
COMBINATION OF STATISTICAL AND RULE-BASED
APPROACHES FOR SPOKEN LANGUAGE UNDERSTANDING

Ye-Yi Wang, Alex Acero, Ciprian Chelba, Brendan Frey* and Leon Wong
Microsoft Research, One Microsoft Way, Redmond, Washington 98052, USA

*Electrical and Computer Engineering, University of Toronto

ABSTRACT
A Natural User Interface (NUI), where a user can type or speak a
request, is a good complement to the well-known Graphical User
Interface (GUI). Accurately extracting user intent from such typed
or spoken queries is a very difficult challenge. In this paper we
evaluate several techniques to extract user intent from typed
sentences in the context of the well-known Airline Travel
Information (ATIS) domain, where we want to extract which of the
possible tasks the user wants to do and the value of the slots
associated to that task. In previous work we showed that a
Semantic Context Free Grammar (CFG) semi-automatically
derived from labeled data can offer very good results. In this paper
we evaluate several statistical pattern recognition techniques
including Support Vector Machines (SVM), Naïve Bayes
classifiers and task-dependent n-gram language models. These
methods can yield a very low task classification error rate. If used
in combination with our CFG system, they can also lead to very
low slot error rates.

1. Introduction
Statistical pattern recognition and grammar-based parsing
technologies have been successfully applied for spoken language
understanding (SLU). Statistical classifiers are very robust, can be
easily trained and require little supervision during learning but
they often suffer from poor generalization when data is
insufficient. Grammar-based robust parsers are expressive and
portable, can model the language in granularity, and are easy to
modify by hand to adapt to new language usages. Although
grammars are learnable, they often require more supervision.
While they can yield an accurate and detailed analysis when a
spoken utterance is covered by the grammar, they are less robust
for those sentences not covered, even with robust understanding
techniques. Because of this, the statistical classifiers are often used
for broad and shallow understanding, and robust parsers are
frequently used for narrow and deep understanding in a specific
domain [1, 2], where grammars can be crafted carefully to cover as
many usages in the domain as possible.
The tasks of language understanding span a wide spectrum.
Some tasks only need very shallow understanding --- they
require task classification plus the identification of some simple
constituents, such as phone and credit card numbers. Others
require very deep understanding in great details.

1.1 Task Classification

Task classification is the problem of identifying the topic of an
input (e.g. ShowCapacity is the topic for “what’s the capacity of
seven three seven”.) and it is a typical pattern recognition

problem. Applications of task classification include call routing
and information retrieval [3-5]. In this paper, we study several
statistical pattern recognition techniques, including task n-gram,
Support Vector Machines (SVMs) and Naive Bayes classifiers
for task classification in ATIS. We also investigated different
approaches to integrate rule-based systems with statistical
classifiers for task classification.

1.2 Rule-based Semantic Analysis
Task classification is insufficient for applications that need more
detailed information. If a user wants to find specific information
about a flight, it is not sufficient to know that the task of user’s
utterance is ShowFlight. The SLU component should also be able
to extract the detailed information (slots) about the flight from
user’s utterance, such as departure and destination cities.

Statistical classifiers are not capable of this type of deep
understanding. Often the task is performed with a rule-based
semantic analysis [1, 2]. In [2, 6] we introduced a rule-based
understanding system, and in [7, 8] we showed that semi-
automatic grammar learning that incorporates multiple sources of
information is a viable solution for grammar authoring.

We compared our baseline semantic grammar based system with
SVM, Naïve Bayes classifier, task n-grams, as well as
combinations of the rule-based and statistical approaches on the
Airline Travel Information System (ATIS) domain. The paper
starts with a description of the experimental settings, followed by
a brief introduction of the classification algorithms, several
combined approaches and experimental results.

2. Experimental Setting
2.1 Data and Semantic Representation
We used ATIS3 set A (sentences that can be interpreted without
context) training set and the 1993 test data in our experiments.
The training set contains 1424 sentences, and the test set
contains 435 sentences. The vocabulary size is 464. Each
sentence belongs to one of six possible tasks: ShowFlight,
ShowCapacity, ListTranportation, ShowAirlineServeCity,
ListAirport and ExplainCode. Among those, ShowFlight, occurs
78% of the time in the test set, so a naïve approach that selected
this task all the time would have a task error rate of 22%.
In addition to task ID, each task can have several slots defined in
a semantic frame. The structure of the semantic frame was
derived from the CMU Phoenix semantic grammar, as described
in [8]. The example below shows the semantic representation for
“List flights from Boston to Seattle”:

International Conference on Spoken Language Processing, pp. 609-612, Denver, Colorado, 2002

In this example, the name of the top-level frame, ShowFlight, is
the task class for the sentence; the path from the root to the leaf,
like <ShowFlight><Flight><City text=”Boston” name=”Depart”>,
are slots in the semantic representation.

We need to make sure we have enough training data to build
statistical pattern classifiers. Unfortunately, for two of the six
tasks (ShowCapacity and ShowAirlineServeCity), there are no
training samples. For a third task (ExplainCode) there was one
task/slot combination for which no data was available in the
training data. As in [8], we augmented the training set with the
nine sentences below:

ShowCapacity:
What is the capacity of the aircraft m eight zero
How many people can m eight zero hold
Tell me the capacity on m eight zero

ShowAirlineServeCity:
List the cities served by united
List the cities that united flies to
What cities does united serve
ExplainCode:
Which airline is a s
What is the abbreviation u s
Tell me about the m eighty aircraft

2.2 Baseline System

We used a semantic-based SLU as our baseline system. It
includes a robust parser that uses the ATIS grammar developed
with our grammar-learning algorithm [7]. The automatically
derived CFG system described in [8] had a task error rate of
5.01% and a slot error rate of 7.67%. For comparison, the CMU
Phoenix system, the best system in the 1994 ATIS evaluation,
had a task error rate of 5.52% and a slot error rate of 9.94%.

This evaluation metric differs from that reported in [1] in that we
computed the slot error rate as the sum of slot insertions,
substitutions and deletions over the total number of slots in the
test set. We computed the task classification error rate as the
number of incorrect task labels over the total number of
sentences.

3. Statistical Classification

In this section we describe briefly the three pattern recognition
techniques we used in this paper: Naïve Bayes classifier, SVMs
and task-dependent n-gram models.

3.1 Naive Bayes Classifier

Let’s define feature vector w of dimension V, the vocabulary
size, with binary elements (features): 1 if a given word is present
in the query or 0 otherwise. The Naive Bayes classifier [9]
assumes independence among input features. Therefore, given an
input vector w, its target class can be found by choosing the one
with the highest posterior probability:

ˆ arg max (|) arg max () (|)

arg max () (|)
c c

i
c i

c P c P c P c

P c P w c

= =

= ∏
w w

 (1)

where (1|)iP w c= is the probability that word i appears in a
query of class c, and (0 |)iP w c= is the probability that word i
does not appear in a query of class c. Due to data sparseness,

(|)iP w c is estimated as

(1|) ,
2

(0 |) 1 (1|)

i
c

i
c

i i

Np w c
N

p w c p w c

β
β

+= =
+

= = − =
 (2)

where cN is the number of queries for class c in the training

data, i
cN is the number of times word i appeared in such queries.

A single prior count β is used to smooth all probabilities, which
was tuned to maximize the classification accuracy of cross-
validation data.

3.2 Support Vector Machines (SVMs)

SVMs [10] learn discriminatively by finding a hyper-surface in
the space of possible inputs of feature vectors. This hyper-
surface will attempt to split the positive examples from the
negative examples. The split will be chosen to have the largest
distance from the hyper-surface to the nearest of the positive and
negative examples. Intuitively, this makes the classification
correct for testing data that is near, but not identical to the
training data. We used the Sequential Minimal Optimization, a
fast method to train SVMs [11] in our experiments. The same
binary features used in Naïve Bayes classifiers are used for
SVMs. The cross-validation switch in the training procedure was
used due to data sparseness.

3.3 Task-dependent N-gram Models

If we view words as values of a random variable instead of
binary features, Eq. (1) can be decomposed in a different way:

1 2 1

ˆ arg max () (|)

arg max () (| , , , ,)
c

i i i
c i

c P c P c

P c P w c w w w− −

=

= ∏
w

…
 (3)

where independence assumptions can be made to use a task-
specific unigram (|),iP w c bigram 1(| ,)i iP w c w − or trigram

1 2(| , ,)i i iP w c w w− − .

Let’s note that the task unigram and the Naïve Bayes classifier
defined in Section 3.1 are not the same because the vector in the
Naïve Bayes case has a length equating the vocabulary size and

<ShowFlight text=”list flights from Boston to Seattle”>
 <Flight>

 <City text=”Boston” name=”Depart”/>
 <City text=”Seattle” name=”Arrive”/>
 </Flight>
 </ShowFlight>

thus assigns probability to a word being/not being there, whereas
for the task unigram only words that are present in a given
sentence contribute to the score.

The n-gram probabilities for the class specific language models
are estimated using linear interpolation of relative frequency
estimates at different orders: 0 (uniform), …, n-1 (n-gram). The
linear interpolation weights at different orders are bucketed
according to context counts and their values are estimated using
ML on cross-validation data [12]. The n-gram counts from the
cross-validation data are then added to the counts gathered from
the main data to enhance the quality of the relative frequency
estimates.

4. Combining Statistical classification and
grammar based understanding

4.1 Task Classification

While the statistical pattern recognition techniques described in
Section 3 are robust for task classification, they often face the
data sparseness problem and do not generalize well. Besides,
they are not portable: we cannot recognize an airport name that
was not present in the training data.

On the other hand, semantic grammars are very portable. A new
airport can be easily introduced by adding a new rewrite rule in
the grammar. They also provide a good generalization
mechanism: if we know that both Seattle and Boston are cities,
we can predict that Seattle can appear in the same context as
Boston.

Potential improvement can be achieved if we include CFG non-
terminals as features in the statistical classifiers. In doing so,
statistical classifiers inherit the portability and generalization
offered by a rule based system. It is fairly easy to create good
grammar for city names, aircrafts, airlines from the database, and
it is possible to reuse domain independent grammars for
frequently used phrases, like date and time. We experimented
with using the following 19 non-terminals from the semantic
grammar in [7] as features in the statistical classifiers:

Aircraft, Airline, City, Class_Type, Date_Range, Earliest,
Fare_Basis_Code, Flight_Num, Highest, Latest, Lowest,
Meal_Type, Num_Stops, One_Way, Price_Range,
Restriction_Code, State, Time_Range and Transport_Type

The training and test data are preprocessed with the semantic
parser [6] to identify the non-terminals. The non-terminals are
then introduced as features. Sometimes there may be
ambiguities: multiple non-terminals may cover the same words.
In this case, we include all non-terminals that match input sub-
strings.

4.2 ROVER of Different Classification Results

We can also combine the classification results in a simple
ROVER system. We applied three different classifiers: SVM, n-
gram models and the Naïve Bayes classifier to identify the task
for sentences, and used majority vote to pick the target class.
When the three classifiers did not agree with each other, we

picked the task identified by SVM, which had the best task
classification result among the three.

4.3 Two Stage Understanding

Task classification is insufficient for many applications which
require slots such as the departure/arrival city, date and time,
airlines, etc. While semantic grammars are capable of this type of
deep analysis, they may not be as robust as statistical classifiers
in determining the task. Suppose that a grammar has the
following rule:

 ShowCapacityCommand show seating capacity

This rule will not cover the trigram “show the capacity” in the
sentence “show the capacity of Boeing 747” since the robust
parser only skips the unparsable inputs but not the rule symbols.
Therefore the sentence may not be understood correctly as a
ShowCapacity sentence, and the parser will simply map part of
trigram to other non-terminals, in this case, ShowFlightCmd
show, and misunderstand the command as ShowFlight. Statistical
classification may not suffer from this problem because of the
capability to learn that the existence of the word “capacity” is an
important feature for classification.

In the two-stage SLU, we apply the statistical classifier first to
obtain the task class for a command, and then we dynamically
modify the grammar [2] such that the robust parser will only
apply the grammatical rules related to the identified task class.

5. Experimental Results

We first run the task classification experiments with the three
statistical classifiers (The error rate for semantic grammar was
5.01% as reported in [8]). For both SVMs and Naïve Bayes we
used 464 binary word features, augmented the feature set with
the 19 semantic non-terminals or substituted those words with
their nonterminals. Table 1 shows the impact of including the
semantic non-terminals on task classification. We have checked
the statistical significance (sign test) of the “Words only” models
versus their “Substitutional” counterpart. The only significant
improvements were obtained for SVM (p-level=0.09) and for
Naïve Bayes (p-level=0.01). The improvement achieved by the
“Substitutional” SVM over its Naïve Bayes and bigram
counterparts was not significant.

 SVM Naïve Bayes unigram bigram

Words only 2.99% 4.83% 3.68% 3.22%

Augmentative 3.45% 4.14% 3.68% 3.68%
Substitutional 1.84% 2.53% 4.37% 2.99%

Table 1. Task Classification error rate. The baseline used
word in the training samples as features. The semantic non-
terminals were included in two different modes. In
augmentative mode, a non-terminal was inserted in front the
words covered by it. In substitutional mode, a non-terminal
substituted all the terminal words covered by it.

Figures 1 and 2 plot the learning curves for SVMs and the Naive
Bayes Classifier as a function of training data.

We then combined the classification results of the three top
classifiers, namely the SVM, n-gram models and the semantic
grammar based robust parsing with the simple ROVER scheme
mentioned earlier. The resulting classification error rate was
1.84%, which is the same as the SVMs.

0%

2%

4%

6%

8%

10%

0 300 600 900 1200
Number of training sentences

C
la

ss
ifi

ca
tio

n
er

ro
r r

at
e

Figure 1. SVM Learning Curve. The dashed curve is for word-only
features whereas in the solid curve is semantic non-terminals
replaced the corresponding words.

0%

2%

4%

6%

8%

10%

12%

0 300 600 900 1200
Number of training sentences

C
la

ss
ifi

ca
tio

n
Er

ro
r r

at
e

Figure 2. Naive Bayes Classifier Learning Curve. The dashed curve
is for word-only features whereas in the solid curve is semantic non-
terminals replaced the corresponding words.

In the two-stage SLU experiments, we use the SVMs to identify
the task class first, and then restricted the robust parser to use
only the grammatical rules related to the identified task class.
Table 2 shows that the two-stage approach improved the
performance significantly in both task classification and slot
identification.

 Task
Classification

Slot
Identification

Robust Semantic Parser 5.01% 7.67%
Two-Stage SLU 1.84% 5.98%

Table 2. Task classification and slot identification error rates of the
robust semantic parser and the two-stage SLU which uses an SVM
for task classification and then used the identified target class to
restrict the grammatical rules used by the parser to identify the slots.

6. Discussion and Summary

While the ROVER experiment did not show any improvement
on ATIS, we believe that it is because the SVM error rate is
already very low, and the other classifiers’ performance is not
good enough compared to SVM. In an experiment with another
domain, we did observe that the ROVER approach decreased the
classification error rate from 16% to 11.5%.

We also tried including different non-terminal sets as features for
statistical classification. The results show that richer non-
terminals sets result in slightly better performance (1.61%) on
SVM, but worse performance on Naive Bayes and bigram.

7. Acknowledgements

The authors would like to thank John Platt for the help with the
SMOX SVM learning tool, and thank Susan Dumais, David
Heckerman, X.D. Huang, Kai-Fu Lee, Scott Meredith and John
Platt for their insightful suggestions.

8. References
[1] Ward, W. “Recent Improvements in the CMU Spoken

Language Understanding System” in Human Language
Technology Workshop 1994, Plainsboro, New Jersey.

[2] Wang, Y.-Y. “Robust Spoken Language Understanding in
MiPad” in Eurospeech 2001, Aalborg, Denmark.

[3] Carpenter, B. and J. Chu-Carol. “Natural Language Call
Routing: a Robust, Self-organizing Approach” in
International Conference on Speech and Language
Processing, 1998, Sydney Australia.

[4] Dumais, S., “Using SVMs for Text Categorization” in IEEE
Intelligent Systems Magazine, Trends and Controversies,
1998. 13(4).

[5] Gorin, A., “On Automated Language Acqusition” in
Journal of Acoustical Society of America, 1995. 97(6): p.
3441-3461.

[6] Wang, Y.-Y. “Robust Parser for Spoken Language
Understanding” in Eurospeech 1999, Budapest, Hungary.

[7] Wang, Y. and A. Acero. “Grammar Learning for Spoken
Language Understanding” in IEEE workshop on Automatic
Speech Recognition and Understanding, 2001, Madonna di
Campiglio, Italy.

[8] Wang, Y.-Y. and A. Acero. “Evaluation of Spoken
Language Grammar Learning in ATIS Domain” in ICASSP
2002. Orlando, Florida.

[9] Duda, R.O. and P.E. Hart. Pattern Classification and Scene
Analysis, 1973, New York, Wiley.

[10] Burger, C.J.C., “A Tutorial on Support Vector Machines for
Pattern Recognition” in Data Mining and Knowledge
Discovery, 1998. 2(2): p. 121-167.

[11] Platt, J.C. “Fast Training of Support Vector Machines
Using Sequential Minimal Optimization” in Advances in
Kernel Methods -- Support Vector Learning, B. Scholkopf,
C.J.C. Burger, and A.J. Smola, Editors. 1999. p. 185--208.

[12] Jelinek, F. and R. Mercer. “Interpolated Estimation of
Markov Source parameters from Sparse Data” in Pattern
Recognition in Practice, D. Gelsema and L. Kanal, Editors.
1980, North-Holland.

