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Abstract 
The Farsite distributed file system provides availability by 
replicating each file onto multiple desktop computers.  
Since this replication consumes significant storage space, 
it is important to reclaim used space where possible.  
Measurement of over 500 desktop file systems shows that 
nearly half of all consumed space is occupied by duplicate 
files.  We present a mechanism to reclaim space from this 
incidental duplication to make it available for controlled 
file replication.  Our mechanism includes 1) convergent 
encryption, which enables duplicate files to coalesced into 
the space of a single file, even if the files are encrypted 
with different users’ keys, and 2) SALAD, a Self-
Arranging, Lossy, Associative Database for aggregating 
file content and location information in a decentralized, 
scalable, fault-tolerant manner.  Large-scale simulation 
experiments show that the duplicate-file coalescing system 
is scalable, highly effective, and fault-tolerant. 

1. Introduction 

This paper addresses the problems of identifying and 
coalescing identical files in the Farsite [8] distributed file 
system, for the purpose of reclaiming storage space 
consumed by incidentally redundant content.  Farsite is a 
secure, scalable, serverless file system that logically 
functions as a centralized file server but that is physically 
distributed among a networked collection of desktop 
workstations.  Since desktop machines are not always on, 
not centrally managed, and not physically secured, the 
space reclamation process must tolerate a high rate of 
system failure, operate without central coordination, and 
function in tandem with cryptographic security. 

Farsite’s intended purpose is to provide the advantages 
of a central file server (a global name space, location-
transparency, reliability, availability, and security) without 
the attendant disadvantages (additional expense, physical 
plant, administration, and vulnerability to geographically 
localized faults).  It provides high availability and 
reliability – while executing on a substrate of inherently 
unreliable machines – primarily through a high degree of 
replication of both file content and directory infrastructure.  
Since this deliberate and controlled replication causes a 
dramatic increase in the space consumed by the file 
system, it is advantageous to reclaim storage space due to 
incidental and erratic duplication of file content. 

Since the disk space of desktop computers is mostly 
unused [13] and becoming less used over time [14], 

reclaiming disk space might not seem to be an important 

issue.  However, Farsite (like most peer-to-peer systems 

[32]) relies on voluntary participation of the client 

machines’ owners, who may be reluctant to let their 

machines participate in a distributed file system that 
substantially reduces the disk space available for their use. 

Measurements [8] of 550 desktop file systems at 

Microsoft show that almost half of all occupied disk space 

can be reclaimed by eliminating duplicate files from the 

aggregated set of multiple users’ systems.  Performing this 

reclamation in Farsite requires solutions to four problems: 
1)  Enabling the identification and coalescing of 

identical files when these files are (for security reasons) 

encrypted with the keys of different users. 

2)  Identifying, in a decentralized, scalable, fault-

tolerant manner, files that have identical content. 
3)  Relocating the replicas of files with identical 

content to a common set of storage machines. 

4)  Coalescing the identical files to reclaim storage 

space, while maintaining the semantics of separate files. 

The latter two of these problems are addressed by a 

file-replica-relocation system [14] and the Windows® 
2000 [34] Single-Instance Store (SIS) [7], which are 

described in other publications.  In the present paper, we 

describe the first two problems’ solutions: 1) convergent 

encryption, a cryptosystem that produces identical 

ciphertext files from identical plaintext files, irrespective 

of their encryption keys and 2) SALAD, a Self-Arranging, 
Lossy, Associative Database for aggregating and 

analyzing file content information.  Collectively, these 

components are called the Duplicate-File Coalescing 

(DFC) subsystem of Farsite. 

The following section briefly describes the Farsite 
system.  Section 3 explains convergent encryption, and 

Section 4 describes the steady-state operation of SALAD.  

Section 5 shows results from large-scale simulation 

experiments using file content data collected from a set of 

585 desktop file systems.  Section 6 discusses related 

work, and Section 7 concludes. 
In an extended version of this paper [15], we also prove 

the security of convergent encryption, describe the 

maintenance of SALAD as machines join and leave the 

system, and present additional simulation results. 



2. Background – the Farsite file system 

Farsite [8] is a scalable, serverless, distributed file 
system under development at Microsoft Research.  It 

provides logically centralized file storage that is secure, 

reliable, and highly available, by federating the distributed 

storage and communication resources of a set of not-fully-

trusted client computers, such as the desktop machines of 

a large corporation.  These machines voluntarily 
contribute resources to the system in exchange for the 

ability to store files in the collective file store.  Every 

participating machine functions not only as a client device 

for its local user but also both as a file host – storing 

replicas of encrypted file content on behalf of the system – 

and as a member of a directory group – storing metadata 
for a portion of the file-system namespace. 

Data privacy in Farsite is rooted in symmetric-key and 

public-key cryptography [27], and data reliability is rooted 

in replication.  When a client writes a file, it encrypts the 

data using the public keys of all authorized readers of that 

file, and the encrypted file is replicated and distributed to a 
set of untrusted file hosts.  The encryption prevents file 

hosts from unauthorized viewing of the file contents, and 

the replication prevents any single file host from 

deliberately (or accidentally) destroying a file.  Typical 

replication factors are three or four replicas per file [8, 14]. 
The integrity of file content and of the system 

namespace is rooted in replicated state machines that 

communicate via a Byzantine-fault-tolerant protocol [11].  

Directories are apportioned among groups of machines.  

The machines in each directory group jointly manage a 

region of the file-system namespace, and the Byzantine 
protocol guarantees that the directory group operates 

correctly as long as fewer than one third of its constituent 

machines fail in any arbitrary or malicious manner.  In 

addition to maintaining directory data and file metadata, 

each directory group also determines which file groups 

store replicas of the files contained in its directories, using 
a distributed file-replica-placement algorithm [14]. 

For security reasons, machines communicate with each 

other over cryptographically authenticated and secured 

channels, which are established using public-key 

cryptography.  Therefore, each machine has its own 
public/private key pair (separate from the key pairs held 

by users), and each machine computes a large (20-byte) 

unique identifier for itself from a cryptographically strong 

hash of its public key.  Since the corresponding private 

key is known only by that machine, it is the only machine 

that can sign a certificate that validates its own identifier, 
making machine identifiers verifiable and unforgeable. 

Each directory group needs to determine which of the 

files it manages have contents that are identical to other 

files that may be managed by another directory group.  

Each file host needs to be able to coalesce identical files 

that it stores, even if they have been encrypted separately. 

3. Convergent encryption 

If Farsite were to use a conventional cryptosystem to 
encrypt its files, then two identical files encrypted with 

different users’ keys would have different encrypted 

representations, and the DFC subsystem could neither 

recognize that the files are identical nor coalesce the 

encrypted files into the space of a single file, unless it had 

access to the users’ private keys, which would be a 
significant security violation.  Therefore, we have 

developed a cryptosystem – called convergent encryption 

– that produces identical ciphertext files from identical 

plaintext files, irrespective of their encryption keys. 

To encrypt a file using convergent encryption, a client 

first computes a cryptographically strong hash of the file 
content.  The file is then encrypted using this hash value as 

a key.  The hash value is then encrypted using the public 

keys of all authorized readers of the file, and these 

encrypted values are attached to the file as metadata.  

Formally, given a symmetric-key encryption function E, a 

public-key encryption function F, a cryptographic hash 
function H, and a public/private key pair (Ku, K΄u) for each 

user u in a set of users Uf of file f, convergently encrypted 

file ciphertext Cf is a ·data, metadataÒ tuple given by 

function Χ applied to file plaintext Pf: 

 ( ) fffKf cPC
u
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Where the file data ciphertext cf is the encryption of the 

file data plaintext, using the plaintext hash as a key: 

 ( )( )
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And the ciphertext metadata Μf is a set of encryptions of 

the plaintext hash, using the users’ public keys: 
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u
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Any authorized reader u can decrypt the file by decrypting 

the hash value with the reader’s private key K΄u and then 

decrypting the file content using the hash as the key: 
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Because the file is encrypted using its own hash as a key, 

the file data ciphertext cf is fully determined by the file 
data plaintext Pf.  Therefore, the DFC subsystem, without 

knowledge of users’ keys, can 1) determine that two files 

are identical and 2) store them in the space of a single file 

(plus a small amount of space per user’s key). 

Convergent encryption deliberately leaks a controlled 

amount of information, namely whether or not the 
plaintexts of two encrypted messages are identical.  In the 

extended version of this paper [15], we prove a theorem 

stating that we are not accidentally leaking more 

information than we intend.  Formally, the theorem states: 

Theorem:  Given ciphertext c, there exists no program 
Σ of length O(nε) that can output plaintext P with 

probability Ω(1/nε) for any fixed ε, unless the attacker can 

a priori output P with probability Ω(1/n2ε). 



4. Identifying duplicate files – SALAD 

Convergent encryption enables identical encrypted files 
to be recognized as identical, but there remains the 

problem of performing this identification across a large 

number of machines in a robust and decentralized manner.  

We solve this problem by storing file location and content 

information in a distributed data structure called a SALAD: 

a Self-Arranging, Lossy, Associative Database.  For 
scalability, the file information is partitioned and dispersed 

among all machines in the system; and for fault-tolerance, 

each item of information is stored redundantly on multiple 

machines.  Rather than using central coordination to 

orchestrate this partitioning, dispersal, and redundancy, 

SALAD employs simple statistical techniques, which have 
the unintended effect of making the database lossy.  In our 

application, a small degree of lossiness is acceptable, so 

we have chosen to retain the (relative) simplicity of the 

system rather than to include additional machinery to 

rectify this lossiness. 

4.1. SALAD record storage overview 

Logically, a SALAD appears to be a centralized 

database.  Each record in the database contains 

information about the location and content of one file.  To 
add a new record to the database, a machine first computes 

a fingerprint of a file by hashing the file’s (convergently 

encrypted) content and prepending the file size to the hash 

value.  It then constructs a ·key, valueÒ record in which the 
key is the file’s fingerprint and the value is the identifier 

of the machine where the file resides, and it inserts this 

record into the database.  The database is indexed by 

fingerprint keys, so it can be associatively searched for 

records with matching fingerprints, thereby identifying 

and locating files with (probably) identical contents.  
(With 20-byte hash values, the probability that a set of F 

files contains even one pair of same-sized non-identical 

files with the same hash value is F / 220 â 8 / 2 ≈ F â 10–24.) 

Physically, the database is partitioned among all 
machines in the system.  Within the context of SALAD, 

each machine is called a leaf (akin to a leaf in a tree data 

structure).  Each record is stored in a set of local databases 

on zero or more leaves. 

Leaves are grouped into cells, and all leaves within any 

given cell are responsible for storing the same set of 
records.  Records are sorted into buckets according to the 

value of the fingerprint in each record.  Each bucket of 

records is assigned to a particular cell, and all records in 

that bucket are stored redundantly on all leaves within the 

cell, as illustrated in Fig. 1.  The number of cells grows 

linearly with the system size, and since the number of files 
also grows linearly with the system size, the expected 

number of records stored by each leaf is constant. 

A SALAD has two configuration parameters: its target 

redundancy factor Λ and its dimensionality D.  Since each 

record is stored redundantly on all leaves in a particular 

cell, the degree of storage redundancy is equal to the mean 

number of leaves per cell.  This value is known as the 
actual redundancy factor λ, and it is bounded (via the 

process described in Subsection 4.2) by the inequality: 

 Λ<≤Λ 2λ  (5)

For large systems, it is inefficient for each leaf to maintain 

a direct connection to every other leaf, so the leaves are 

organized (via the process described in Subsection 4.3) 
into a D-diameter directed graph.  Each record is passed 

from leaf to leaf along the edges of the graph until, after at 

most D hops, it reaches the appropriate storage leaves. 

4.2. SALAD partitioning and redundancy 

The target redundancy factor Λ is combined with the 

leaf count L (the count of leaves in the SALAD, also 

called the system size) to determine a cell-ID width W, as 

follows (where the notation “lg” means binary logarithm): 

 






Λ
=

L
W lg  (6)

As described in Section 2 above, each leaf has a large 

(20-byte), unique identifier i.  The least-significant W bits 

of a leaf’s identifier or a record’s fingerprint form a value 

called the cell-ID of that leaf or record.  (For convenience, 
we sometimes use the term “identifier” to mean either a 

leaf’s identifier or a record’s fingerprint.)  Formally, the 

cell-ID of identifier i is given by: 

 ( ) W
iic 2mod=  (7)

Two identifiers are cell-aligned if their cell-ID values are 

equal.  Cell-aligned leaves share the same cell, and records 

are stored on leaves with which they are cell-aligned, as 

illustrated in Fig. 1. 

 

 

cell-ID = 00 cell-ID = 01 cell-ID = 10 cell-ID = 11 

– leaf – file record – cell – bucket 

(machine) 
 

Fig. 1: Buckets of records in cells of leaves 



Before introducing the dimensionality parameter D, we 

describe the simplest SALAD configuration, in which D = 

1, as in the example of Fig. 1.  Each leaf in the SALAD 
maintains an estimate of the system size L. From this, it 

calculates W according to Eq. 6, and it computes cell-ID 

values for each leaf in the system (including itself) 

according to Eq. 7.  Then, for each of its files, it hashes the 

file’s content, creates a fingerprint record, and computes a 

cell-ID for the record.  The leaf then sends each record to 
all leaves that it believes to be cell-aligned with the record.  

When each leaf receives a record, it stores the record if it 

considers itself to be cell-aligned with the record. 

This example illustrates the statistical partitioning, 

redundancy, and lossiness of record storage.  With no 

central coordination, records are distributed among all 
leaves, and records with matching fingerprints end up on 

the same set of leaves, so their identicality can be detected 

with a purely local search.  Since machine identifiers and 

file content fingerprints are cryptographic hash values, 

they are evenly distributed, so the number of leaves on 

which each record is stored is governed by a Poisson 
distribution [21] with a mean of λ.  Therefore, with 

probability e–λ, a record will not be stored on any leaf. 

Note that if two leaves have different estimates of the 

system size L, they may disagree about whether they are 

cell-aligned.  However, this disagreement does not cause 
the SALAD to malfunction, only to be less efficient.  If a 

leaf underestimates the system size, it may calculate an 

undersized cell-ID width W.  With fewer bits in each cell-

ID, cell-IDs are more likely to match each other, so the 

leaf may store more records than it needs to, and it may 

send records to leaves that don’t need to receive them.  If a 
leaf overestimates the system size, it may calculate an 

oversized cell-ID width W, which causes cell-IDs to be 

less likely to match each other, so the leaf may store fewer 

records than it needs to, and it may not send records to 

leaves that should receive them.  Thus, an underestimate 

of L increases a leaf’s workload, and an overestimate of L 
increases a leaf’s lossiness. 

Given F files in the system, the mean count of records 

stored by each leaf is R, calculated as follows: 

 
L

F
R λ=

 (8)

Since F µ L and λ < 2 Λ, R remains constant as the 

system size grows. 

4.3. SALAD multi-hop information dispersal 

Cells in a SALAD are organized into a D-dimensional 

hypercube.  (Technically, it is a rectilinear hypersolid, 

since its dimensions are not always equal, but this term is 

cumbersome.)  Coordinates in D-dimensional hyperspace 
are given with respect to D Cartesian axes.  In two- or 

three-dimensional spaces, it is common to refer to these 

axes as the x-axis, y-axis, and z-axis, but for arbitrary 

dimensions, it is more convenient to use numbers instead 

of letters, so we refer to the 0-axis, the 1-axis, and so forth. 

Each cell-ID is decomposed into D coordinates, as 
illustrated in Fig. 2.  Successive bits of each coordinate are 

taken from non-adjacent bits in the cell-ID so that when 

the system size L grows and the width of each coordinate 

consequently increases, the value of each coordinate 

undergoes minimal change.  A cell’s location within the 
hypercube is determined by the coordinates of its cell-ID.  

For example, in Fig. 2a, a leaf with the shown identifier 

has cell coordinates c0 = 6 (1102) and c1 = 1 (012). 

Formally, for 0 ≤ d < D, the bit width Wd of the d-axis 

coordinate of an identifier is given by: 

 
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The d-axis coordinate of identifier i is defined by the 

following formula (where the notation bn(i) indicates the 

value of bit n in identifier i, and bit 0 is the LSB), which 
merely formalizes the procedure illustrated in Fig. 2: 
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Fig. 3 shows an example two-dimensional SALAD 

from the perspective of the black leaf.  (Communication 

paths not relevant to the black leaf are omitted from this 
figure.)  We refer to a row of cells that is parallel to any 

one of the Cartesian axes as a vector of cells.  Two 

identifiers are d-vector-aligned if they are both in a vector 

of cells that runs parallel to the d-axis.  This means that at 

least D – 1 of their coordinates match, but their d-axis 

coordinates might not.  Formally: 

 ( ) ( ) ( )[ ]jcicdkkjia
kkd

=→≠∀≡,
 (11)

Identifiers are vector-aligned if they share any vector of 
cells.  Thus, they are d-vector-aligned for some d, like 

leaves A and C in Fig. 3, but unlike A and E.  Formally: 

 ( ) ( )[ ]jiadjia
d

,, ∃≡  (12)
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Fig. 2: Example extraction of cell-ID and coordinates from an identifier when (a) D = 2, (b) D = 3 



Each leaf maintains a leaf table of all leaves that are 

vector-aligned with it, and these are the only leaves with 
which it communicates.  The expected count of leaves in 

each vector is λ (L/λ)1/D, so the mean leaf table size is T: 

 ( ) DDD

LDDLDT
1111

−
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This is not very large.  With L = 10,000, λ = 3, and D = 2, 

the mean leaf table size is about 350 entries. 

After a new file record is generated, it makes its way 

through the salad by moving in one Cartesian direction per 
step, until after a maximum of D hops, it reaches leaves 

with which it is cell-aligned.  A leaf performs the same set 

of steps either to insert a new record of its own into the 

SALAD or to deal with a record it receives from another 

leaf:  In outline, each leaf determines the highest 

dimension d in which all of the (less-than-d)-axis 
coordinates of its own identifier equal those of the 

record’s fingerprint.  If d < D, then it forwards the 

fingerprint record along its d-axis vector to those leaves 

whose d-axis coordinates equal that of the record’s 

fingerprint.  After a maximum of D such hops, the 

fingerprint record will reach leaves that are cell-aligned 
with the fingerprint.  When a leaf receives a cell-aligned 

record, the leaf stores the record in its local database, 

searches for records whose fingerprints match the new 

record’s fingerprint, and notifies the appropriate machines 

if any matches are found. 
For example, when D = 2, cells are organized into a 

square (a two-dimensional hypercube), and each leaf has 

entries in its leaf table for other leaves that are either in its 

horizontal vector or in its vertical vector.  In Fig. 3, the 

black leaf has (binary) cell-ID wxyz = 0110, and its 

coordinates are c0 = xz = 10 and c1 = wy = 01.  Thus, it 
knows other leaves with cell-IDs w1y0 or 0x1z, for any 

values of w, x, y, and z.  (The figure shows directed 

connections to these known leaves via black arrows.) 

When the black leaf generates a record for one if its 
files, there are three cases:  1) If the record’s cell-ID 
equals 0110, the leaf stores the record in its own database 
and sends it to the one other leaf in its cell, leaf A.  2) If 
the fingerprint cell-ID is w1y0 for wy ≠ 01, then the 0-axis 
coordinates are equal but the 1-axis coordinates are not, so 
the black leaf sends the record along its 1-axis (horizontal) 
vector to leaves whose cell-ID equals w1y0.  For example, 
if the fingerprint cell-ID is 1100, it is sent directly to leaf 
B.  3) If the fingerprint cell-ID is wxyz for xz ≠ 10, then the 
0-axis coordinates are not equal, so the black leaf sends 
the record along its 0-axis (vertical) vector to leaves 
whose cell-ID equals 0x1z.  In this third case, if the 
fingerprint’s 1-axis coordinate wy does not equal 01, then 
the recipient leaves will forward the record (horizontally, 
via the gray paths in the figure) to the appropriate leaves.  
For example, if the fingerprint cell-ID is 1010, it is sent to 
leaves C and D, who each forward it to leaf E. 

Adding hops to the propagation of fingerprint records 
increases the system’s lossiness.  For a two-dimensional 
SALAD, a record will not be stored if it is not sent to any 
leaf on either the first or the second hop.  When the system 
size L is very large, nearly all records require two hops, so 
the loss probability approaches 1 – (1 – e–λ)2 ≈ 2 e–λ.  In 
general, the loss probability for a D-dimensional salad is: 

 ( ) λλ −−

≈−−= eDeP
D

11
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For example, with λ = 3 and D = 2, Ploss ≈ 10%. 

4.4. SALAD maintenance 

There are three aspects to maintaining a SALAD:  
Adding new leaves, removing dead leaves, and 
maintaining each leaf’s estimate of the leaf count L.  Due 
to space limitations, these procedures are not described in 
detail in this publication, but they are detailed in the 
extended version of this paper [15].  This subsection 
presents a brief overview of these operations. 

Each leaf is supposed to know all other leaves with 
which it is vector-aligned.  Thus, when a machine is added 
to a SALAD as a new leaf, it needs to learn of all leaves 
that are vector-aligned with its identifier so it can add 
them to its leaf table, and these leaves need to add the new 
leaf to their leaf tables.  The machine first discovers one or 
more arbitrary leaves in the SALAD by some out-of-band 
means (e.g. piggybacking on DHCP [1]).  If the machine 
cannot find any extant leaves, it starts a new SALAD with 
itself as a singleton leaf.  If the machine does find one or 
more leaves in a SALAD, it sends each of them a join 
message, and each of these messages is forwarded along D 
independent pathways of the hypercube until it reaches 
leaves that are vector-aligned with the new leaf’s 
identifier.  These vector-aligned leaves send welcome 
messages to the new leaf, which replies with welcome-
acknowledge messages.  These two types of messages 
cause the recipient to add an entry to its leaf table and to 
update its estimate of the system size L. 

 

wy = 00 wy = 01 wy = 10 wy = 11 

xz = 01 

xz = 00 

xz = 10 

xz = 11 

1-axis  

0-axis  

E 

B 

A 

C 

D 

 

Fig. 3: SALAD from black leaf’s perspective (D=2) 



A new leaf must explicitly notify the SALAD that it 

wants to join, but a leaf can depart without notice, 

particularly if its departure is due to permanent machine 
failure.  Thus, the SALAD must include a mechanism for 

removing stale leaf table entries.  We employ the standard 

technique [e.g. 16] of sending periodic refresh messages 

between leaves, and each leaf flushes timed-out entries in 

its leaf table.  In addition, a leaf that cleanly departs the 

SALAD sends explicit departure messages to all of the 
leaves in its leaf table. 

SALAD leaves use an estimate of the system size L to 

determine an appropriate value for the cell-ID width W.  

Since each leaf knows only the leaves for which it has 

entries in its leaf table, it has to estimate L based on the 

size T of its leaf table.  The expected relationship between 
T and L is given by Eq. 13, so the leaf effectively inverts 

this equation.  The actual procedure is a little more 

complicated, because a change to the estimated value of L 

can cause a change to the value of W, which in turn can 

cause leaves to be added to or removed from the leaf table, 

changing the value of T.  To prevent instability, the system 
employs hysteresis by using two different values of the 

target redundancy factor: a larger value for increases to the 

estimate of L, and a smaller value for decreases thereto.  

4.5. SALAD attack resilience 

If SALAD were designed such that its leaves 

cooperatively determine the ranges of fingerprints that 

each leaf stores, it might be possible for a set of malicious 

leaves to launch a targeted attack against a particular range 

of values, by arranging for themselves to be the designated 
record stores for this range.  However, because of the 

SALAD’s purely statistical construction, such an attack is 

greatly limited:  Each leaf determines its fingerprint range 

independently from the ranges of all other leaves, so the 

most damage a malicious leaf can do is to decrease the 
overall redundancy of the system. 

For D > 1, it is possible to target an attack, but only in a 

fairly weak way.  By choosing their own identifiers to be 

vector-aligned with a victim leaf, a set of m malicious 

leaves can increase the size of the victim’s leaf table, 

thereby increasing its system size estimate L, which 
increases the leaf’s lossiness as described at the end of 

Subsection 4.2.  The effective redundancy factor λ΄ for the 

victim leaf’s records will be: 
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Thus, not only does increasing a SALAD’s 

dimensionality increase the loss probability for a given 

redundancy factor (Eq. 14), but also it increases the 

susceptibility of the system to attack.  We therefore 
suggest constructing a SALAD with a dimensionality no 

higher than that needed to achieve leaf tables of a 

manageably small size. 

5. Simulation evaluation 

Since the current implementation of Farsite is not 
complete or stable enough to run on a corporate network, 

we evaluated the DFC subsystem via large-scale 

simulation using file content data collected from 585 

desktop file systems.  We distributed a scanning program 

to a randomly selected set of Microsoft employees and 

asked them to scan their desktop machines.  The program 
computed a 36-byte cryptographically strong hash of each 

64-Kbyte block of all files on their systems, and it 

recorded these hashes along with file sizes and other 

attributes.  The scanned systems contain 10,514,105 files 

in 730,871 directories, totaling 685 GB of file data.  There 

were 4,060,748 distinct file contents totaling 368 GB of 
file data, implying that coalescing duplicates could ideally 

reclaim up to 46% of all consumed space. 

We ran a two-dimensional DFC system on 585 

simulated machines, each of which held content from one 

of the scanned desktop file systems.  The SALAD was 

initialized with a single leaf, and the remaining 584 
machines were each added to the SALAD by the 

procedure outlined in Subsection 4.4.  We recorded the 

sizes of each machine’s leaf table and fingerprint database, 

as well as the number of messages exchanged. 

By setting a threshold on the minimum file size eligible 
for coalescing, we can substantially reduce the message 

traffic and fingerprint database sizes.  Fig. 4 shows the 

consumed space in the system versus this minimum size.  

The effect on space consumption is negligible for 

thresholds below 4 Kbytes.  This figure also shows that a 

target redundancy factor of Λ = 2.5 achieves nearly all 
possible space reclamation. 

We tested the resilience of the DFC system to machine 

failure by randomly failing the simulated machines.  Fig. 5 

shows the consumed space versus machine failure 

probability.  With Λ = 2.5, even when machines fail half 

of the time, the system can still reclaim 38% of used 
space, comparing favorably to the optimal value of 46%. 
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Fig. 4: Consumed space vs. minimum file size 



For our final experiment, we started with a singleton 

SALAD and incrementally increased the system size up to 
10,000 simulated machines.  Fig. 6 shows the mean leaf 

table size versus system size.  The square-root relationship 

predicted by Eq. 13 is evident in these curves, as is a 

periodic variation due to the discretization of W. 

In the extended version of this paper [15], we present 

additional graphs that show the database size on each leaf 
and the count of messages exchanged among leaves of the 

SALAD.  We show that by setting the minimum file-size 

threshold to 4 Kbytes, the mean message count is cut in 

half without (as shown in Fig. 4) measurably reducing the 

effectiveness of the system.  Similarly, setting the 

threshold to 4 Kbytes halves the mean database size. 
The extended paper also considers limiting the database 

size on each leaf:  When a machine receives a record that 

it should store, if its database size limit has been reached, 

it discards a record in the database with the lowest 

fingerprint value (corresponding to the smallest file) and 

replaces it with the newly received record.  We show that 
even with a size limit an order of magnitude smaller than 

the unconstrained mean database size, the system can still 

reclaim 38% of used space, compared to a 46% optimum. 

6. Related work 

To our knowledge, coalescing of identical files is not 
performed by any distributed storage system other than 
Farsite.  The resulting increase in available space could 
benefit server-based distributed file systems such as AFS 
[20] and Ficus [19], serverless distributed file systems 
such as xFS [2] and Frangipani [37], content publishing 
systems such as Publius [38] and Freenet [12], and 
archival storage systems such as Intermemory [18]. 

Windows® 2000 [34] has a Single-Instance Store [7] 
that coalesces identical files within a local file system. 

LBFS [28] identifies identical portions of different files 
to reduce network bandwidth rather than storage usage. 

Convergent encryption deliberately leaks information.  
Other research has studied unintentional leaks through 
side channels [22] such as computational timing [23], 
measured power consumption [24], or response to injected 
faults [5].  Like convergent encryption, BEAR [3] derives 
an encryption key from a partial plaintext hash.  Song et 
al. [35] developed techniques for searching encrypted data. 

SALAD has similarities to the distributed indexing 
systems Chord [36], Pastry [31], and Tapestry [40], all of 
which are based on Plaxton trees [29].  These systems use 
O(log n)-sized neighbor tables to route information to the 
appropriate node in O(log n) hops.  Also similar is CAN 
[30], which uses O(d)-sized neighbor tables to route 
information to nodes in O(d n1/d) hops.  SALAD 
complements these approaches by using O(d n1/d)-sized 
neighbor tables to route in O(d) hops.  These other 
systems are not lossy, but they appear less immune to 
targeted attack than SALAD is.  SALAD’s configurable 
lossiness is similar to that of a Bloom filter [6], although it 
yields false negatives rather than false positives. 

Farsite relocates identical files to the same machines so 
their contents may be coalesced.  Other research on file 
relocation has been to balance the load of file access [9, 
39] to migrate replicas near points of high usage [10, 17, 
25, 33], or to improve file availability [14, 26]. 

7. Summary 

Farsite is a distributed file system that provides security 
and reliability by storing encrypted replicas of each file on 
multiple desktop machines.  To free space for storing these 
replicas, the system coalesces incidentally duplicated files, 
such as shared documents among workgroups or multiple 
users’ copies of common application programs. 

This involves a cryptosystem that enables identical files 
to be coalesced even if encrypted with different keys, a 
scalable distributed database to identify identical files, a 
file-relocation system that co-locates identical files on the 
same machines, and a single-instance store that coalesces 
identical files while retaining separate-file semantics. 

Simulation using file content data from 585 desktop file 
systems shows that the duplicate-file coalescing system is 
scalable, highly effective, and fault-tolerant. 
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Fig. 5: Consumed space vs. machine failure rate 
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Fig. 6: Leaf table size vs. system size 
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