional count for component

i.

We now describe our algorithm. Its key component is
the procedure Add-Component that adds a new com-
ponent to the current mixture model. The procedure
takes three arguments: an initial mixture weight πn

for the (new) nth component, an initial guess for the
nth component pn(·), and the previous n − 1 compo-
nent mixture model pn−1(·). The procedure makes use
of two essential routines: (1) a fractional-data learn-
ing method—a method that can be applied to weighted
data set for X,Y—that produces a probabilistic model
for p(y|x) and (2) a model score method that evalu-
ates the fit of a component model to a weighted data
set for X,Y. Note that many fractional-data learning
methods employ such a model score (e.g. maximum
likelihood, BIC and a Bayesian score).

Add-component(πn, pn(·), pn−1(·))

0 Let pn(·) = πnpn(·) + (1 − πn)pn−1(·)
1 Do s1 steps of structure search

- use pn to compute the weighted data set for
the nth component.

- Use weighted data and fractional-data
learning method to learn new component p′

n

- if the model score for the new component
p′

n on the weighted data does not improve over
the model score for the old component pn on the
complete data, then go to step 2.

- Let pn(·) = πnp′
n(·) + (1 − πn)pn−1(·)

2 Do s2 steps of optimizing mixture weights

- use pn to compute the fractional count for
the nth component.

- Perform maximization step for mixture
weight to obtain π′

n

- let pn(·) = π′
npn(·) + (1 − π′

n)pn−1(·)
3 Repeat step 1 and step 2 s3 times.

4 return pn(·)

In constructing a SMM, we iteratively apply the Add-
Component procedure to previously constructed mix-
ture models. We typically construct the first compo-
nent by applying the fractional-data learning method
used in step 1 of the Add-Component procedure to the
original (equally weighted) data.

We have found that a good initial model is a marginal
model—one in which all variables are assumed to be
mutually independent. For regression and classifica-
tion, a marginal model is simply a univariate marginal
distribution of the target variable.

The precise schedule of our SEM algorithm is de-
fined by the tuple (s1, s2, s3). Thiesson et al. (1999)
have demonstrated that the performance of the learned
model is not very sensitive to the precise schedule for
an SEM algorithm when applied to mixture modeling,
whereas the schedule does affect the runtime of the
procedure. We provide additional experiments on al-
ternative schedules in Section 4, and demonstrate that
extreme schedules (e.g.) s1 = s2 = s3 = 1 can perform
poorly.

It is interesting to consider the convergence properties
of the Add-Component procedure. Because the EM al-
gorithm is guaranteed to improve the likelihood at each
step, if we do no structure search, the Add-Component
procedure will improve the log-likelihood on the train-
ing data. Similarly, Friedman (1997) showed that the
SEM algorithm is guaranteed to improve the overall
Bayesian Information Criterion (BIC) if one uses BIC
to evaluate the fit of a model to the fractional data
during model search. Thus, if we use BIC as a model
score in step 1, we can guarantee that the result of the
Add-Component procedure will be a local maximum
in terms of BIC, if we run to convergence. A similar
result holds when using the maximum likelihood (ML)
criterion for evaluating the fit of a model.

In addition, if we require that at each stage (i.e., at
each application of Add-Component) we only accept
the addition of a component to our mixture model if
the BIC (ML) score improves, we can guarantee that
the SMM approach will identify a parameterized mix-
ture model that is a local maximum in terms of BIC
(ML), if we run to convergence. However, it is unclear
whether this method is the best method for choosing
the number of components in a SMM. First, for mix-
ture models of this type, it is unclear whether BIC
is an appropriate score (Geiger, Heckerman, King, &
Meek, 2000). Second, we have found that using BIC to
select the number of components of a non-SMM mix-
ture model does not yield as good a predictive model as
when the number is chosen with holdout data. In this
paper, we do not optimize the number of components.
Instead, we show that, for the range of numbers of

components we consider, our approach roughly mono-
tonically improves performance on a test set, as each
component is added.

It is natural to consider variants of the staged mixture
modeling approach described above. A natural alter-
native is to do some type of backfitting in which one
does not fix the previous components and/or relative
mixture weights. In our experiments, we consider two
types of backfitting. One, we consider mixture-weight
backfitting in which we relax the restriction of fixed rel-
ative mixture weights. That is, after we have learned
and fixed the structure and parameters of each compo-
nent, use the EM algorithm to estimate the maximum
likelihood estimates for all of the mixture weights.
Two, we consider structure backfitting in which we use
the SEM algorithm in conjunction with fractionally
weighted data to relearn the structures, parameters,
and mixture weights of all components. It is impor-
tant to note that these alternative approaches typi-
cally require more computation than does our SMM
approach. The additional computation required is es-
pecially large in the case of structure backfitting.

3 Relationship to Boosting

In this section, we compare and contrast our approach
to constructing mixture models with boosting. We
show that our approach to constructing mixture mod-
els is qualitatively similar to boosting and distinguish
our method from those of Friedman et al. (1998) and
Friedman (1998).

When adding the nth component to a mixture model,
the weight of the ith case (xi,yi) when initially train-
ing the nth component is its membership probability
for the case. Recall that we are given an initial mix-
ture weight πn and an initial component pn(·) as well
as our previously constructed n−1 component mixture
model pn−1(·). The mixture weight for case i is

wi =
πnpn(yi|xi)

πnpn(yi|xi) + (1 − πn)pn−1(yi|xi)
.

When using the maximum likelihood or BIC approach
for training, what is important in understanding the
effect of reweighting the data is the relative size of the
mixture weights across cases. We consider two cases i
and j, and simplify the analysis by assuming that each
initial pn(yi|xi) is a uniform distribution. (The anal-
ysis of the relative mixture weights when non-uniform
initial components pn(·) are used is more complicated
but qualitatively similar.) Under this assumption, the
ratio of the mixture weights for case i over case j is

given by

wi

wj
=

πnpn(·) + (1 − πn)pn−1(yj|xj)
πnpn(·) + (1 − πn)pn−1(yi|xi)

.

Consequently, if case j is better predicted than is case i
by the n−1 component model, then the mixture weight
ratio is larger than one. Furthermore, the better case
j is predicted, the larger the ratio. Thus, cases that
are poorly predicted by the n − 1 component model
are given relatively larger weights. Also, we can am-
plify weight differences between cases by increasing the
initial mixture weight πn.

We have demonstrated that our approach is qualita-
tively similar to other approaches to boosting in that
we more heavily weight cases that are poorly predicted
by the previous ensemble of components. Now we
compare our approach to other boosting approaches
to highlight significant differences.

In many approaches to boosting, including those of
Friedman et al. (1998) and Friedman (1999), the com-
ponents of the ensemble are combined with both pos-
itive and negative weights. In our approach, because
we are constructing a mixture model, only positive
weights are used. Another significant difference be-
tween our approach and other boosting approaches is
the form of the model. For instance, in the case of clas-
sification, our probability estimate of a target class is
a linear combination of the probability estimates for
the components. In the gradient boosting approach
of Friedman (1999) and the LogitBoost approach of
Friedman et al. (1998), it is the log odds ratio that
is a linear combination of the outputs of the compo-
nents of the ensembles. Another distinguishing fea-
ture of our approach is that, due to the use of EM,
we can, at a given stage, iteratively reweigh the data
to optimize both the component structure parameter-
ization and mixture weight (i.e., we can set each si to
be greater than 1). Other approaches such as Fried-
man’s, typically only perform a single line search to
obtain the combination weight and do not reweigh the
data in the process of constructing the new compo-
nent in the ensemble. In the next section, we demon-
strate that departing from the boosting-like schedule
s1 = s2 = s3 = 1 typically improves the performance
of our approach.

4 Experiments

In this section, we describe our experimental results
of applying the staged mixture modeling approach to
density estimation and classification problems.

Group Name #Train #Test #Vars
Digits Digit 0 1100 434 64

Digit 1 1100 345 64
Digit 2 1100 296 64
Digit 3 1100 260 64
Digit 4 1100 234 64
Digit 5 1100 193 64
Digit 6 1100 281 64
Digit 7 1100 241 64
Digit 8 1100 216 64
Digit 9 1100 211 64

Speech M54 1560 14 33
M56 2336 52 33
M64 1659 9 33
M78 6294 73 33
N86 8688 98 33
N99 10127 227 33
N146 4791 69 33
N158 1796 21 33
Z134 21888 4378 33

Group Name #Train #Test #Vars #Classes
UCI Vowel 528 462 10 11

Satimage 4435 2000 36 6
Letter 16000 4000 16 26

Table 1: Statistics of the data sets used in our experi-
ments.

4.1 Data Sets

In our experiments, we use three groups of data sets:
Digits, Speech, and UCI. The first two groups are used
to evaluate the performance of our staged mixture
modeling approach on the task of density estimation,
and the third is used to evaluate the task of proba-
bilistic classification. Characteristics for the data sets
are summarized in Table 1.

The first group, Digits, are digital gray-scale im-
ages of handwritten digits made available by the US
Postal Service Office for Advanced Technology (Hin-
ton, Dayan, & Revow, 1997). The second group of
data sets, Speech, contains data sets for individual
sub-phonetic events observed for 10ms time frames of
continuous speech (Huang et al., 1995). The third
group, UCI, contains benchmark data sets from the
UCI repository. We chose three data sets for this
group—Vowel, Satimage, and Letter—based on abil-
ity to use the same training and test data as used in
Friedman, Hastie, & Tibshirani (1998).

4.2 Models

In our density estimation experiments, the component
models of our staged mixture models are Bayesian net-
works in which each local distribution is a regression
tree. For our classification experiments, our compo-
nent models are single decision trees.

As in the approaches of Friedman et al. (1998) and
Friedman (1999), we restrict the maximum number
of leaves and use the maximum likelihood criterion

when constructing our regression/decision trees. We
use the standard greedy search approach for construc-
tion except that, as described in Chickering et al.
(2001), we consider seven split points for a continu-
ous input/regressor variable, a choice that we have
found to be a good one over a wide variety of data
sets. In the case of density estimation, we enforce
the acyclicity constraint of the Bayesian network at
each stage of the construction (see Chickering, Heck-
erman, & Meek, 1997). We choose the maximum num-
ber of leaves and our initial mixture weight (πn) using
a 70/30 split of the training data. In our experiments,
we use the Bayesian information criterion (BIC) as our
model score in step 1 and chose s1 = 5 and s2 = 5.
With respect to the schedule parameter s3, we run un-
til convergence or a maximum of 20 iterations (5 iter-
ations for tuning experiments), whichever occurs first.
We say that convergence is reached if the difference in
the log-likelihood of the model after step 1 and step
3 divided by the difference in the log-likelihood of the
model after step 3 and the initial model falls below
10−5.

We compare our staged mixture models for density es-
timation to a baseline model that is a single Bayesian
network in which each local distribution is a regression
tree. Similarly, for classification, we compare with a
single decision tree. The baseline models are learned
as are the components of the SMM, except that we do
not restrict the maximum number of leaves and we use
a Bayesian score to construct the tree. In our Bayesian
score, we use a non-informative prior distribution for
the parameters in all leaf distributions and a struc-
ture prior proportional to κd where d is the number
of free parameters in the model. In a non-Bayesian
fashion, we tune the parameter κ, and the parame-
ter γ—the minimum number of observations required
for a split—using a 70/30 split of the training data.
For more details on the Bayesian score for regression
trees, see Meek, Chickering, & Heckerman (2002); and
for decision trees see Chickering et al. (1997).

We measure the performance of structured mixture
models and our baseline models with the following
measures. For Digits and Speech—our density estima-
tion data sets—we measure the quality of learned mod-
els by using the log-score on a test set t = (y1, . . . ,yN)
of N cases:

Score(t|model) = 1/N

N∑

i=1

ln p(yi|model).

For the UCI data sets—our classification regression
data sets—we measure the log-score for target given

input on a test set t = ((y1,x1), . . . , (yN ,xN)):

Score(t|model) = 1/N
N∑

i=1

ln p(yi|xi, model).

We also evaluate the accuracy of our method as com-
pared to the boosting method of Friedman et al. (1998)
for the UCI data sets. We measure the classification
accuracy:

Acc(t|model) = 1/N

N∑

i=1

χyi(arg max
y

p(y|xi, model))

where χyi(y) is 1 if yi = y and is 0 otherwise.

4.3 Results

The log-scores of SMMs and baseline models are re-
ported in Figure 1. Each graph depicts the results for
one of the data sets. We show only three graphs for
the Digits data sets; for the digits “1”, “2”, and “3”.
These results are representative of all of the results on
the Digits data sets.

The graphs demonstrate that the SMM approach
yields models with good predictive performance. This
is true for both density modeling tasks (Digits and
Speech data sets) as well as for classification tasks
(UCI data sets). In all but three cases, the SMM
models obtain better log-scores than the baseline mod-
els. For all but one of the data sets, we see that the
SMM model achieves the same or better results than
the baseline model. For all data sets, the SMM ap-
proach rapidly improves on the initial single compo-
nent model, although, as one would expect, the rate of
improvement decreases as additional components are
added. The most extreme examples of this pattern
are found in the Digit data sets, where improvement
is slow or non-existent after the addition of the second
component.

Our results on classification accuracy are presented in
Table 2. We present results for SMMs with 16 com-
ponents and LogitBoost models with 200 components;
the choice of 200 components yields the best perfor-
mance for LogitBoost. Note that accurate SMMs have
far fewer components than accurate LogitBoost mod-
els. Although the SMM component models are more
complicated than those for LogitBoost models, we sus-
pect that the difference is in part due to the fact that
we iteratively reweight the data for a component to op-
timize the mixture weight and component (i.e. si > 1),
whereas LogitBoost does not. Our results for clas-
sification accuracy on the UCI data sets are mixed.
On Vowel, our method performs slightly better than
either versions of LogitBoost; on Satimage and Let-
ter, our method performs slightly worse. We attribute

Data set Baseline SMM 16 LB(2) 200 LB(8) 200
Vowel 0.431 0.491 (16) 0.489 0.483

Satimage 0.851 0.883 (128) 0.898 0.912
Letter 0.863 0.906 (512) 0.855 0.967

Table 2: Classification accuracy for baseline model,
SMM with 16 components, LogitBoost model with 200
two-leaf components, and LogitBoost model with 200
eight-leaf components. The number of leaves used in
the decision trees for the components of the SMM is
given in parentheses after the accuracy.

these observations to several factors. First, the model
class used by LogitBoost is different. Second, Logit-
Boost regularizes mixture weights as new components
are added, whereas we are using maximum likelihood
to add new components.

Next, let us examine the sensitivity of the results to
various algorithm parameters. One parameter in the
SMM approach is the initial mixture weight πn. The
quality of the learned models measured in log-score is
only moderately sensitive to the choice of πn. Repre-
sentative of all data sets we have examined, Figure 2
plots the log-score on the test set as a function of πn

and the number of components in the mixture for the
UCI data set Satimage.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.001

0.004

0.016

0.064

0.256
-0.00035

-0.0003

-0.00025

-0.0002

-0.00015

-0.0001

Log-score

Number of components

Initial mixture
 weight

Satimage

Figure 2: Log-score as a function of initial mixture
weight for new component and the number of compo-
nents in mixture.

In addition, there are (at least) two natural candidates
for an initial model: marginal (described above) and
uniform. In experiments not reported here, we have
found that the accuracy of classification is not sen-
sitive to this choice, whereas the accuracy of density
estimation is better when marginal models are used.

Now let us consider the backfitting alternatives de-
scribed in Section 2: mixture-weight backfitting and

structure backfitting. The results on two represen-
tative data sets are given in Figure 3. Each plot
represents the log-score as a function of number of
components for SMM, mixture-weight backfitting, and
structure backfitting. For Letter, we see that struc-
ture backfitting hurts performance and mixture-weight
backfitting hurts performance to a lesser degree. The
results for the Speech data set N146 are similar ex-
cept that the structure backfitting not only hurts per-
formance but additional components significantly de-
grade performance. The predictive performance of
backfitting methods on other data sets is roughly
evenly split between these two types of behaviors. In a
small number of experiments, we found mixture-weight
backfitting adversely affected performance. In sum-
mary, our staged mixture modeling approach can both
improve predictive performance and reduce computa-
tional cost.

N146

-0.04

0

0.04

0.08

0.12

L
og

-s
co

re

Letter

-1.5

-1.2

-0.9

-0.6

-0.3

0

L
og

-s
co

re

Figure 3: Performance of backfitting for mixture mod-
els with 1 to 16 components for N146 (top) and Let-
ter (bottom). Lines labeled with diamonds, squares,
and triangles correspond to SMM (no backfitting),
mixture-weight backfitting, and structure backfitting,
respectively.

Next, let us consider variations in the schedule param-
eters s1, s2, and s3. Figure 4 shows log score as a
function of number of components in the learned mix-
ture model for four different schedules applied to the
the Letter and N146 data sets. We use “SMM” to
denote the schedule used in most of our experiments

Digit 1

-7

-5

-3

-1
Digit 2

-4.5

-4.4

-4.3

-4.2

-4.1
Digit 3

-4.4

-4.2

-4

-3.8

M54

-0.1

-0.05

0

0.05
M56

-0.04

-0.02

0

0.02

0.04
M64

0.16

0.18

0.2

0.22

0.24

M78

0.1

0.15

0.2

0.25
N86

0.06

0.1

0.14

0.18

0.22
N99

0.04

0.08

0.12

0.16

0.2

N146

-0.03

0

0.03

0.06

0.09
N158

0

0.02

0.04

0.06

0.08
Z134

0.1

0.15

0.2

0.25

Vowel

-6

-4

-2

0
Satimage

-1.2

-0.8

-0.4

0
Letter

-1.6

-1.2

-0.8

-0.4

0

Figure 1: Log-scores on test sets for SMM with 1 to 16 components. Log-scores of the baseline models are shown
as horizontal dotted lines.

s1 = 5, s2 = 5, s3 = 20, “20-1-1” to denote the sched-
ule s1 = 20, s2 = 1, s3 = 1 in which we perform 20
structural searches and one weight update, “1-20-1” to
denote the schedule s1 = 1, s2 = 20, s3 = 1 in which
we perform 1 structural search and 20 weight updates,
and “1-1-1” to denote the schedule s1 = 1, s2 = 1,
s3 = 1. The plots in Figure 4 are representative of the
performance of these schedules on the other data sets.
In both plots, the performance of the schedules “1-1-
1” and “1-20-1” are worse than the schedules “SMM”
and “20-1-1”. This observation suggests that allow-
ing additional steps of structural search while adding
new components—a divergence from the boosting-line
schedule—is important for improving performance.

Finally, let us consider how prediction accuracy is af-
fected by the addition of many model components. Re-
sults are again shown in Figure 4. For no schedule does
performance systematically degrade as we increase the
number of components in the mixture models. This
observation suggests that our SMM approach to con-
structing mixture models is robust to overfitting.

N146

-0.03

0

0.03

0.06

0.09

0.12

1 21 41 61 81 101
Number of components

L
og

-s
co

re

Letter

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

1 21 41 61 81
Number of components

L
og

-s
co

re

SMM

1-1-1

1-20-1

20-1-1

SMM

1-1-1

1-20-1
20-1-1

Figure 4: Log-score as a function of the number of
components in the learned mixture for N146 (top) and
Letter (bottom) using four different learning schedules

5 Discussion

We described our staged mixture modeling approach
and provided experimental evidence that it yields high-
quality predictive models. We demonstrated that we
can improve the quality of both density and classifica-
tion models using this approach. One of the benefits
of the SMM approach is that it can be used with any
component model that can be learned from fractional
data unlike many other approaches to boosting.

Our staged approach to building mixture models when
applied to density estimation is similar to an approach
to density estimation suggested by Li and Barron
(2000). Li and Barron (2000) provide elegant theoret-
ical results bounding the Kullback-Leibler divergence
between an infinite mixture generative density and an
approximate finite mixture density. They show that
an iterative procedure for the construction of a finite
mixture model for density estimation can achieve these
bounds. Using the nomenclature of our paper, they
show that using a staged mixture modeling approach
for density estimation to construct a finite mixture
model with parametric components can be guaranteed
to approach the generative density. Their results and
procedure, however, are limited to the case of density
estimation with finite mixtures in which the compo-
nent models are parametric density models (i.e. hav-
ing no non-trivial structural component). It would be
interesting to extend their theoretical results bounding
the Kullback-Leibler divergence to the case of regres-
sion and classification models and to the case in which
the components have a non-trivial structural compo-
nent.

There are several other areas for future research. First,
it would be useful to demonstrate that the approach
yields improvements for other types of component
models such as logistic regressions and support vec-
tor machines. Second, the SMM approach should be
compared to methods for constructing mixture mod-
els (other than the backfitting methods and alternative
schedules that we used for comparison). Finally, many
approaches such as Friedman et al. (1998) regularize
their components. It would be useful to experiment
with methods for regularizing the mixture weight as
well as parameter and structure learning of the com-
ponents.

References

[Chickering et al., 1997] Chickering, D., Heckerman, D.,
and Meek, C. (1997). A Bayesian approach to learning
Bayesian networks with local structure. In Proceedings
of Thirteenth Conference on Uncertainty in Artificial In-
telligence, Providence, RI. Morgan Kaufmann.

[Chickering et al., 2001] Chickering, D., Meek, C., and
Rounthwaite, R. (2001). Efficient determination of dy-
namic split points in a decision tree. In Proceedings of
the 2001 IEEE International Conference on Data Min-
ing, pages 91–98, San Jose, CA. IEEE Computer Society.

[Freund and Schapire, 1997] Freund, Y. and Schapire, R.
(1997). A decision-theoretic generalization of on-line
learning and application to boosting. Journal of Com-
puter and System Sciences, 55(1):119–139.

[Friedman, 1999] Friedman, J. (1999). Greedy function ap-
proximation: A gradient boosting machine. Technical
report, Department of Statistics, Stanford University.

[Friedman et al., 1998] Friedman, J., Hastie, T., and Tib-
shirani, R. (1998). Additive logistic regression: a statis-
tical view of boosting. Technical report, Department of
Statistics, Stanford University.

[Friedman, 1997] Friedman, N. (1997). Learning belief
networks in the presence of missing values and hidden
variables. In Proceedings of the Fourteenth International
Conference on Machine Learning. Morgan Kaufmann,
San Mateo, CA.

[Geiger et al., 2001] Geiger, D., Heckerman, D., King, H.,
and Meek, C. (2001). Stratified exponential families:
graphical models and model selection. Annals of Statis-
tics, 29:505–529.

[Hinton et al., 1997] Hinton, G., Dayan, P., and Revow,
M. (1997). Modeling the manifolds of images of hand-
written digits. IEEE Transactions on Neural Networks,
8:65–74.

[Huang et al., 1995] Huang, X., Acero, A., Alleva, F.,
Hwang, M.-Y., Jiang, L., and Mahajan, M. (1995). Mi-
crosoft Windows highly intelligent speech recognizer:
Whisper. In IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 1995. ICASSP-95,
volume 1, pages 93–96.

[Li and Barron, 2000] Li, J. and Barron, A. (2000). Mix-
ture density estimation. In Advances in Neural Informa-
tion Processing Systems 12, pages 279–285. MIT Press.

[Meek et al., 2002] Meek, C., Chickering, D., and Hecker-
man, D. (2002). Autoregressive tree models for time-
series analysis. In Proceedings of the Second Interna-
tional SIAM Conference on Data Mining, page to ap-
pear, Arlington, VA. SIAM.

[Meilă and Jordan, 2000] Meilă, M. and Jordan, M.
(2000). Learning with mixtures of trees. Journal of
Machine Learning Research, 1:1–48.

[Thiesson et al., 1999] Thiesson, B., Meek, C., Chickering,
D., and Heckerman, D. (1999). Computationally efficient
methods for selecting among mixtures of graphical mod-
els, with discussion. In Bayesian Statistics 6: Proceed-
ings of the Sixth Valencia International Meeting, pages
631–656. Clarendon Press, Oxford.

