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ABSTRACT 
We give an algorithm that derives a finite state machine (FSM) 
from a given abstract state machine (ASM) specification. This 
allows us to integrate ASM specs with the existing tools for test 
case generation from FSMs. ASM specs are executable but have 
typically too many, often infinitely many states. We group ASM 
states into finitely many hyperstates which are the nodes of the 
FSM.  The links of the FSM are induced by the ASM state 
transitions.  

 

Keywords 
finite state machine, FSM, abstract state machine, ASM, test case 
generation, executable specification 

 

1. INTRODUCTION 
The group on Foundations of Software Engineering at Microsoft 
Research has developed an industrial-strength high-level 
executable specification language AsmL [13]. AsmL builds on the 
concept of abstract state machine [18] and provides a modern 
specification environment that is object-oriented and component-
based. Here we are concerned with using AsmL specifications as 
a source for algorithmic generation of test suites.  This is one 
approach to model-based testing, and such testing is receiving 
more and more attention in Microsoft's product groups recently. 
Typically, however, the models used are finite state machines 
(FSMs). There are pretty good tools for deriving test suites from 
FSMs. So it is reasonable for us to integrate with those tools. This 
is how we arrived to the problem addressed in this paper: 
algorithmic generation of an FSM from a given AsmL spec. Of 
course the desired FSM should reflect important functionalities of 
the spec, so that the resulting test suites are meaningful. The FSM 
also should be of manageable size.  
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We start with an abstract state machine which models some 
implementation under test (IUT) and which is written in AsmL; 
this model will be referred to as the ASM or the ASM spec. The 
ASM may have too many, often infinitely many, states. To this 
end, we group ASM states into finitely many hyperstates. This 
gives rise to a finite directed graph or finite state machine whose 
nodes are the generated hyperstates. Then state transitions of the 
ASM are used to generate links between hyperstates. Let us note 
that it is not necessary to first produce an FSM and then use the 
FSM for test generation. The graph-generating procedure itself 
can be used to produce a test suite as a byproduct.  

The FSM-generating algorithm is a particular kind of graph 
reachability algorithm. It starts from the initial state and builds up 
a labeled state transition graph by invoking actions that are parts 
of the ASM. If a new state is encountered, it is added to the 
frontier of unexplored states but only if this new state is 
considered to be relevant e.g. if it gives a new hyperstate. A 
suitable relevance condition is an important part of the algorithm 
that determines the quality of the generated FSM and whether the 
algorithm terminates.  

The generated FSM and the original ASM are related in a natural 
way. Suppose that an action a is applied to an ASM state s. What 
will be the next state of the ASM or – if a is nondeterministic – 
what are the possible next states? That depends on Boolean 
guards of the spec of a. The guards reflect the state distinction 
that the specification writer cared enough about to make explicit.  
Say that two states of the ASM are distinguishable by guards if 
there exists a guard that is satisfied in one of the two states but not 
in the other. Indistinguishability by guards is an example of a 
useful equivalence relation given by a sequence of Boolean 
conditions, the distinguishing sequence. There are other useful 
distinguishing sequences and corresponding equivalence relations. 
The algorithm takes a distinguishing sequence as an additional 
input. Hyperstates are the corresponding equivalence classes.  

We illustrate the algorithm on a medium size spec of a Universal 
Plug and Play (UPnP) device. UPnP device architecture is a 
world-wide industry standard for peer-to-peer network 
connectivity of various intelligent appliances, wireless devices 
and PCs [26]. 

Our reduction of states to hyperstates is a form of data 
abstraction. In model checking, data abstraction is a well-known 
technique to cope with state explosion. In the context of model 
checking,  the more abstract model must simulate the original 
model, so that certain properties of the original model are 
preserved [8]. In order to ensure this simulation, the standard 
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data-abstraction algorithms used in model checking may yield an 
over-approximation (with extra transitions) of the ideal data 
abstraction [8]. An over-abstraction also arises when one uses the 
method of abstract interpretation of programs [9]. In contrast, the 
output of our algorithm may under-approximate the true FSM so 
that some reachable hyperstates or some links between reachable 
hyperstates may be missing. The reason is that we work with the 
states of the original ASM: every FSM node is the hyperstate of a 
reachable ASM state, and every FSM link is given by a transition 
between reachable ASM states. In general, there is no algorithm 
(guaranteed to terminate) that generates the true FSM; this is 
proved in 3.3. 

This article is written in the AsmL tradition: the same text serves 
the human reader and the computer.  The computer will extract 
the program part which appears in the special AsmL style and 
execute our FSM generating algorithm on the UPnP device 
example.   

We do not presume that the reader is familiar with ASMs or 
AsmL. The article is self-explanatory. In particular, the AsmL 
rules themselves are pretty much self-explanatory but we also 
provide additional explanation. The interested reader can always 
consult the AsmL website [13]. 

2. BASIC SETUP 
We are given an implementation under test (IUT) and an ASM 
specification S. We assume that the actions that the IUT can be 
invoked with form a fixed and finite set. This set is usually only 
an approximation of the set of all possible actions that the real 
IUT can be called with, that may in general be infinite if the real 
actions have parameters ranging over infinite domains. Parameter 
selection in testing is a difficult problem all by itself and it is out 
of the scope of the current paper. 

The specification S reduces to the following normal form. For 
each action a, there is a rule called the action spec for a. Each 
action spec is a do-in-parallel block 

  if g1 then R1 
  ... 

  if gk then Rk 
where each clause if gi then Ri  is composed from a Boolean-
valued guard gi and body Ri. The body is a possibly 
nondeterministic rule without any conditional sub-rules. We say 
that there is a transition with label a or an a-transition from a 
state A1 to a state A2, if after firing (the action spec for) a in state 
A1 a possible resulting state is A2. A run is a finite sequence of 
transitions where the end state of every transition is the start state 
of its immediate successor (if any) in the sequence. We require 
that there is a fixed initial state for S. The reachable states of S 
are those states that can be reached from the initial state of S by 
means of the runs.  The fact that action specs have the normal 
form is convenient but not essential for this paper. 

The ASM specification S describes the desired behavior of the 
IUT leaving out various implementation details. IUT is the 
subject of actions by the external environment or by the user of 
the IUT. For simplicity, we consider one pool of actions 
(including those of the environment and those of the user) and 

have in mind a single testing agent. The problem we are dealing 
with here is to provide a set of action sequences (a test suite) that 
the testing agent can use to drive the IUT through as many 
distinguishable states as possible. You may want not to 
distinguish between states where the difference is not relevant 
from the testing standpoint. It is desirable that such 
indistinguishability relation is an equivalence relation that has 
only finitely many equivalence classes. 

Conceptually, our method consists of two, largely independent, 
steps: 

1. Extract a finite state machine M from the given S, where 
each node1 of M represents an equivalence class of the 
states of S. 

2. Use M to generate a test suite, that is a set of action 
sequences. 

In the following sections we explain in detail how the proposed 
FSM extraction algorithm works. Only a short section 4 is 
devoted to the test suite generation. 

2.1 Indistinguishability and Hyperstates 
We will use Boolean-valued conditions to define the desired 
equivalence relation between the states of the given spec S. 
Natural candidates for such conditions are those that explicitly 
appear in S, but one may also consider their derivatives by e.g. 
incrementing or decrementing numerical boundary conditions that 
occur in S. Let b be a fixed nonempty sequence b0,...,bn-1 of n 
such conditions. Say that two states are b-distinguishable if some 
bi distinguishes between them. Any two states that are not 
distinguishable by b are b-indistinguishable. We will, as a rule, 
omit the distinguishing sequence b when it is clear from the 
context. It is easy to see that the indistinguishability relation is a 
finite equivalence relation. Define hyperstate as an equivalence 
class of this equivalence relation. A transition is local if both of 
its endpoints are in the same hyperstate. 

Notice that there are at most 2n hyperstates. The actual number is 
less if the conditions in the sequence are not independent. For 
example, if the disjunction of all the conditions is necessarily true 
then the hyperstate where all the conditions are false is not 
realized. Let H be a hyperstate; the index of H is the binary 
sequence h0,...,hn-1 such that, for all i<n, hi=1 if bi holds in the 
states in H, and hi=0 otherwise. The index of a hyperstate H 
uniquely determines which conditions of b are true and which are 
false in the states of H. We identify hyperstates with their indices. 
The index of a state is the index of its hyperstate. 

2.1.1 Selecting the Distinguishing Sequence 
There are various natural selections of the distinguishing 

sequence b. One selection comprises the guards that actually 
appear in S. This reflects the case distinctions made explicit by 
the author of S. A second selection comprises the Boolean 
constituents (that is Boolean-indecomposable parts) of the guards. 
Typically, the number of hyperstates is larger in the second case, 
                                                                 
1 In order to avoid confusion between the states of S and the states 

of the finite automaton, we use the term node for the latter. 
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which, depending on the purpose, may be an advantage or a 
disadvantage. The second selection will be illustrated below.  
There are intermediate selections.  For example, you reduce every 
guard to a disjunctive (or the full disjunctive) normal form and 
then use the conjunctions.  (In the full disjunctive normal form, 
every one of those conjunctions contains every constituent, 
negated or non-negated.) 

2.1.2 The True FSM 
Ideally, we would like to generate an FSM from S and b that 
contains all the possible links. We call this the true FSM for S and 
b. The nodes of the true FSM are the indices of all the reachable 
states of S. The initial node is the index of the initial state of S. 
There is a link (n1,a,n2) from node n1 to node n2 with label a in the 
true FSM if there is an a-transition from a reachable state of S 
with index n1 to a state with index n2.  Notice that you may have 
also unreachable states with index n1; the restriction to reachable 
states in the previous sentence is important. 
Some remarks: 1) Not all hyperstates are necessarily represented 
in the true FSM, only the reachable ones are. 2) The true FSM 
may be nondeterministic even if S is deterministic. This occurs 
when there exist two state transitions with the same label from 
two indistinguishable states to two distinguishable states. 3) The 
true FSM may be deterministic even if S is nondeterministic. 
Intuitively this means that the nondeterminism in S is not visible 
at the abstraction level imposed by the distinguishing sequence. 

2.2 A Sample Device as IUT 
As a running example we use one service of  a medium size UPnP 
device as our IUT. UPnP device architecture is a standard for 
peer-to-peer network connectivity of various intelligent 
appliances, wireless devices and PCs; see the website [26] of the 
industrial UPnP Forum. A distributed ASM model of the UPnP is 
described in [15][16]. 
Here we consider a CD player. In the full model (see [16]) this 
device has two services, ChangeDisc and PlayCD. We use the the 
first one as our running example; see Figure 1. It allows a user 
(the control point in UPnP terms) to add discs to or remove discs 
from the CD player, to choose a disc to be placed on the tray, and 
to toggle (open/close) the door.  Figure 1 illustrates the relevant 
state information associated with the service. 
We use AsmL to write a specification for the ChangeDisc service. 
This will also provide a small introduction to AsmL.  
First we describe the variables of the ASM state together with the 
initial values. 
class CHANGEDISC  
  var occupiedSlots as Set of Integer = {} 
  var currentSlot   as Integer = 1 
  var doorIsOpen    as Boolean = false 
  var doorIsStuck   as Boolean = false 
  var result        as RESULT  = undef 
 

 

Figure 1. ChangeDisc service of a CD Player. 
 
The reader may wonder what the role of the result is. Apply an 
action a to a state s and let t be a resulting state. The action may 
produce a Boolean or an error.  
structure RESULT 
  case ERR 
    code as String 
  case BOOL 
    res as Boolean 
This result is important and the hyperstate of t should reflect it. 
But here, for simplicity, we all but ignore the results. Our 
hyperstates do not reflect them. But we leave the result in the 
state t as a reminder of the importance of results. Alternatively we 
could attach the results to transitions rather than states. The 
question arises what is the result of the initial state because it is 
not a priori produced by any transition. Naturally the result of the 
initial state is undef. 
 
Now we describe the part of the state that does not change: the set 
of slots. The additional constraint says that the current slot and all 
the occupied slots must be members of the set of all slots. 
class CHANGEDISC ...  
  allSlots as Set of Integer 
  constraint  
    currentSlot in allSlots and  
    occupiedSlots subset allSlots  
The action specs use several private helper functions whose 
intended meaning is self-explanatory.  For example, the 
trayHasDisc() function checks whether the current slot is 
occupied. The remaining helper functions are defined in the 
appendix. 
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class CHANGEDISC ...  
  trayHasDisc() as Boolean 
    return currentSlot in occupiedSlots 
The AddDisc action opens the door (or leaves it open) and 
chooses a free slot as the new current slot. There are altogether 11 
actions, see the appendix.  
class CHANGEDISC ...  
  AddDisc() 

    if not (isFull() or   
            isClosedAndStuck()) then  
      doorIsOpen := true 
      choose slot in emptySlots() 
        currentSlot := slot 

    else 
      ReportAnyError({(isFull(),"full"), 

           (isClosedAndStuck(),"stuck")}) 

A hyperstate is defined in this algorithm as a sequence of 
Booleans. 
structure Hyperstate 
  content as Seq of Boolean 
We define the distinguishing sequence to be a sequence of all the 
Boolean-indecomposable conditions that appear in the guards.  
class CHANGEDISC ... 
  GetHyperstate() as Hyperstate 
    h1 = doorIsOpen 

    h2 = trayHasDisc() 

    h3 = successors() = {}  

    h4 = predecessors()={} 

    h5 = isEmpty() 

    h6 = isFull() 

    h7 = doorIsStuck 

    return  
      Hyperstate([h1,h2,h3,h4,h5,h6,h7]) 

2.3 Coverage 
One can define various notions of coverage in terms of the 
generated FSM M, the ASM specification S, and the generated 
test suite. Although we will not go into details of any of the 
notions, since it is a separate topic all by itself, it is worth 
mentioning that there are in principle two different ways to 
measure coverage here. One is to look at the structure of M (as a 
directed graph) and the other is to look at the structure of S. The 
IUT itself is assumed to be a black box. In the first case, one may 
consider node coverage and link coverage. In the second case, 
one may consider statement coverage or branch coverage at the 
clause level of the action specs [1]. Several notions of structural 
ASM specification coverage are defined in [14]. 

3. FSM EXTRACTION FROM ASMS 
In this section, we concentrate on the finite state machine 
extraction problem. The extraction algorithm works with a given 
ASM spec and is itself described as an ASM. The algorithm keeps 
executing the actions of the given spec on concrete states of that 
spec and building up the transition graph as it goes. The end state 
of a new transition is added to the frontier if the transition is 
relevant in an appropriate technical sense; the start state of the 
transition is deleted from the frontier. Initially the frontier consists 
of the initial state. The algorithm terminates when the frontier 
becomes empty.  
Typically the state space is very large and you want to prune it as 
much as possible while reaching as many hyperstates as possible. 
This brings us to the problem of finding an adequate definition of 
relevance. First we show two relevance definitions that are the 
two extreme cases of a wide spectrum of possible relevance 
definitions, and we explain why these two definitions are 
problematic. Toward a solution of the relevance problem we 
introduce the notion of an improvement relation between states. 
Roughly, the improvement relation provides domain-specific 
knowledge for the algorithm to make better choices in pruning the 
search space. Using the improvement relation, we define a notion 
of relevance that is actually used in the algorithm. 
In general our algorithm may "under-approximate" the true FSM, 
that is some links or even nodes may be missing. In general, it 
takes an unreasonably liberal relevance condition to guarantee 
that the true FSM is constructed in full. We will return to this 
problem in Section 3.3. 
We now describe the algorithm in detail using AsmL. A test-state 
is the dynamic part of the full state of the spec. For brevity, we 
will often omit the "test" qualifier. States (that is test states) are 
naturally represented by AsmL structures.  
structure State 
Actions are identified by strings. 
structure Action 
  name as String 
The FSM generation algorithm operates the spec by means of a 
test harness  
class GenFSM 
  h as Harness 
The harness provides the initial state, the set of actions, a function 
that calculates (the index of) the hyperstate of a given state, and a 
method Fire that invokes a given action at a given state and 
returns a resulting state. There may be several possible resulting 
test states due to the nondeterminism of the spec. 
interface Harness 
  Initially() as State 
  Actions() as Set of Action 
  GetHyperstate(s as State) as Hyperstate 
  Fire(s as State, a as Action) as State 
The dynamic state of the GenFSM algorithm comprises the set of 
transitions that have been generated, initially empty; the frontier, 
a sequence of states to be traversed, initially containing only the 
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initial state; and the set of hyperstates that have been generated, 
initially containing only the hyperstate of the initial state.  
class GenFSM ... 
  var transitions  
    as Set of(State,Action,State) = {} 
  var frontier as Seq of State 
  var hypers as Set of Hyperstate 
The initialization of the frontier and hypers fields is given below. 
The method main is the entry point of the algorithm.  
class GenFSM ... 
  main() 

    step while frontier ne []  
        generate() 

The algorithm generates new transitions from the frontier states, 
handling one state and one action at a time. The AsmL statement 
explore e  produces a sequence of all possible return values of 
the expression e. It makes it possible to handle nondeterministic 
ASM specifications. In this case, explore is used to produce all 
the transitions that exist from a given state on a given action. 
class GenFSM ... 
  generate() 

    step 
      s = head(frontier) 

      frontier := tail(frontier) 

    step foreach a in h.Actions()  
      nextStates = explore h.Fire(s,a) 
      step foreach t in nextStates 
          transitions(s,a,t) := true 
          if relevant(s,a,t) then 
            frontier := frontier + [t] 

            hypers := hypers union  
                      {h.GetHyperstate(t)} 

3.1 Relevance 
The definition of relevant transition plays an important role in the 
algorithm. One possible definition of relevance (not the one that 
we will use) stipulates that a transition is relevant only if the 
hyperstate of the end state has not been encountered yet. This is 
clearly a minimal requirement. 
class GenFSM ... 
  relevant1(s as State,  
            a as Action,  
            t as State) as Boolean 
    return h.GetHyperstate(t) notin hypers 
The potential state explosion problem of the generated FSM is 
somewhat ameliorated by the fact that only reachable hyperstates 
are produced.  But the total number of reachable hyperstates may 
be also exponential in the length of the distinguishing sequence. 

The second definition of relevance (again, not the one that we will 
use) stipulates that a transition is relevant if the end state itself 
(rather than hyperstate) has not been encountered yet. With the 
second definition, the algorithm will not terminate unless the total 
number of reachable states is finite. If it does terminate the 
resulting FSM is the true FSM, no reachable state has been 
omitted. 
class GenFSM ... 
  relevant2(s as State,  
            a as Action,  
            t as State) as Boolean 
    //check if t has been encountered 

3.1.1 CHANGEDISC Example 
Recall the CHANGEDISC service specification in 2.2. A harness 
for it is given in the appendix.  
If we run a 30 slot version of the spec with relevant1 then we 
obtain 24 hyperstates. Many hyperstates are missing because the 
algorithm never discovers the ones where the CD player is full. If, 
on the other hand, we run the same 30 slot version with 
relevant2 then the state space explodes. See also Table 1 in 
this connection. 
The problem with relevant1 is quite general. In order to 
discover a new hyperstate, you may need new representatives of 
the hyperstates that have been encountered, but the relevance 
conditions forces you to discard all new representatives. This is 
related to the non-discovery problem discussed in Section 3.3. A 
partial but practically important solution of this problem is 
provided by the notion of improvement relation. 

3.2 Improvement Relations 
Consider a fixed specification. We want to use our domain-
specific knowledge about its state space to define the relevance 
condition. How can we do that? Typically there may be certain 
(more or less abstract) goals that we want to achieve. For 
example, in the case of the CD changer the goal may be that all 
the slots are occupied.  Given a goal, we want the algorithm to 
make progress towards that goal and thus discover new 
hyperstates. An appropriate improvement relation on states allows 
us to achieve that. When you encounter a new state, check 
whether it is an improvement toward the goal comparative to the 
old state. Improvement relations help us define appropriate 
relevance conditions. 
The GenFSM algorithm itself is independent of the particular 
improvement relations.  They are given by the harness. 
interface Harness ... 
  //returns true if t is  

  //an improvement over s toward the goal g 

  improved(s as State,  
           t as State, g as Goal) as Boolean 
  goals() as Set of Goal  //set of all goals 
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Now we are ready to give a useful relevance condition which we 
will use. A transition (s,a,t) is relevant if either t leads to a 
new hyperstate or else t is an improvement over the best state 
seen so far toward some goal. In the bestState map we keep 
track of the best state seen so far for each goal. 
 
class GenFSM ... 
  var bestState as Map of Goal to State  
  GenFSM(h1 as Harness)  //the constructor  
    h = h1 

    bestState = {g |-> h1.Initially() |  

                            g in h1.goals()} 
    frontier = [h1.Initially()] 
    hypers =  
      {h1.GetHyperstate(h1.Initially())} 

 

  relevant(s as State,  
           a as Action,  
           t as State) as Boolean 
    forall g in h.goals() where  
           h.improved(bestState(g),t,g) 

      bestState(g) := t 

    return  
      (h.GetHyperstate(t) notin hypers) or 
      (exists g in h.goals() where  
              h.improved(bestState(g),t,g)) 

3.2.1 CHANGEDISC Example Revisited 
We have a single goal to reach any state where the disc changer is 
full.  
enum Goal 
  DCisFull 

In order to define an appropriate improvement relation for that 
goal we use a weight function that gives the minimal distance to 
(that is the minimal number of actions required to reach) a state 
where the disc changer has no empty slots. 
class CDHARNESS implements Harness 
  goals() as Set of Goal  
    return {DCisFull} 
  improved(s as State,  
           t as State, g as Goal) as Boolean 
    return weight(t as CDState) <  
           weight(s as CDState) 
 

  weight(s as CDState) as Integer 
    free= size(slots)- size(s.occupiedSlots) 

    if s.doorIsOpen and  
       (s.currentSlot notin s.occupiedSlots)  

    then return 2 * free - 1 
    else return 2 * free 
When we run the 30 slot version of the algorithm with the 
relevance (called relevance3 in Table 1 below) given by this 
improvement relation, it produces 44 hyperstates and 531 links 
between hyperstates. Some more statistics for the disc changer 
example is found in Table 1. With the given improvement 
relation, we discover all hyperstates of the true FSM but only 
about 85% of the links. 
 

Table 1. Sizes of generated FSMs for the disc changer example  
with different # of slots and different relevance conditions. 

relevance1 relevance3 relevance2 
(true FSM) 

 

nodes links nodes links nodes links

1 slot 8 88 8 88 8 88 

2 slots 24 270 24 270 24 273 

3 slots 24 273 40 475 40 516 

4 slots 24 273 44 531 44 619 

>4 slots 24 273 44 531 44 625 

 

3.2.2 An Example with Multiple Goals 
Consider a spec with two actions inc and dec. There are two 
integer-valued state variables x and y with initial value 0. The inc 
action increments x by one and the dec action decrements y by 
one. The distinguishing sequence contains the conditions x=max 
and y=min where min is some negative number and max some 
positive number. The two obvious orthogonal goals are to reach a 
state satisfying the respective boundary condition. The definition 
of the improvement relation is obvious for both goals. 

3.3 Non-Discovery Problem: Undecidability 
and Complexity 
Even though the process described in the previous section works 
pretty well in practice, at least in our practice, the problem of 
extracting the true finite state machine is hard in general.   To 
make this claim more precise, we introduce several decision 
problems and prove that they all are hard. It is hard to discover 
hyperstates and it is hard to discover links. We refer to all these 
decision problems together as the non-discovery problem.   
Hyperstate reachability problem. 
Instance: A spec S, a distinguishing sequence b and an index h. 
Question: Is hyperstate h reachable? 
First link discovery problem. 
Instance: A spec S, a distinguishing sequence b, an action a, and 
an index h. 
Question: Is there an a-transition from any state s in the initial 
hyperstate to any state t in the hyperstate h? 
Here the initial hyperstate is the hyperstate of the initial state. 
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Second  link discovery problem. 
Instance: A spec S, a distinguishing sequence b, an action a, and 
an index h. 
Question: Is there an a-link from the initial hyperstate to 
hyperstate h?  In other words, is there an a-transition from a 
reachable state s in the initial hyperstate to any state t in h. 
The third and fourth link discovery problems are like the first and 
second, except that h is assumed to be reachable.  

Theorem 1 The five decision problems are all undecidable. 
Proof. First we assume that S has a unique action a: 

  if ¬(p(x1,..,xk) = 0) then R 
  if p(x1,..,xk) = 0 then Halt 
Here x1,...,xk are integer variables and p is a polynomial with 
integer coefficients.  In the initial state the integer vector x = 
(x1,..,xk) has the value 0 = (0,…,0).  The rule R transforms an 
integer vector x = (x1,..,xk) to an integer vector x' in such a way 
that the infinite sequence 

 0, 0', 0'', 0''', … 
contains every k-dimensional integer vector.  The distinguishing 
sequence b consists of one Boolean condition, namely 
p(x1,..,xk)=0, so that we have only two possible hyperstates.  
Finally let h be (the index of) the hyperstate where 
p(x1,..,xk)=0. 

It is known that there is no algorithm that, given a polynomial 
p(x1,..,xk) with integer coefficients and variables, decides 
whether p has a root [24].  This is the famous Diophantine 
Equation Problem.  By the construction above, it reduces to the 
first and second link discovery problems and to the hyperstate 
reachability problem, so these three problems are undecidable.  
To prove the undecidability of the third and fourth link discover 
problems, we extend the spec above by means of another action a' 
with spec 
 y := true 
The new distinguishing sequence consists of one Boolean 
condition  
 (p(x1,..,xk) = 0) or y 
Finally, h is the hyperstate where this condition holds. This 
hyperstate is reachable from the initial state by action a'. This 
gives us a reduction of the Diophantine Equation Problem to the 
second link discovery problem. QED 
The proof of Theorem 1 shows that the three decision problems 
remain undecidable even if the distinguishing sequence contains 
only one Boolean condition.   
Theorem 1 implies that there is no algorithm for constructing the 
true FSM unless we allow algorithms that may not terminate. In 
fact, the second relevance condition (the most liberal one) does 
allows us to extract the true ASM, but the resulting algorithm may 
not teminate. 
To prove a simple lower complexity bound, define the bounded 
version of any of the five decision problems by requiring that the 
variables of the given spec S are all Boolean and use the length of 
the distinguishing sequence as the size of the problem. 
Theorem 2 The bounded versions of the five decision problems 
are all  NP-hard. 

Proof. The proof is similar to the proof of Theorem 1 except that 
we use SAT, the satisfiability problem for propositional formulas 
rather than Diophantine Equation Problem.  We indicate the 
necessary changes. In the spec of a, replace p(x1,..,xk)=0 
with ϕ(u1,...,un) where u1,...,un are propositional 
variables and ϕ is a propositional formula. In the initial state, u1 
= ... = un = 0 (where 0 represents false).  R transforms a 
Boolean vector u into a Boolean vector u' in such a way that 
every n-dimensional Boolean vector occurs in the sequence 0, 0', 
0'', 0''', ….  QED 
Theorem 2 is sort of trivial because we write programs in AsmL 
which has bounded quantification, choice, etc. But Theorem 2 
remains true if we restrict attention to any language that expresses 
the program in the proof for each n. For example, we can use the 
language of sequential ASMs [19] where the only dynamic 
symbols are propositional variables (nullary relational symbols in 
terms of [19]).  We presume that any values of the propositional 
variables give rise to a legal (not necessarily reachable) state. In 
that case the actions are deterministic and the first link discovery 
problem is also in NP and thus NP complete. 

4. GENERATING A TEST SUITE 
The extraction algorithm produces a finite state machine. View 
the machine as a directed graph and mark each edge with the cost 
of executing the corresponding action at the corresponding 
hyperstate. You want to walk through the graph in a cheapest 
possible way traversing every edge at least once. That is the well 
known Chinese Postman Problem [17] that naturally arises in 
conformance testing [21][23]. The problem has an efficient 
solution in the case when the finite state machine is deterministic 
and strongly connected. 
In general, the deterministic case has been studied extensively in 
the literature and there exist several other methods for exploiting 
the structure of a deterministic FSM, see e.g. [28]. The most 
common of them is the transition-tour method, also known as the 
T-method, and one version of the T-method uses the Postman 
Tour. We have integrated an efficient Postman Tour algorithm 
[29] with our extraction algorithm.  

5. REALATED WORK 
As far as we know, the first automated technique for extracting 
FSMs from model-based specifications for the purpose of test 
case generation was introduced in [11]. The approach of [11] is 
based on a finite partitioning of the state space of the model using 
full disjunctive normal forms (full DNFs) of the conditions in the 
spec and is called the DNF approach. The modeling language 
used of [11] is VDM but the approach is more general. The DNF 
approach is extended in [20] and applied to Z specs where the 
explosion of the size of the partitioning is ameliorated by 
employing DNFs that are not necessarily full. While our partition 
of the state space is similar to that of the DNF approach, the two 
approaches are quite different. Most importantly, the DNF 
approach employs symbolic techniques while we execute the 
spec. Heuristics are used differently in the two approaches: in the 
DNF approach, heuristics are used as part of theorem proving, 
whereas we use heuristics to prune the search space. As far as the 
problem of scaling is concerned, the DNF approach suffers from 
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the explosion of terms. Besides, theorem proving is time-
consuming. In our approach, there is a trade-off between the 
computation time and how closely you approximate the true FSM. 
We can play with relevance conditions. A more restrictive 
condition gives quicker termination but leads to a more severe 
under-approximation. A more liberal condition leads to a better 
approximation but you may have to terminate the algorithm by 
force. 
Finite automaton based testing for object oriented software is 
introduced in [31]. Article [5] introduces techniques for 
"factoring" large, possibly nondeterministic, FSMs into smaller 
deterministic ones. Some of these techniques have been 
implemented in the KVEST tool [6]. 

In model checking, data abstraction is used to cope with state 
explosion. Typically your original model M is an FSM but it may 
be too large.  Data abstraction groups states of M and produces a 
reduced model Mr which is analogous to our true FSM.  Due to 
efficiency considerations, the standard data abstraction algorithms 
may yield an over-approximation of Mr; see [8]. Abstract 
interpretation based program testing is somewhat similar to but 
distinct from model checking; it also may lead to "the necessary 
over-approximation" [9]. In contrast, our approach may yield an 
under-approximation of the true FSM. 

Recall that the purpose of our FSM extraction algorithm is to 
produce an FSM that can be used for test case generation.  In 
general, the two main approaches for test case generation are 
those based on labeled transition systems (LTSs) and those based 
on finite state machines. A review of both approaches is given in 
[2]. In the following we look briefly at both. 

Conformance testing plays a central role in testing 
communication protocols where it is important to have a precise 
model of the observable behavior of the system. This has lead to a 
testing theory based on labeled transition systems. See an 
overview of the approach in [30] and an overview of related 
literature in [4]. Labeled transition systems are in general 
nondeterministic; the ability to deal with nondeterminism is a 
virtue of the LTS approach. Another virtue is compositionality. 
On the other hand, the FSM approach is able to exploit the FSM 
graph structure to produce test suites for the desired coverage. In 
the LTS approach, verification techniques can be used to deal 
with state explosion and to generate test cases. TGV [12] is an 
industrial tool that utilizes the LTS approach to generate test cases 
from SDL and Lotos specifications.  
FSM based testing was initially driven by problems arising in 
functional testing of hardware circuits. The theory has recently 
been adapted to the context of communication protocols. The bulk 
of the work in this area has dealt with deterministic FSMs. See 
[22][28] for comprehensive surveys and [25] for an overview of 
the literature. The Extended Finite State Machine (EFSM) 
approach has been introduced mainly to cope with the state 
explosion problem of the FSM approach. Typically the problem 
arises when the system to be modeled has variables with values in 
large, even infinite, domains, for example integers. In an EFSM, 
such variables are allowed, and the transitions may depend on and 
update their values. See [3][7][22]. In EFSMs, the control part is 
finite and is separated from the data part, which distinguishes 
them from ASMs. An interesting problem in our FSM generation 
algorithm is to fiddle with the hyperstates in order to avoid 

nondeterminism in the resulting FSM. This problem is related to 
the stabilization problem of EFSMs that is addressed in [7]. The 
inability to directly deal with nondeterminism is the main 
drawback of the FSM based approaches.  
More work related to finite state machine based software testing 
can be found on the homepage of Model-Based Testing [27]. 

6. FUTURE WORK 
Here are some but definitely not all problems to be addressed. 

• We discussed above the problem of non-discovery of 
hyperstates and links. We are currently investigating 
other methods, in addition to the method of 
improvement relations, to get better approximations of 
the true FSM. 

• An important issue that we haven't dealt with in this 
paper is state explosion that arises from joining several 
independent ASM specs into one.  

• In this paper, we have assumed that the action programs 
do not take parameters. One possible approach to 
solving this problem builds on grouping the values of 
parameters according to the guards (or to the 
constituents of guards). 

• How to best deal with nondeterminism in the generated 
FSM is another open issue that has consequences 
regarding the applicability of known FSM based test 
case generation techniques. Sometimes nondeterminism 
can be avoided by fiddling with the definition of 
hyperstates. The nondeterminism problem does in 
general not arise in the LTS approach. A generalization 
of the LTS approach to ASMs seems promising. 
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APPENDIX 
Helper functions of the CHANGEDISC model. 
class CHANGEDISC ... 
  emptySlots() as Set of Integer  
    return allSlots difference occupiedSlots 
  successors()  as Set of Integer 
    return {e | e in occupiedSlots  
                where e gt currentSlot} 
  predecessors() as Set of Integer 
    return {e | e in occupiedSlots  
                where e lt currentSlot} 
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  isEmpty() as Boolean 
    return occupiedSlots = {} 
 

  isFull() as Boolean 
    return occupiedSlots = allSlots 
  isClosedAndStuck() as Boolean  
    return doorIsStuck and not doorIsOpen 
  isOpenAndStuck() as Boolean  
    return doorIsStuck and doorIsOpen 
  //return the maximum element from a set  

  setmax(s as Set of Integer) as Integer 
    return the e | e in s where  
               (forall d in s holds e gte d) 
  //return the minimum element from a set 

  setmin(s as Set of Integer) as Integer  
    return the e | e in s where  
               (forall d in s holds e lte d) 
The following rule stipulates that only one of the arising errors is 
reported; the choice of error to report is left to the 
implementation. 
class CHANGEDISC ...  
  ReportAnyError(errs as  
                 Set of (Boolean,String)) 
    choose (true, err) in errs 
      result := ERR(err) 

Remaining 8 UPnP actions. 
class CHANGEDISC ... 
  NextDisc() 

    if not(isEmpty() or  
           isOpenAndStuck()) then 
      doorIsOpen := false 
      if successors() ne {} then  
        currentSlot := setmin(successors()) 

      else  
        currentSlot := setmin(occupiedSlots) 

    else 
      ReportAnyError({(isEmpty(),"empty"), 

               (isOpenAndStuck(),"stuck")}) 

  PrevDisc() 

    if not(isEmpty() or  
           isOpenAndStuck()) then 
      doorIsOpen := false 
      if predecessors() ne {} then  
        currentSlot:= setmax(predecessors()) 

      else  
        currentSlot:= setmax(occupiedSlots) 

    else 
      ReportAnyError({(isEmpty(),"empty"), 

               (isOpenAndStuck(),"stuck")}) 

  RandomDisc() 

    if not (isEmpty() or  
            isOpenAndStuck()) then 
      doorIsOpen := false 
      choose slot in occupiedSlots 
        currentSlot := slot 

    else 
      ReportAnyError({(isEmpty(),"empty"), 

               (isOpenAndStuck(),"stuck")}) 

  OpenDoor() 

    if not isClosedAndStuck() then  
      doorIsOpen := true 
    else 
      result := ERR("stuck") 

  CloseDoor() 

    if not isOpenAndStuck() then  
      doorIsOpen := false 
    else 
      result := ERR("stuck") 

  ToggleDoor() 

    if not doorIsStuck then  
      doorIsOpen := not doorIsOpen 
    else 
      result := ERR("stuck") 

  HasTrayDisc() 

    result := BOOL(trayHasDisc()) 

  IsDoorOpen() 

    result := BOOL(doorIsOpen) 

The remaining two actions specify the possible behavior of the 
external environment. First one says that if the door is open then 
the disc can either be removed from the tray or placed on the tray. 
The second one specifies that the door may get stuck or unstuck. 
class CHANGEDISC ...  
  ToggleDiscOnTray() 

    if doorIsOpen then  
      if trayHasDisc() then  
        occupiedSlots(currentSlot) := false 
      else 
        occupiedSlots(currentSlot) := true 
  ToggleDoorStuck() 
    doorIsStuck := not doorIsStuck 
The test state is defined as follows. 
structure CDState extends State 
  occupiedSlots as Set of Integer 
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  currentSlot as Integer 
  doorIsOpen as Boolean 
  doorIsStuck as Boolean 
  result as RESULT 
The following extensions of the CHANGEDISC spec are needed 
below to set the test state, to get the test state and to dispatch on 
named actions.  
class CHANGEDISC ... 
  GetState() as State  
    return CDState(occupiedSlots,  
                   currentSlot, 

                   doorIsOpen, doorIsStuck,  

                   result) as State 
  SetState(s as State)  
    s1 = s as CDState 
    occupiedSlots := s1.occupiedSlots 

    currentSlot := s1.currentSlot 

    doorIsOpen := s1.doorIsOpen 

    doorIsStuck := s1.doorIsStuck 

    result := s1.result 

  Fire(a as Action) 
    match a.name 
      "AddDisc"         : AddDisc() 

      "NextDisc"        : NextDisc() 

      "PrevDisc"        : PrevDisc() 

      "RandomDisc"      : RandomDisc() 

      "OpenDoor"        : OpenDoor() 

      "CloseDoor"       : CloseDoor() 

      "ToggleDoor"      : ToggleDoor() 

      "HasTrayDisc"     : HasTrayDisc() 

      "IsDoorOpen"      : IsDoorOpen() 

      "ToggleDiscOnTray": ToggleDiscOnTray() 

      "ToggleDoorStuck" : ToggleDoorStuck() 

  Actions() as Set of Action 
    names = {"AddDisc", "NextDisc",  

             "PrevDisc", "RandomDisc",  

             "OpenDoor", "CloseDoor",  

             "ToggleDoor", "HasTrayDisc", 

             "IsDoorOpen",  

             "ToggleDiscOnTray",  

             "ToggleDoorStuck"} 

    return {Action(n) | n in names} 
Using the above definitions we can implement the rest of the 
required harness as follows. 
class CDHARNESS ... 
  slots as Set of Integer 
  CDHARNESS(MaxSlot as Integer) 

    slots = {1..MaxSlot} 

  Initially() as State 
    cd as CHANGEDISC = new CHANGEDISC(slots) 
    return cd.GetState() 
  Actions() as Set of Action 
    cd as CHANGEDISC = new CHANGEDISC(slots) 
    return cd.Actions() 
  Fire(s as State, a as Action) as State 
    cd as CHANGEDISC = new CHANGEDISC(slots)  
    step 
      cd.SetState(s) 

    step 
      cd.Fire(a) 

    step 
      return cd.GetState() 
  GetHyperstate(s as State) as Hyperstate 
    cd as CHANGEDISC = new CHANGEDISC(slots) 
    step 
      cd.SetState(s) 

    step 
      return cd.GetHyperstate() 
The following is the entry point to execute the FSM generation 
algorithm with the CHANGEDISC harness. It prints out the 
number of hyperstates and the number of links between them. 
run() 

  step  
    writeln("Input nr of slots.") 

    write(">") 

    MaxSlot = readln() //read a nr of slots 

  step 
    cd = new CDHARNESS(asInteger(MaxSlot)) 
  step 
    genfsm = new GenFSM(cd as Harness) 
    if genfsm = undef then  
      throw SearchFailureException() 
  step 
    genfsm.main() 

  step 
    nodes = genfsm.hypers 

    links =  

      {(cd.GetHyperstate(s),a, 

        cd.GetHyperstate(t)) |  

           (s,a,t) in genfsm.transitions} 
    writeln("nr of nodes = " +  

            asString(size(nodes)) + "\n" + 

            "nr of links = " +  

            asString(size(links))) 
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