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ABSTRACT 
A Natural User Interface (NUI), where a user can type or speak a 
request, is a good complement to the well-known Graphical User 
Interface (GUI). Accurately extracting user intent from such typed 
or spoken queries is a very difficult challenge. In this paper we 
evaluate several techniques to extract user intent from typed 
sentences in the context of the well-known Airline Travel 
Information (ATIS) domain, where we want to extract which of the 
possible tasks the user wants to do and the value of the slots 
associated to that task. In previous work we showed that a 
Semantic Context Free Grammar (CFG) semi-automatically 
derived from labeled data can offer very good results. In this paper 
we evaluate several statistical pattern recognition techniques 
including Support Vector Machines (SVM), Naïve Bayes 
classifiers and task-dependent n-gram language models. These 
methods can yield a very low task classification error rate. If used 
in combination with our CFG system, they can also lead to very 
low slot error rates. 

1. Introduction 
Statistical pattern recognition and grammar-based parsing 
technologies have been successfully applied for spoken language 
understanding (SLU). Statistical classifiers are very robust, can be 
easily trained and require little supervision during learning but 
they often suffer from poor generalization when data is 
insufficient. Grammar-based robust parsers are expressive and 
portable, can model the language in granularity, and are easy to 
modify by hand to adapt to new language usages. Although 
grammars are learnable, they often require more supervision. 
While they can yield an accurate and detailed analysis when a 
spoken utterance is covered by the grammar, they are less robust 
for those sentences not covered, even with robust understanding 
techniques. Because of this, the statistical classifiers are often used 
for broad and shallow understanding, and robust parsers are 
frequently used for narrow and deep understanding in a specific 
domain [1, 2], where grammars can be crafted carefully to cover as 
many usages in the domain as possible. 
The tasks of language understanding span a wide spectrum. 
Some tasks only need very shallow understanding --- they 
require task classification plus the identification of some simple 
constituents, such as phone and credit card numbers. Others 
require very deep understanding in great details.  

1.1 Task Classification 

Task classification is the problem of identifying the topic of an 
input (e.g. ShowCapacity is the topic for “what’s the capacity of 
seven three seven”.) and it is a typical pattern recognition 

problem. Applications of task classification include call routing 
and information retrieval [3-5]. In this paper, we study several 
statistical pattern recognition techniques, including task n-gram, 
Support Vector Machines (SVMs) and Naive Bayes classifiers 
for task classification in ATIS. We also investigated different 
approaches to integrate rule-based systems with statistical 
classifiers for task classification. 

1.2 Rule-based Semantic Analysis  
Task classification is insufficient for applications that need more 
detailed information. If a user wants to find specific information 
about a flight, it is not sufficient to know that the task of user’s 
utterance is ShowFlight. The SLU component should also be able 
to extract the detailed information (slots) about the flight from 
user’s utterance, such as departure and destination cities.  

Statistical classifiers are not capable of this type of deep 
understanding. Often the task is performed with a rule-based 
semantic analysis [1, 2]. In [2, 6] we introduced a rule-based 
understanding system, and in [7, 8] we showed that semi-
automatic grammar learning that incorporates multiple sources of 
information is a viable solution for grammar authoring. 

We compared our baseline semantic grammar based system with 
SVM, Naïve Bayes classifier, task n-grams, as well as 
combinations of the rule-based and statistical approaches on the 
Airline Travel Information System (ATIS) domain. The paper 
starts with a description of the experimental settings, followed by 
a brief introduction of the classification algorithms, several 
combined approaches and experimental results. 

2. Experimental Setting 
2.1 Data and Semantic Representation 
We used ATIS3 set A (sentences that can be interpreted without 
context) training set and the 1993 test data in our experiments. 
The training set contains 1424 sentences, and the test set 
contains 435 sentences. The vocabulary size is 464. Each 
sentence belongs to one of six possible tasks: ShowFlight, 
ShowCapacity, ListTranportation, ShowAirlineServeCity, 
ListAirport and ExplainCode. Among those, ShowFlight, occurs 
78% of the time in the test set, so a naïve approach that selected 
this task all the time would have a task error rate of 22%. 
In addition to task ID, each task can have several slots defined in 
a semantic frame. The structure of the semantic frame was 
derived from the CMU Phoenix semantic grammar, as described 
in [8]. The example below shows the semantic representation for 
“List flights from Boston to Seattle”: 
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In this example, the name of the top-level frame, ShowFlight, is 
the task class for the sentence; the path from the root to the leaf, 
like <ShowFlight><Flight><City text=”Boston” name=”Depart”>, 
are slots in the semantic representation. 
 
We need to make sure we have enough training data to build 
statistical pattern classifiers. Unfortunately, for two of the six 
tasks (ShowCapacity and ShowAirlineServeCity), there are no 
training samples. For a third task (ExplainCode) there was one 
task/slot combination for which no data was available in the 
training data. As in [8], we augmented the training set with the 
nine sentences below: 

ShowCapacity: 
What is the capacity of the aircraft m eight zero 
How many people can m eight zero hold 
Tell me the capacity on m eight zero 

ShowAirlineServeCity: 
List the cities served by united 
List the cities that united flies to 
What cities does united serve 
ExplainCode: 
Which airline is a s 
What is the abbreviation u s 
Tell me about the m eighty aircraft 

2.2 Baseline System 

We used a semantic-based SLU as our baseline system. It 
includes a robust parser that uses the ATIS grammar developed 
with our grammar-learning algorithm [7]. The automatically 
derived CFG system described in [8] had a task error rate of 
5.01% and a slot error rate of 7.67%. For comparison, the CMU 
Phoenix system, the best system in the 1994 ATIS evaluation, 
had a task error rate of 5.52% and a slot error rate of 9.94%. 

This evaluation metric differs from that reported in [1] in that we 
computed the slot error rate as the sum of slot insertions, 
substitutions and deletions over the total number of slots in the 
test set. We computed the task classification error rate as the 
number of incorrect task labels over the total number of 
sentences. 

3. Statistical Classification 

In this section we describe briefly the three pattern recognition 
techniques we used in this paper: Naïve Bayes classifier, SVMs 
and task-dependent n-gram models. 

3.1 Naive Bayes Classifier  

Let’s define feature vector w of dimension V, the vocabulary 
size, with binary elements (features): 1 if a given word is present 
in the query or 0 otherwise. The Naive Bayes classifier [9] 
assumes independence among input features. Therefore, given an 
input vector w, its target class can be found by choosing the one 
with the highest posterior probability:  
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where ( 1| )iP w c=  is the probability that word i appears in a 
query of class c, and ( 0 | )iP w c=  is the probability that word i 
does not appear in a query of class c. Due to data sparseness, 
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where cN  is the number of queries for class c in the training 

data, i
cN  is the number of times word i appeared in such queries. 

A single prior count β is used to smooth all probabilities, which 
was tuned to maximize the classification accuracy of cross-
validation data. 

3.2 Support Vector Machines (SVMs) 

SVMs [10] learn discriminatively by finding a hyper-surface in 
the space of possible inputs of feature vectors. This hyper-
surface will attempt to split the positive examples from the 
negative examples. The split will be chosen to have the largest 
distance from the hyper-surface to the nearest of the positive and 
negative examples. Intuitively, this makes the classification 
correct for testing data that is near, but not identical to the 
training data. We used the Sequential Minimal Optimization, a 
fast method to train SVMs [11] in our experiments. The same 
binary features used in Naïve Bayes classifiers are used for 
SVMs. The cross-validation switch in the training procedure was 
used due to data sparseness. 

3.3 Task-dependent N-gram Models 

If we view words as values of a random variable instead of 
binary features, Eq. (1) can be decomposed in a different way: 
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where independence assumptions can be made to use a task-
specific unigram ( | ),iP w c  bigram 1( | , )i iP w c w −  or trigram 

1 2( | , , )i i iP w c w w− − . 

Let’s note that the task unigram and the Naïve Bayes classifier 
defined in Section 3.1 are not the same because the vector in the 
Naïve Bayes case has a length equating the vocabulary size and 

<ShowFlight text=”list flights from Boston to Seattle”>          
         <Flight> 

 <City text=”Boston” name=”Depart”/> 
           <City text=”Seattle” name=”Arrive”/> 
         </Flight> 
  </ShowFlight> 



thus assigns probability to a word being/not being there, whereas 
for the task unigram only words that are present in a given 
sentence contribute to the score. 

The n-gram probabilities for the class specific language models 
are estimated using linear interpolation of relative frequency 
estimates at different orders: 0 (uniform), …, n-1 (n-gram). The 
linear interpolation weights at different orders are bucketed 
according to context counts and their values are estimated using 
ML on cross-validation data [12]. The n-gram counts from the 
cross-validation data are then added to the counts gathered from 
the main data to enhance the quality of the relative frequency 
estimates. 

4. Combining Statistical classification and 
grammar based understanding 

4.1 Task Classification 

While the statistical pattern recognition techniques described in 
Section 3 are robust for task classification, they often face the 
data sparseness problem and do not generalize well. Besides, 
they are not portable: we cannot recognize an airport name that 
was not present in the training data. 

On the other hand, semantic grammars are very portable. A new 
airport can be easily introduced by adding a new rewrite rule in 
the grammar. They also provide a good generalization 
mechanism: if we know that both Seattle and Boston are cities, 
we can predict that Seattle can appear in the same context as 
Boston. 

Potential improvement can be achieved if we include CFG non-
terminals as features in the statistical classifiers. In doing so, 
statistical classifiers inherit the portability and generalization 
offered by a rule based system. It is fairly easy to create good 
grammar for city names, aircrafts, airlines from the database, and 
it is possible to reuse domain independent grammars for 
frequently used phrases, like date and time. We experimented 
with using the following 19 non-terminals from the semantic 
grammar in [7] as features in the statistical classifiers: 

Aircraft, Airline, City, Class_Type, Date_Range, Earliest, 
Fare_Basis_Code, Flight_Num, Highest, Latest, Lowest, 
Meal_Type, Num_Stops, One_Way, Price_Range, 
Restriction_Code, State, Time_Range and Transport_Type 

The training and test data are preprocessed with the semantic 
parser [6] to identify the non-terminals. The non-terminals are 
then introduced as features. Sometimes there may be 
ambiguities: multiple non-terminals may cover the same words. 
In this case, we include all non-terminals that match input sub-
strings. 

4.2 ROVER of Different Classification Results 

We can also combine the classification results in a simple 
ROVER system. We applied three different classifiers: SVM, n-
gram models and the Naïve Bayes classifier to identify the task 
for sentences, and used majority vote to pick the target class. 
When the three classifiers did not agree with each other, we 

picked the task identified by SVM, which had the best task 
classification result among the three. 

4.3 Two Stage Understanding 

Task classification is insufficient for many applications which 
require slots such as the departure/arrival city, date and time, 
airlines, etc. While semantic grammars are capable of this type of 
deep analysis, they may not be as robust as statistical classifiers 
in determining the task. Suppose that a grammar has the 
following rule: 

        ShowCapacityCommand  show seating capacity 

This rule will not cover the trigram “show the capacity” in the 
sentence “show the capacity of Boeing 747” since the robust 
parser only skips the unparsable inputs but not the rule symbols. 
Therefore the sentence may not be understood correctly as a 
ShowCapacity sentence, and the parser will simply map part of 
trigram to other non-terminals, in this case, ShowFlightCmd  
show, and misunderstand the command as ShowFlight. Statistical 
classification may not suffer from this problem because of the 
capability to learn that the existence of the word “capacity” is an 
important feature for classification. 

In the two-stage SLU, we apply the statistical classifier first to 
obtain the task class for a command, and then we dynamically 
modify the grammar [2] such that the robust parser will only 
apply the grammatical rules related to the identified task class. 

5. Experimental Results 

We first run the task classification experiments with the three 
statistical classifiers (The error rate for semantic grammar was 
5.01% as reported in [8]). For both SVMs and Naïve Bayes we 
used 464 binary word features, augmented the feature set with 
the 19 semantic non-terminals or substituted those words with 
their nonterminals. Table 1 shows the impact of including the 
semantic non-terminals on task classification. We have checked 
the statistical significance (sign test) of the “Words only” models 
versus their “Substitutional” counterpart. The only significant 
improvements were obtained for SVM (p-level=0.09) and for 
Naïve Bayes (p-level=0.01). The improvement achieved by the 
“Substitutional” SVM over its Naïve Bayes and bigram 
counterparts was not significant.  
 

 SVM Naïve Bayes unigram bigram 

Words only 2.99% 4.83% 3.68% 3.22% 

Augmentative 3.45% 4.14% 3.68% 3.68% 
Substitutional 1.84% 2.53% 4.37% 2.99% 

Table 1. Task Classification error rate. The baseline used 
word in the training samples as features. The semantic non-
terminals were included in two different modes. In 
augmentative mode, a non-terminal was inserted in front the 
words covered by it. In substitutional mode, a non-terminal 
substituted all the terminal words covered by it. 

Figures 1 and 2 plot the learning curves for SVMs and the Naive 
Bayes Classifier as a function of training data. 



We then combined the classification results of the three top 
classifiers, namely the SVM, n-gram models and the semantic 
grammar based robust parsing with the simple ROVER scheme 
mentioned earlier. The resulting classification error rate was 
1.84%, which is the same as the SVMs. 
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Figure 1. SVM Learning Curve. The dashed curve is for word-only 
features whereas in the solid curve is semantic non-terminals 
replaced the corresponding words.  
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Figure 2. Naive Bayes Classifier Learning Curve. The dashed curve 
is for word-only features whereas in the solid curve is semantic non-
terminals replaced the corresponding words. 

In the two-stage SLU experiments, we use the SVMs to identify 
the task class first, and then restricted the robust parser to use 
only the grammatical rules related to the identified task class. 
Table 2 shows that the two-stage approach improved the 
performance significantly in both task classification and slot 
identification. 
 

 Task 
Classification 

Slot 
Identification 

Robust Semantic Parser 5.01% 7.67% 
Two-Stage SLU 1.84% 5.98% 

Table 2. Task classification and slot identification error rates of the 
robust semantic parser and the two-stage SLU which uses an SVM 
for task classification and then used the identified target class to 
restrict the grammatical rules used by the parser to identify the slots. 

6. Discussion and Summary 

While the ROVER experiment did not show any improvement 
on ATIS, we believe that it is because the SVM error rate is 
already very low, and the other classifiers’ performance is not 
good enough compared to SVM. In an experiment with another 
domain, we did observe that the ROVER approach decreased the 
classification error rate from 16% to 11.5%. 

We also tried including different non-terminal sets as features for 
statistical classification. The results show that richer non-
terminals sets result in slightly better performance (1.61%) on 
SVM, but worse performance on Naive Bayes and bigram. 
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