
Reclaiming Space from Duplicate Files in a Serverless Distributed File System

John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, Marvin Theimer

Microsoft Research
{johndo, adya, bolosky, dansimon, theimer}@microsoft.com

Abstract
The Farsite distributed file system provides availability by
replicating each file onto multiple desktop computers.
Since this replication consumes significant storage space,
it is important to reclaim used space where possible.
Measurement of over 500 desktop file systems shows that
nearly half of all consumed space is occupied by duplicate
files. We present a mechanism to reclaim space from this
incidental duplication to make it available for controlled
file replication. Our mechanism includes 1) convergent
encryption, which enables duplicate files to coalesced into
the space of a single file, even if the files are encrypted
with different users’ keys, and 2) SALAD, a Self-
Arranging, Lossy, Associative Database for aggregating
file content and location information in a decentralized,
scalable, fault-tolerant manner. Large-scale simulation
experiments show that the duplicate-file coalescing system
is scalable, highly effective, and fault-tolerant.

1. Introduction

This paper addresses the problems of identifying and
coalescing identical files in the Farsite [8] distributed file
system, for the purpose of reclaiming storage space
consumed by incidentally redundant content. Farsite is a
secure, scalable, serverless file system that logically
functions as a centralized file server but that is physically
distributed among a networked collection of desktop
workstations. Since desktop machines are not always on,
not centrally managed, and not physically secured, the
space reclamation process must tolerate a high rate of
system failure, operate without central coordination, and
function in tandem with cryptographic security.

Farsite’s intended purpose is to provide the advantages
of a central file server (a global name space, location-
transparency, reliability, availability, and security) without
the attendant disadvantages (additional expense, physical
plant, administration, and vulnerability to geographically
localized faults). It provides high availability and
reliability – while executing on a substrate of inherently
unreliable machines – primarily through a high degree of
replication of both file content and directory infrastructure.
Since this deliberate and controlled replication causes a
dramatic increase in the space consumed by the file
system, it is advantageous to reclaim storage space due to
incidental and erratic duplication of file content.

Since the disk space of desktop computers is mostly
unused [13] and becoming less used over time [14],

reclaiming disk space might not seem to be an important

issue. However, Farsite (like most peer-to-peer systems

[32]) relies on voluntary participation of the client

machines’ owners, who may be reluctant to let their

machines participate in a distributed file system that
substantially reduces the disk space available for their use.

Measurements [8] of 550 desktop file systems at

Microsoft show that almost half of all occupied disk space

can be reclaimed by eliminating duplicate files from the

aggregated set of multiple users’ systems. Performing this

reclamation in Farsite requires solutions to four problems:
1) Enabling the identification and coalescing of

identical files when these files are (for security reasons)

encrypted with the keys of different users.

2) Identifying, in a decentralized, scalable, fault-

tolerant manner, files that have identical content.
3) Relocating the replicas of files with identical

content to a common set of storage machines.

4) Coalescing the identical files to reclaim storage

space, while maintaining the semantics of separate files.

The latter two of these problems are addressed by a

file-replica-relocation system [14] and the Windows®
2000 [34] Single-Instance Store (SIS) [7], which are

described in other publications. In the present paper, we

describe the first two problems’ solutions: 1) convergent

encryption, a cryptosystem that produces identical

ciphertext files from identical plaintext files, irrespective

of their encryption keys and 2) SALAD, a Self-Arranging,
Lossy, Associative Database for aggregating and

analyzing file content information. Collectively, these

components are called the Duplicate-File Coalescing

(DFC) subsystem of Farsite.

The following section briefly describes the Farsite
system. Section 3 explains convergent encryption, and

Section 4 describes the steady-state operation of SALAD.

Section 5 shows results from large-scale simulation

experiments using file content data collected from a set of

585 desktop file systems. Section 6 discusses related

work, and Section 7 concludes.
In an extended version of this paper [15], we also prove

the security of convergent encryption, describe the

maintenance of SALAD as machines join and leave the

system, and present additional simulation results.

2. Background – the Farsite file system

Farsite [8] is a scalable, serverless, distributed file
system under development at Microsoft Research. It

provides logically centralized file storage that is secure,

reliable, and highly available, by federating the distributed

storage and communication resources of a set of not-fully-

trusted client computers, such as the desktop machines of

a large corporation. These machines voluntarily
contribute resources to the system in exchange for the

ability to store files in the collective file store. Every

participating machine functions not only as a client device

for its local user but also both as a file host – storing

replicas of encrypted file content on behalf of the system –

and as a member of a directory group – storing metadata
for a portion of the file-system namespace.

Data privacy in Farsite is rooted in symmetric-key and

public-key cryptography [27], and data reliability is rooted

in replication. When a client writes a file, it encrypts the

data using the public keys of all authorized readers of that

file, and the encrypted file is replicated and distributed to a
set of untrusted file hosts. The encryption prevents file

hosts from unauthorized viewing of the file contents, and

the replication prevents any single file host from

deliberately (or accidentally) destroying a file. Typical

replication factors are three or four replicas per file [8, 14].
The integrity of file content and of the system

namespace is rooted in replicated state machines that

communicate via a Byzantine-fault-tolerant protocol [11].

Directories are apportioned among groups of machines.

The machines in each directory group jointly manage a

region of the file-system namespace, and the Byzantine
protocol guarantees that the directory group operates

correctly as long as fewer than one third of its constituent

machines fail in any arbitrary or malicious manner. In

addition to maintaining directory data and file metadata,

each directory group also determines which file groups

store replicas of the files contained in its directories, using
a distributed file-replica-placement algorithm [14].

For security reasons, machines communicate with each

other over cryptographically authenticated and secured

channels, which are established using public-key

cryptography. Therefore, each machine has its own
public/private key pair (separate from the key pairs held

by users), and each machine computes a large (20-byte)

unique identifier for itself from a cryptographically strong

hash of its public key. Since the corresponding private

key is known only by that machine, it is the only machine

that can sign a certificate that validates its own identifier,
making machine identifiers verifiable and unforgeable.

Each directory group needs to determine which of the

files it manages have contents that are identical to other

files that may be managed by another directory group.

Each file host needs to be able to coalesce identical files

that it stores, even if they have been encrypted separately.

3. Convergent encryption

If Farsite were to use a conventional cryptosystem to
encrypt its files, then two identical files encrypted with

different users’ keys would have different encrypted

representations, and the DFC subsystem could neither

recognize that the files are identical nor coalesce the

encrypted files into the space of a single file, unless it had

access to the users’ private keys, which would be a
significant security violation. Therefore, we have

developed a cryptosystem – called convergent encryption

– that produces identical ciphertext files from identical

plaintext files, irrespective of their encryption keys.

To encrypt a file using convergent encryption, a client

first computes a cryptographically strong hash of the file
content. The file is then encrypted using this hash value as

a key. The hash value is then encrypted using the public

keys of all authorized readers of the file, and these

encrypted values are attached to the file as metadata.

Formally, given a symmetric-key encryption function E, a

public-key encryption function F, a cryptographic hash
function H, and a public/private key pair (Ku, K΄u) for each

user u in a set of users Uf of file f, convergently encrypted

file ciphertext Cf is a ·data, metadataÒ tuple given by

function Χ applied to file plaintext Pf:

 () fffKf cPC
u

Μ=Χ= ,
 (1)

Where the file data ciphertext cf is the encryption of the

file data plaintext, using the plaintext hash as a key:

 ()()
fPHf PEc

f
=

 (2)

And the ciphertext metadata Μf is a set of encryptions of

the plaintext hash, using the users’ public keys:

 ()(){ }ffKuuf UuPHF
u

∈∧=∋=Μ µµ (3)

Any authorized reader u can decrypt the file by decrypting

the hash value with the reader’s private key K΄u and then

decrypting the file content using the hash as the key:

 () ()()
fFfKf cECP

uuKu
µ′

−
−

′
−

=Χ= 1
11 (4)

Because the file is encrypted using its own hash as a key,

the file data ciphertext cf is fully determined by the file
data plaintext Pf. Therefore, the DFC subsystem, without

knowledge of users’ keys, can 1) determine that two files

are identical and 2) store them in the space of a single file

(plus a small amount of space per user’s key).

Convergent encryption deliberately leaks a controlled

amount of information, namely whether or not the
plaintexts of two encrypted messages are identical. In the

extended version of this paper [15], we prove a theorem

stating that we are not accidentally leaking more

information than we intend. Formally, the theorem states:

Theorem: Given ciphertext c, there exists no program
Σ of length O(nε) that can output plaintext P with

probability Ω(1/nε) for any fixed ε, unless the attacker can

a priori output P with probability Ω(1/n2ε).

4. Identifying duplicate files – SALAD

Convergent encryption enables identical encrypted files
to be recognized as identical, but there remains the

problem of performing this identification across a large

number of machines in a robust and decentralized manner.

We solve this problem by storing file location and content

information in a distributed data structure called a SALAD:

a Self-Arranging, Lossy, Associative Database. For
scalability, the file information is partitioned and dispersed

among all machines in the system; and for fault-tolerance,

each item of information is stored redundantly on multiple

machines. Rather than using central coordination to

orchestrate this partitioning, dispersal, and redundancy,

SALAD employs simple statistical techniques, which have
the unintended effect of making the database lossy. In our

application, a small degree of lossiness is acceptable, so

we have chosen to retain the (relative) simplicity of the

system rather than to include additional machinery to

rectify this lossiness.

4.1. SALAD record storage overview

Logically, a SALAD appears to be a centralized

database. Each record in the database contains

information about the location and content of one file. To
add a new record to the database, a machine first computes

a fingerprint of a file by hashing the file’s (convergently

encrypted) content and prepending the file size to the hash

value. It then constructs a ·key, valueÒ record in which the
key is the file’s fingerprint and the value is the identifier

of the machine where the file resides, and it inserts this

record into the database. The database is indexed by

fingerprint keys, so it can be associatively searched for

records with matching fingerprints, thereby identifying

and locating files with (probably) identical contents.
(With 20-byte hash values, the probability that a set of F

files contains even one pair of same-sized non-identical

files with the same hash value is F / 220 â 8 / 2 ≈ F â 10–24.)

Physically, the database is partitioned among all
machines in the system. Within the context of SALAD,

each machine is called a leaf (akin to a leaf in a tree data

structure). Each record is stored in a set of local databases

on zero or more leaves.

Leaves are grouped into cells, and all leaves within any

given cell are responsible for storing the same set of
records. Records are sorted into buckets according to the

value of the fingerprint in each record. Each bucket of

records is assigned to a particular cell, and all records in

that bucket are stored redundantly on all leaves within the

cell, as illustrated in Fig. 1. The number of cells grows

linearly with the system size, and since the number of files
also grows linearly with the system size, the expected

number of records stored by each leaf is constant.

A SALAD has two configuration parameters: its target

redundancy factor Λ and its dimensionality D. Since each

record is stored redundantly on all leaves in a particular

cell, the degree of storage redundancy is equal to the mean

number of leaves per cell. This value is known as the
actual redundancy factor λ, and it is bounded (via the

process described in Subsection 4.2) by the inequality:

 Λ<≤Λ 2λ (5)

For large systems, it is inefficient for each leaf to maintain

a direct connection to every other leaf, so the leaves are

organized (via the process described in Subsection 4.3)
into a D-diameter directed graph. Each record is passed

from leaf to leaf along the edges of the graph until, after at

most D hops, it reaches the appropriate storage leaves.

4.2. SALAD partitioning and redundancy

The target redundancy factor Λ is combined with the

leaf count L (the count of leaves in the SALAD, also

called the system size) to determine a cell-ID width W, as

follows (where the notation “lg” means binary logarithm):

 






Λ
=

L
W lg (6)

As described in Section 2 above, each leaf has a large

(20-byte), unique identifier i. The least-significant W bits

of a leaf’s identifier or a record’s fingerprint form a value

called the cell-ID of that leaf or record. (For convenience,
we sometimes use the term “identifier” to mean either a

leaf’s identifier or a record’s fingerprint.) Formally, the

cell-ID of identifier i is given by:

 () W
iic 2mod= (7)

Two identifiers are cell-aligned if their cell-ID values are

equal. Cell-aligned leaves share the same cell, and records

are stored on leaves with which they are cell-aligned, as

illustrated in Fig. 1.

cell-ID = 00 cell-ID = 01 cell-ID = 10 cell-ID = 11

– leaf – file record – cell – bucket

(machine)

Fig. 1: Buckets of records in cells of leaves

Before introducing the dimensionality parameter D, we

describe the simplest SALAD configuration, in which D =

1, as in the example of Fig. 1. Each leaf in the SALAD
maintains an estimate of the system size L. From this, it

calculates W according to Eq. 6, and it computes cell-ID

values for each leaf in the system (including itself)

according to Eq. 7. Then, for each of its files, it hashes the

file’s content, creates a fingerprint record, and computes a

cell-ID for the record. The leaf then sends each record to
all leaves that it believes to be cell-aligned with the record.

When each leaf receives a record, it stores the record if it

considers itself to be cell-aligned with the record.

This example illustrates the statistical partitioning,

redundancy, and lossiness of record storage. With no

central coordination, records are distributed among all
leaves, and records with matching fingerprints end up on

the same set of leaves, so their identicality can be detected

with a purely local search. Since machine identifiers and

file content fingerprints are cryptographic hash values,

they are evenly distributed, so the number of leaves on

which each record is stored is governed by a Poisson
distribution [21] with a mean of λ. Therefore, with

probability e–λ, a record will not be stored on any leaf.

Note that if two leaves have different estimates of the

system size L, they may disagree about whether they are

cell-aligned. However, this disagreement does not cause
the SALAD to malfunction, only to be less efficient. If a

leaf underestimates the system size, it may calculate an

undersized cell-ID width W. With fewer bits in each cell-

ID, cell-IDs are more likely to match each other, so the

leaf may store more records than it needs to, and it may

send records to leaves that don’t need to receive them. If a
leaf overestimates the system size, it may calculate an

oversized cell-ID width W, which causes cell-IDs to be

less likely to match each other, so the leaf may store fewer

records than it needs to, and it may not send records to

leaves that should receive them. Thus, an underestimate

of L increases a leaf’s workload, and an overestimate of L
increases a leaf’s lossiness.

Given F files in the system, the mean count of records

stored by each leaf is R, calculated as follows:

L

F
R λ=

 (8)

Since F µ L and λ < 2 Λ, R remains constant as the

system size grows.

4.3. SALAD multi-hop information dispersal

Cells in a SALAD are organized into a D-dimensional

hypercube. (Technically, it is a rectilinear hypersolid,

since its dimensions are not always equal, but this term is

cumbersome.) Coordinates in D-dimensional hyperspace
are given with respect to D Cartesian axes. In two- or

three-dimensional spaces, it is common to refer to these

axes as the x-axis, y-axis, and z-axis, but for arbitrary

dimensions, it is more convenient to use numbers instead

of letters, so we refer to the 0-axis, the 1-axis, and so forth.

Each cell-ID is decomposed into D coordinates, as
illustrated in Fig. 2. Successive bits of each coordinate are

taken from non-adjacent bits in the cell-ID so that when

the system size L grows and the width of each coordinate

consequently increases, the value of each coordinate

undergoes minimal change. A cell’s location within the
hypercube is determined by the coordinates of its cell-ID.

For example, in Fig. 2a, a leaf with the shown identifier

has cell coordinates c0 = 6 (1102) and c1 = 1 (012).

Formally, for 0 ≤ d < D, the bit width Wd of the d-axis

coordinate of an identifier is given by:

 




 −
=

D

dW
W

d

 (9)

The d-axis coordinate of identifier i is defined by the

following formula (where the notation bn(i) indicates the

value of bit n in identifier i, and bit 0 is the LSB), which
merely formalizes the procedure illustrated in Fig. 2:

 () ()∑
−

=

+⋅
=

1

0

2

d
W

k

dkD

k

d
ibic

 (10)

Fig. 3 shows an example two-dimensional SALAD

from the perspective of the black leaf. (Communication

paths not relevant to the black leaf are omitted from this
figure.) We refer to a row of cells that is parallel to any

one of the Cartesian axes as a vector of cells. Two

identifiers are d-vector-aligned if they are both in a vector

of cells that runs parallel to the d-axis. This means that at

least D – 1 of their coordinates match, but their d-axis

coordinates might not. Formally:

 () () ()[]jcicdkkjia
kkd

=→≠∀≡,
 (11)

Identifiers are vector-aligned if they share any vector of
cells. Thus, they are d-vector-aligned for some d, like

leaves A and C in Fig. 3, but unlike A and E. Formally:

 () ()[]jiadjia
d

,, ∃≡ (12)

0

() 20−W

c1: c0:

identifier or

fingerprint:

() 21−W

1 1 0 1 0 0

0 1 1 0 1

W

coordinates:

(a)

W

c0: c2:

() 31−W

c1:

() 32−W () 30−W

0 1 1 0 1 0 0

0 1 1 0 1

identifier or

fingerprint:

coordinates:

(b)

Fig. 2: Example extraction of cell-ID and coordinates from an identifier when (a) D = 2, (b) D = 3

Each leaf maintains a leaf table of all leaves that are

vector-aligned with it, and these are the only leaves with
which it communicates. The expected count of leaves in

each vector is λ (L/λ)1/D, so the mean leaf table size is T:

 () DDD

LDDLDT
1111

−

≈+−= λλλλλ (13)

This is not very large. With L = 10,000, λ = 3, and D = 2,

the mean leaf table size is about 350 entries.

After a new file record is generated, it makes its way

through the salad by moving in one Cartesian direction per
step, until after a maximum of D hops, it reaches leaves

with which it is cell-aligned. A leaf performs the same set

of steps either to insert a new record of its own into the

SALAD or to deal with a record it receives from another

leaf: In outline, each leaf determines the highest

dimension d in which all of the (less-than-d)-axis
coordinates of its own identifier equal those of the

record’s fingerprint. If d < D, then it forwards the

fingerprint record along its d-axis vector to those leaves

whose d-axis coordinates equal that of the record’s

fingerprint. After a maximum of D such hops, the

fingerprint record will reach leaves that are cell-aligned
with the fingerprint. When a leaf receives a cell-aligned

record, the leaf stores the record in its local database,

searches for records whose fingerprints match the new

record’s fingerprint, and notifies the appropriate machines

if any matches are found.
For example, when D = 2, cells are organized into a

square (a two-dimensional hypercube), and each leaf has

entries in its leaf table for other leaves that are either in its

horizontal vector or in its vertical vector. In Fig. 3, the

black leaf has (binary) cell-ID wxyz = 0110, and its

coordinates are c0 = xz = 10 and c1 = wy = 01. Thus, it
knows other leaves with cell-IDs w1y0 or 0x1z, for any

values of w, x, y, and z. (The figure shows directed

connections to these known leaves via black arrows.)

When the black leaf generates a record for one if its
files, there are three cases: 1) If the record’s cell-ID
equals 0110, the leaf stores the record in its own database
and sends it to the one other leaf in its cell, leaf A. 2) If
the fingerprint cell-ID is w1y0 for wy ≠ 01, then the 0-axis
coordinates are equal but the 1-axis coordinates are not, so
the black leaf sends the record along its 1-axis (horizontal)
vector to leaves whose cell-ID equals w1y0. For example,
if the fingerprint cell-ID is 1100, it is sent directly to leaf
B. 3) If the fingerprint cell-ID is wxyz for xz ≠ 10, then the
0-axis coordinates are not equal, so the black leaf sends
the record along its 0-axis (vertical) vector to leaves
whose cell-ID equals 0x1z. In this third case, if the
fingerprint’s 1-axis coordinate wy does not equal 01, then
the recipient leaves will forward the record (horizontally,
via the gray paths in the figure) to the appropriate leaves.
For example, if the fingerprint cell-ID is 1010, it is sent to
leaves C and D, who each forward it to leaf E.

Adding hops to the propagation of fingerprint records
increases the system’s lossiness. For a two-dimensional
SALAD, a record will not be stored if it is not sent to any
leaf on either the first or the second hop. When the system
size L is very large, nearly all records require two hops, so
the loss probability approaches 1 – (1 – e–λ)2 ≈ 2 e–λ. In
general, the loss probability for a D-dimensional salad is:

 () λλ −−

≈−−= eDeP
D

11
loss

 (14)

For example, with λ = 3 and D = 2, Ploss ≈ 10%.

4.4. SALAD maintenance

There are three aspects to maintaining a SALAD:
Adding new leaves, removing dead leaves, and
maintaining each leaf’s estimate of the leaf count L. Due
to space limitations, these procedures are not described in
detail in this publication, but they are detailed in the
extended version of this paper [15]. This subsection
presents a brief overview of these operations.

Each leaf is supposed to know all other leaves with
which it is vector-aligned. Thus, when a machine is added
to a SALAD as a new leaf, it needs to learn of all leaves
that are vector-aligned with its identifier so it can add
them to its leaf table, and these leaves need to add the new
leaf to their leaf tables. The machine first discovers one or
more arbitrary leaves in the SALAD by some out-of-band
means (e.g. piggybacking on DHCP [1]). If the machine
cannot find any extant leaves, it starts a new SALAD with
itself as a singleton leaf. If the machine does find one or
more leaves in a SALAD, it sends each of them a join
message, and each of these messages is forwarded along D
independent pathways of the hypercube until it reaches
leaves that are vector-aligned with the new leaf’s
identifier. These vector-aligned leaves send welcome
messages to the new leaf, which replies with welcome-
acknowledge messages. These two types of messages
cause the recipient to add an entry to its leaf table and to
update its estimate of the system size L.

wy = 00 wy = 01 wy = 10 wy = 11

xz = 01

xz = 00

xz = 10

xz = 11

1-axis

0-axis

E

B

A

C

D

Fig. 3: SALAD from black leaf’s perspective (D=2)

A new leaf must explicitly notify the SALAD that it

wants to join, but a leaf can depart without notice,

particularly if its departure is due to permanent machine
failure. Thus, the SALAD must include a mechanism for

removing stale leaf table entries. We employ the standard

technique [e.g. 16] of sending periodic refresh messages

between leaves, and each leaf flushes timed-out entries in

its leaf table. In addition, a leaf that cleanly departs the

SALAD sends explicit departure messages to all of the
leaves in its leaf table.

SALAD leaves use an estimate of the system size L to

determine an appropriate value for the cell-ID width W.

Since each leaf knows only the leaves for which it has

entries in its leaf table, it has to estimate L based on the

size T of its leaf table. The expected relationship between
T and L is given by Eq. 13, so the leaf effectively inverts

this equation. The actual procedure is a little more

complicated, because a change to the estimated value of L

can cause a change to the value of W, which in turn can

cause leaves to be added to or removed from the leaf table,

changing the value of T. To prevent instability, the system
employs hysteresis by using two different values of the

target redundancy factor: a larger value for increases to the

estimate of L, and a smaller value for decreases thereto.

4.5. SALAD attack resilience

If SALAD were designed such that its leaves

cooperatively determine the ranges of fingerprints that

each leaf stores, it might be possible for a set of malicious

leaves to launch a targeted attack against a particular range

of values, by arranging for themselves to be the designated
record stores for this range. However, because of the

SALAD’s purely statistical construction, such an attack is

greatly limited: Each leaf determines its fingerprint range

independently from the ranges of all other leaves, so the

most damage a malicious leaf can do is to decrease the
overall redundancy of the system.

For D > 1, it is possible to target an attack, but only in a

fairly weak way. By choosing their own identifiers to be

vector-aligned with a victim leaf, a set of m malicious

leaves can increase the size of the victim’s leaf table,

thereby increasing its system size estimate L, which
increases the leaf’s lossiness as described at the end of

Subsection 4.2. The effective redundancy factor λ΄ for the

victim leaf’s records will be:

D

L

m








−=′ 1λλ (15)

Thus, not only does increasing a SALAD’s

dimensionality increase the loss probability for a given

redundancy factor (Eq. 14), but also it increases the

susceptibility of the system to attack. We therefore
suggest constructing a SALAD with a dimensionality no

higher than that needed to achieve leaf tables of a

manageably small size.

5. Simulation evaluation

Since the current implementation of Farsite is not
complete or stable enough to run on a corporate network,

we evaluated the DFC subsystem via large-scale

simulation using file content data collected from 585

desktop file systems. We distributed a scanning program

to a randomly selected set of Microsoft employees and

asked them to scan their desktop machines. The program
computed a 36-byte cryptographically strong hash of each

64-Kbyte block of all files on their systems, and it

recorded these hashes along with file sizes and other

attributes. The scanned systems contain 10,514,105 files

in 730,871 directories, totaling 685 GB of file data. There

were 4,060,748 distinct file contents totaling 368 GB of
file data, implying that coalescing duplicates could ideally

reclaim up to 46% of all consumed space.

We ran a two-dimensional DFC system on 585

simulated machines, each of which held content from one

of the scanned desktop file systems. The SALAD was

initialized with a single leaf, and the remaining 584
machines were each added to the SALAD by the

procedure outlined in Subsection 4.4. We recorded the

sizes of each machine’s leaf table and fingerprint database,

as well as the number of messages exchanged.

By setting a threshold on the minimum file size eligible
for coalescing, we can substantially reduce the message

traffic and fingerprint database sizes. Fig. 4 shows the

consumed space in the system versus this minimum size.

The effect on space consumption is negligible for

thresholds below 4 Kbytes. This figure also shows that a

target redundancy factor of Λ = 2.5 achieves nearly all
possible space reclamation.

We tested the resilience of the DFC system to machine

failure by randomly failing the simulated machines. Fig. 5

shows the consumed space versus machine failure

probability. With Λ = 2.5, even when machines fail half

of the time, the system can still reclaim 38% of used
space, comparing favorably to the optimal value of 46%.

0

100

200

300

400

500

600

700

800

1 8

6
4

5
1
2

4
K

3
2
K

2
5
6
K

2
M

1
6
M

1
2
8
M

1
G

minimum file s ize for coalescing (bytes)

c
o
n
s
u
m
e
d
 s
p
a
c
e
 (
G
B
)

ideal Λ = 1.5 Λ = 2 Λ = 2.5

Fig. 4: Consumed space vs. minimum file size

For our final experiment, we started with a singleton

SALAD and incrementally increased the system size up to
10,000 simulated machines. Fig. 6 shows the mean leaf

table size versus system size. The square-root relationship

predicted by Eq. 13 is evident in these curves, as is a

periodic variation due to the discretization of W.

In the extended version of this paper [15], we present

additional graphs that show the database size on each leaf
and the count of messages exchanged among leaves of the

SALAD. We show that by setting the minimum file-size

threshold to 4 Kbytes, the mean message count is cut in

half without (as shown in Fig. 4) measurably reducing the

effectiveness of the system. Similarly, setting the

threshold to 4 Kbytes halves the mean database size.
The extended paper also considers limiting the database

size on each leaf: When a machine receives a record that

it should store, if its database size limit has been reached,

it discards a record in the database with the lowest

fingerprint value (corresponding to the smallest file) and

replaces it with the newly received record. We show that
even with a size limit an order of magnitude smaller than

the unconstrained mean database size, the system can still

reclaim 38% of used space, compared to a 46% optimum.

6. Related work

To our knowledge, coalescing of identical files is not
performed by any distributed storage system other than
Farsite. The resulting increase in available space could
benefit server-based distributed file systems such as AFS
[20] and Ficus [19], serverless distributed file systems
such as xFS [2] and Frangipani [37], content publishing
systems such as Publius [38] and Freenet [12], and
archival storage systems such as Intermemory [18].

Windows® 2000 [34] has a Single-Instance Store [7]
that coalesces identical files within a local file system.

LBFS [28] identifies identical portions of different files
to reduce network bandwidth rather than storage usage.

Convergent encryption deliberately leaks information.
Other research has studied unintentional leaks through
side channels [22] such as computational timing [23],
measured power consumption [24], or response to injected
faults [5]. Like convergent encryption, BEAR [3] derives
an encryption key from a partial plaintext hash. Song et
al. [35] developed techniques for searching encrypted data.

SALAD has similarities to the distributed indexing
systems Chord [36], Pastry [31], and Tapestry [40], all of
which are based on Plaxton trees [29]. These systems use
O(log n)-sized neighbor tables to route information to the
appropriate node in O(log n) hops. Also similar is CAN
[30], which uses O(d)-sized neighbor tables to route
information to nodes in O(d n1/d) hops. SALAD
complements these approaches by using O(d n1/d)-sized
neighbor tables to route in O(d) hops. These other
systems are not lossy, but they appear less immune to
targeted attack than SALAD is. SALAD’s configurable
lossiness is similar to that of a Bloom filter [6], although it
yields false negatives rather than false positives.

Farsite relocates identical files to the same machines so
their contents may be coalesced. Other research on file
relocation has been to balance the load of file access [9,
39] to migrate replicas near points of high usage [10, 17,
25, 33], or to improve file availability [14, 26].

7. Summary

Farsite is a distributed file system that provides security
and reliability by storing encrypted replicas of each file on
multiple desktop machines. To free space for storing these
replicas, the system coalesces incidentally duplicated files,
such as shared documents among workgroups or multiple
users’ copies of common application programs.

This involves a cryptosystem that enables identical files
to be coalesced even if encrypted with different keys, a
scalable distributed database to identify identical files, a
file-relocation system that co-locates identical files on the
same machines, and a single-instance store that coalesces
identical files while retaining separate-file semantics.

Simulation using file content data from 585 desktop file
systems shows that the duplicate-file coalescing system is
scalable, highly effective, and fault-tolerant.

0

100

200

300

400

500

600

700

800

0 0.2 0.4 0.6 0.8 1

machine failure probabilty

c
o
n
s
u
m
e
d
 s
p
a
c
e
 (
G
B
)

Λ = 1.5 Λ = 2 Λ = 2.5

Fig. 5: Consumed space vs. machine failure rate

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000

sys tem s ize (machines)

m
e
a
n
 l
e
a
f
ta
b
le
 s
iz
e
 (
e
n
tr
ie
s
)

Λ = 1.5 Λ = 2 Λ = 2.5

Fig. 6: Leaf table size vs. system size

References

[1] S. Alexander and R. Droms, “DHCP Options and BOOTP
Vendor Extensions”, RFC 2132, Mar 1997.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,
and R. Wang, “Serverless Network File Systems”, 15th
SOSP, ACM, Dec 1995, pp. 109-126.

[3] R. Anderson and E. Biham, “Two Practical and Provably
Secure Block Ciphers: BEAR and LION”, 3rd International
Workshop on Fast Software Encryption, 1996, pp. 113-120.

[4] M. Bellare and P. Rogaway, “Random Oracles are Practical:
A Paradigm for Designing Efficient Protocols”, 1st
Conference on Computer and Communications Security,
ACM, 1993, pp. 62-73.

[5] E. Biham and A. Shamir, “Differential Fault Analysis of
Secret Key Cryptosystems”, CRYPTO ’91, 1991, pp. 156-
171.

[6] B. H. Bloom, “Space/Time Trade-Offs in Hash Coding with
Allowable Errors”, CACM 13(7), Jul 1970, pp. 422-426.

[7] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur,
“Single Instance Storage in Windows® 2000”, 4th
Windows Systems Symposium, USENIX, 2000, pp. 13-24.

[8] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer,
“Feasibility of a Serverless Distributed File System
Deployed on an Existing Set of Desktop PCs”,
SIGMETRICS 2000, ACM, 2000, pp. 34-43.

[9] A. Brinkmann, K. Salzwedel, and C. Scheideler, “Efficient,
Distributed Data Placement Strategies for Storage Area
Networks”, 12th SPAA, ACM, Jun 2000.

[10] G. Cabri, A. Corradi, and F. Zambonelli, “Experience of
Adaptive Replication in Distributed File Systems”, 22nd
EUROMICRO, IEEE, Sep 1996, pp. 459-466.

[11] M. Castro and B. Liskov, “Practical Byzantine Fault
Tolerance”, 3rd OSDI, USENIX, Feb 1999, pp. 173-186.

[12] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A
Distributed Anonymous Information Storage and Retrieval
System”, ICSI Workshop on Design Issues in Anonymity
and Unobervability, Jul 2000.

[13] J. R. Douceur and W. J. Bolosky, “A Large-Scale Study of
File-System Contents”, SIGMETRICS ’99, ACM, May
1999, pp. 59-70.

[14] J. R. Douceur and R. P. Wattenhofer, “Optimizing File
Availability in a Secure Serverless Distributed File
System”, 20th SRDS, IEEE, Oct 2001, pp. 4-13.

[15] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M.
Theimer, “Reclaiming Space from Duplicate Files in a
Serverless Distributed File System”, Microsoft Research
Tech Report MSR-TR-2002-30, July 2002.

[16] R. Droms, “Dynamic Host Configuration Protocol”, RFC
2131, Mar 1997.

[17] B. Gavish and O. R. Liu Sheng, “Dynamic File Migration in
Distributed Computer Systems”, CACM 33 (2), ACM, Feb
1990, pp. 177-189.

[18] A. Goldberg and P. Yianilos, “Towards an Archival
Intermemory”, International Forum on Research and
Technology Advances in Digital Libraries, IEEE, Apr 1998,
pp. 147-156.

[19] R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page Jr., G. J.
Popek, and D. Rothmeier, “Implementation of the Ficus
Replicated File System”, 1990 USENIX Conference,
Usenix, Jun 1990, pp. 63-71.

[20] J. Howard, M. Kazar, S. Menees, D. Nichols, M.
Satyanarayanan, R. Sidebotham, and M. West, “Scale and
Performance in a Distributed File System,” Transactions on
Computer Systems, ACM, 1988, pp. 51-81.

[21] R. Jain. The Art of Computer Systems Performance
Analysis. John Wiley & Sons, 1991.

[22] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side
Channel Cryptanalysis of Product Ciphers”, Journal of
Computer Security 8(2-3), 2000, pp. 141-158.

[23] P. Kocher. “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS and Other Systems”, CRYPTO '96,
1996, pp. 104-113.

[24] P. Kocher, J. Jaffe, and B. Jun. “Differential Power
Analysis”, CRYPTO '99, 1999, pp. 388-397.

[25] Ø. Kure, “Optimization of File Migration in Distributed
Systems”, Technical Report UCB/CSD 88/413, University
of California at Berkeley, Apr 1988.

[26] D. L. McCue and M. C. Little, “Computing Replica
Placement in Distributed Systems”, 2nd Workshop on
Management of Replicated Data, IEEE, Nov 1992, pp. 58-
61.

[27] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1997.

[28] A. Muthitacharoen, B. Chen, and D. Mazières, “A Low-
Bandwidth Network File System”, (to appear) 18th SOSP,
ACM, Oct 2001.

[29] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing
Nearby Copies of Replicated Objects in a Distributed
Environment”, 9th SPAA, ACM, Jun 1997, pp. 311-320.

[30] S. Ratnasamy, P. Francis, M. Handley, and R. Karp, “A
Scalable Content-Addressable Network”, SIGCOMM 2001,
ACM, Aug 2001.

[31] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed
Object Location and Routing for Large-Scale Peer-to-Peer
Systems”, (SIGCOMM 2001 submission).

[32] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A
Measurement Study of Peer-to-Peer File Sharing Systems”,
Multimedia Computing and Networking 2002, SPIE, 2002,
(to appear).

[33] A. Siegel, K. Birman, and K. Marzullo, “Deceit: A Flexible
Distributed File System”, Summer 1990 USENIX
Conference, USENIX, Jun 1990.

[34] D. Solomon, Inside Windows NT, 2nd Ed., MS Press, 1998.
[35] D. X. Song, D. Wagner, and A. Perrig, “Practical

Techniques for Searches on Encrypted Data”, IEEE
Symposium on Security and Privacy, 2000, pp. 44-55.

[36] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H.
Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications”, SIGCOMM 2001, ACM,
Aug 2001.

[37] C. Thekkath, T. Mann, and E. Lee, “Frangipani: A Scalable
Distributed File System”, 16th SOSP, ACM, Dec 1997, pp.
224-237.

[38] M. Waldman, A. D. Rubin, and L. F. Cranor, “Publius: A
Robust, Tamper-Evident Censorship-Resistant Web
Publishing System”, 9th USENIX Security Symposium,
Aug 2000, pp. 59-72.

[39] J. Wolf, “The Placement Optimization Program: A Practical
Solution to the Disk File Assignment Problem”,
SIGMETRICS ’89, ACM, May 1989.

[40] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry:
An Infrastructure for Fault-Tolerant Wide-Area Location
and Routing”, UCB Tech Report UCB/CSD-01-1141.

