
EVALUATION OF SPOKEN LANGUAGE GRAMMAR 
LEARNING IN THE ATIS DOMAIN 

Ye-Yi Wang and Alex Acero 
Microsoft Research 

Redmond, Washington 98052, USA 
 

ABSTRACT 
To facilitate the development of speech enabled applications and 
services, researchers have been working on a variety of smart 
tools. Recently we have introduced a schema-based context free 
grammar learning algorithm aiming at the development of real 
applications. In that paper we have described the algorithm and 
given some experimental results on the data of our in-house 
project. To study the general applicability of the algorithm as well 
as to provide the research community with more informative 
results, we have applied the algorithm to the well studied ATIS 
task and compared the performance of the learned grammar with 
one of the best performers in ATIS evaluations. The results show 
that the semi-automatically learned grammar achieves comparable 
performance to the manually authored grammar. 
 

1. INTRODUCTION 
While conversational systems have been developed in research 
labs for many years, speech-enabled conversational systems are 
still not mainstream in the real word. One of the problems, as we 
perceive it, is the requirement of intensive language engineering. 
For example, semantic-based robust understanding is a 
successful technology that has been widely used in research 
conversational systems [1-4]. However, such implementations 
have relied on manual development of a domain-specific 
grammar, a task that is time-consuming, error-prone and 
requires a significant amount of expertise. 

To facilitate the development of speech enabled applications and 
services, researchers have been working on tools for rapid 
development of mixed-initiative systems [5, 6]. In [6], we 
introduced an engineering approach that could greatly ease 
grammar development by taking advantage of many different 
sources of prior information. In doing so, a good quality 
semantic grammar can be derived semi-automatically with a 
small amount of data. The preliminary results indicate that the 
proposed machine aided grammar development framework is 
very promising: the technique not only significantly reduces the 
effort in grammar development, but also improves the 
understanding performance: the learned grammar consistently 
reduces the error rate by 40% ~ 60%. 
However, the results in [6] were obtained from the experiments 
with our internal data in the domain of personal information 
management. No comparative studies have been conducted 
between our baseline system using manual grammar and other 
technologies. Therefore the improvement over the baseline in [6] 
may not be convincing. Furthermore, the preliminary success 
may just be an artifact of the fact that we have worked on the 
problem for a long period of time and the solution may simply 
be well suited to that particular problem. 

To study the general applicability of the algorithm as well as to 
provide the research community with more informative results, 
we decided to apply our approach to a well studied problem in 
the public domain. The Airline Travel Information System 
(ATIS) [8] comes naturally as a choice since many labs have 
participated in ATIS evaluations. Another reason to use ATIS 
for evaluation is that we have the access to one of the best SLU 
performers in many years of the DARPA-sponsored ATIS 
evaluations, the CMU Phoenix/ATIS system. 

In this paper, we will report some experimental results of our 
grammar authoring system on the ATIS data and compare it 
with the CMU system. The paper starts with a brief introduction 
of the algorithm, followed by a detailed description of the 
experimental setting and results, and ends with some discussion. 

2. GRAMMAR LEARNING REVIEW 
The learning algorithm starts with a semantic schema that 
defines the entity relations of a specific domain. It can be 
viewed as the specification for a language-enabled application. 
Schemas are language independent in the sense that they do not 
specify the linguistic expressions used to express the semantic 
entities. Schemas are manually authored by application 
developers. Because of language independency, it is much 
simpler to develop a schema than the linguistic context free 
grammars for spoken language understanding. For example, the 
ATIS schema can be printed out in 2 pages, while the CMU 
ATIS grammar requires 200+ pages. We found that an average 
developer with good understanding of the application that he is 
developing can easily author the semantic schema in half a day 
for a fairly complicated application in the PIM domain. 
Moreover, since semantic schemas play a critical role in dialog 
management [7], they have to be developed anyway in a multi-
modal application; therefore it is not an extra burden for 
developers. The following is an example of concept definitions 
in a semantic schema: 
   <entity type=”ExistingAppt” name=”ApptByAttribute”> 
          <slot type=”People”/> 
   </entity> 

From the schema, a skeleton context free grammar can be 
automatically derived according to some templates. This 
skeleton CFG incorporates the semantic constraints specified in 
the schema. For example, the command in the previous schema 
example can derive the following CFG pieces: 
<T_ExistingAppt>  <C_ApptByAttributes>      (1) 
<C_ApptByAttributes>   {<ApptByAttributeMods>}   
     <ApptByAttributeHead>  {<ApptByAttributeProperties>}    (2) 
<ApptByAttributeProperties>  <ApptByAttributeProperty>  
     {<ApptByAttributeProperties>}                                               (3) 
<ApptByAttributeProperty>   
     <ApptByAttributePeopleProperty> | 
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     <ApptByAttributeStartTimeProperty> | 
     <ApptByAttributeEndTimeProperty>      (4) 
<ApptByAttributePeopleProperty>     
     {<PreApptByAttributePeopleProperty>} <T_People>     
     {<PostApptByAttributePeopleProperty>}      (5) 
<ApptByAttributeHead>    NN                          (6) 
<PreApptByAttributePeopleProperty>  .* 
<T_UpdateAppt>  <C_AddAttendee>  

Here an entity, like ApptByAttributes, consists of a head, optional 
(in braces) modifiers that appear in front of the head (e.g. 
“Alex’s meeting”), and optional properties that follow the head 
(e.g. “meeting with Alex”) (rule 2). Both modifiers and 
properties are defined recursively, so that they finally 
incorporate a sequence of different slots (rules 3-4). Each slot is 
bracketed by an optional preamble and post-amble (rule 5). The 
heads, slot preambles and post-ambles are originally 
placeholders (.*). Some placeholders could be specified with 
part-of-speech constraints --- e.g., head must be a NN (noun). A 
different template can be used to generate the CFG for a 
command semantic class. The templates set up the structural 
skeleton of a grammar. The placeholders, without any learning, 
can match anything. This makes the grammar greatly under-
specified. A robust parser using this kind of grammars may 
result in too many ambiguous parses. The task of grammar 
learning, therefore, becomes to learn the expressions for these 
placeholders such that the grammar could be more specific and 
less ambiguous. 
 
In addition to the automatically derived skeleton CFG, some 
domain-independent low level semantic entities, such as date, 
time, duration, postal address, currency, numbers, percentage, 
etc, can be written once and then shared by many applications. 
The grammars for these entities are manually authored and 
placed in a grammar library. Our grammar authoring tool allows 
users to associate a semantic concept in the schema with 
grammar rules in a grammar library. The grammar library may 
also contain application-dependent lexical rules. Normally these 
rules can be automatically obtained from the application-related 
database, for example, a list of airline names, aircraft codes, etc, 
in the airline travel domain. 
To learn the linguistic expression for each of the placeholders in 
the skeleton grammar, our grammar learning tool takes 
advantage of the training data annotated against the schema. For 
example, the sentence “invite Ed to the meeting with Alex” is 
annotated against the schema in Fig. 1. 

 

Fig. 1. Semantic annotation of a sentence against the schema. 
 
The annotations are used to reduce the search space for the 
grammar rules related to those placeholder pre-terminals. Our 
robust parser can find the parse of a sentence that satisfies the 
constraints specified in the semantic annotation of the sentence. 

In the parse, some input segments must match the CFG non-
terminals that correspond to the marked semantic constituents in 
the annotation. These segments serve as the anchor points and 
divide the words-to-pre-terminal alignment space: the words that 
appear before/after an anchor point can only align to those pre-
terminals that can legally appear before/after those anchor point 
non-terminals according to the skeleton CFG derived from the 
schema. This, together with some syntactic constraints described 
in [6], greatly reduces the search space and makes the learning 
plausible. 
 

3. EXPERIMENTAL SETTING 
To apply our technique to ATIS data, we need to first define the 
schema of the application, and then annotated the training 
sentences according to the schema. We did this with the help of 
the Phoenix/ATIS system. 

3.1 Phoenix/ATIS System 

The Phoenix spoken language understanding system was used 
by CMU in the ATIS evaluation [1]. It uses frames to represent 
semantic relations. A frame represents some basic type of action 
for the application. Slots in a frame represent the information 
that is relevant to the action. Slots in a frame are filled by 
matching patterns in an input string (sentence). The slots are 
filled independent of the order in which they appear in the 
frame. The patterns which fill slots are represented as Recursive 
Transition Networks (RTNs). Each slot has a grammar which 
specifies the patterns (strings of words) that can fill the slot. 
Since the patterns are compiled into RTNs, they can include 
calls to other networks. During parsing, the system uses slot-nets 
to match substrings in the input sentence. When a slot-net 
matches a substring, it is passed along for incorporation into 
frames. The system uses a beam search for frames. When a slot 
matches, it will extend all active frames that contain that slot. It 
will also activate any currently inactive frames that contain the 
slot. At the end of the sentence, the single best parse is returned 
from the beam.  

3.2 Evaluation Criteria 

The original DARPA-sponsored ATIS evaluation was conducted 
with a backend database. Sentences are first parsed by Phoenix 
with the ATIS RTNs. The analysis results were then translated 
into database queries to obtain the information requested by the 
user. The obtained database entries were compared with the 
target entries manually labeled for each sentence. A target entry 
is a pair of minimum and maximum information, which 
indicates the columns that have to be returned (minimum 
information) and the maximum columns that are allowed to be 
returned from the database. The minimum-maximum target 
evaluation mechanism penalizes the implementation that always 
returns all information regardless of what users have requested 
for. 

Unfortunately, the translation from the analysis results to SQL 
queries depends on the grammar used in the analysis. Hence the 
translator for Phoenix/ATIS cannot be used by our system with 
learned grammar. The implementation of the translator is as hard 
as manual grammar development, if not harder. If possible, we 
would like to avoid implementing the translator which is not 

<AddAttendee text=”invite Ed to the meeting with Alex”>    
         <ApptByAttributes text=”the meeting with Alex”> 
                  <People text=”Alex”/> 
         </ApptByAttributes> 
         <People text=”Ed”/> 
</AddAttendee> 



  

essential in this study. Fortunately enough, we have the entire 
Phoenix system. This makes it possible to evaluate the 
performance with respect to a canonical semantic annotation 
instead of the database query results --- For Phoenix/ATIS, if the 
semantic schema is designed in such a way that it is very close 
to the CMU ATIS grammar, the parsing result can be 
automatically converted into the semantic annotations like the 
one in Fig. 1, and then compared with manual annotations to get 
the performance. For our robust parser/learned grammar, it 
directly generates the semantic markup of a sentence. The 
markups are then compared with the manual annotation. The 
number of insertions, deletions and substitutions of slots in the 
annotation were then collected for performance evaluation. 

3.3 ATIS Schema 

To facilitate the automatic conversion from Phoenix/ATIS 
parses to the semantic annotation, we have designed the schema 
to be as close to the Phoenix ATIS grammar as possible. This 
was achieved by looking at the frame definitions of the ATIS 
grammar for Phoenix. Strictly speaking, the slots in 
Phoenix/ATIS are not semantic slots. They are linguistic chunks 
that hold semantic slots together. For example, the slot 
“ARRIVE” for the frame “ShowFlight” actually contains multiple 
semantic slots like arrive_data, arrive_time and arrive_location. 
These semantic slots may also be included in other Phoenix 
slots, such as ARRIVE_DATE_RANGE, ARRIVE_LOC, etc. 

To find the semantic slot that is related to a semantic class 
(frame), we followed the Phoenix/ATIS slot rules and extracted 
the semantic concepts like arrive_data, arrive_time. The final 
schema contains 8 top level semantic classes and 46 slots for 
those classes.  

3.4 Grammar Library 

Some application dependent CFG lexical rules are converted 
from the Phoenix/ATIS RTNs to non-terminal rules in our CFG 
grammar. The non-terminals include:  

aircraft_name, airline_code, airline_name, airport_code, 
airport_name, cityname, class_type (e.g. business coach, etc), 
fare_basis_code, flight_number, meal_type (e.g. breakfast, lunch, 
dinner, etc), one_way (e.g. one way, round trip, etc), res-
triction_code, state, time, date, transport_type (e.g. taxi, bus, etc). 

The grammar library also includes some domain independent 
entities such as date, time, duration, number, price, etc. This part 
of the library has been used in another domain for in [6]. 

3.5 Data 

We used ATIS3 [8] training set A (sentences that can be 
interpreted without context, ~1600 sentences) to learn the 
grammar with our grammar authoring tool, and used the ATIS3 
1993 test set A (~450 sentences) for testing. 

3.6 Annotations 

Both training and test data are analyzed with the Phoenix/ATIS 
system. The parsing results were converted to XML format. It is 
then converted to the schema annotation with an XSL stylesheet. 
The annotations are then manually checked to modify the 
parsing errors introduced by Phoenix/ATIS. 

4. EXPERIMENTAL RESULTS 
We studied the topic ID and slot ID performance of the two 
grammars. Topic ID performance was measured by comparing 
the parser-found frame/semantic class name of a sentence with 
the manually labeled one. In slot ID evaluation, slots were 
extracted by listing all the paths from the root to the pre-
terminals in the semantic parse tree, and the resulting list was 
compared with that of the manual annotation. Hence a topic ID 
error will cause all the slots in a parse tree to be incorrect in the 
slot ID evaluation. 
 

 Phoenix Learned 
Grammar 

Learned Grammar w/ 
extra data 

Topic ID 5.52 11.03 5.06 
Joint Topic 
& Slot ID 9.94 9.35 7.67 

Table 1. Error rates for the ATIS task of Phoenix and our Robust Parser 
with the learned grammar both when using only the training data and 
when augmenting it with 9 sentences to cover topics missing in the 
training data. Topic ID refers to the top level command (show flights, 
show capacity, etc). Joint topic & slot ID refers to the full path from root 
to a leaf slots, i.e. it also includes the corresponding slots (Seattle, New 
York, etc). 

Table 1 compares the error rates between the Phoenix/ATIS 
analysis and our robust parser [3] with the learned grammar 
(column 2, 3). It appears that Phoenix/ has much better 
performance in topic ID than our system trained with the ATIS 
training data. This is due to the fact that some topics that 
appeared in the test data has never occurred in the training data. 
For example, 4% of the test data are ShowCapacity sentences 
(e.g., “what is the capacity of MD 10”), and no single sentence 
in the training data covers that topic. While this may be less of a 
problem for a grammar authored by an expert with good 
knowledge of the application domain, it is impossible for a data 
driven system like ours to learn the grammar rules for that topic 
from nothing. 
 
However, in the real scenario of grammar development, this 
problem rarely happens. The grammar developer would provide 
samples for all the semantic classes in the applications. Actually 
our learning tool is capable of warning developers that certain 
semantic/slots have never been covered by training samples and 
therefore asking developers to provide extra samples for them. 
To see how this helps, we ran another experiment where we 
augmented the ATIS training data with 3 sentences for each of 
the 3 topics that our system has prompted for more data: 
 
ShowCapacity: 
What is the capacity of the aircraft m eight zero 
How many people can m eight zero hold 
Tell me the capacity on m eight zero 
ShowAirlineServeCity: 
List the cities served by united 
List the cities that united flies to 
What cities does united serve 
ExplainCode: 
Which airline is A S 
What is the abbreviation U S 
Tell me about the m eighty aircraft 



  

As shown in Table 1, augmenting training data this way 
significantly improves both topic ID and slot ID to the point that 
the combined system reduces the Topic ID and the joint 
topic&slot ID error rates are lower by 8% and 23% repectively 
over those of the Phoenix system. As in [6], we also investigated 
the effect of training data on the performance. Fig. 2 shows the 
Topic ID error rates of the learned grammar relative to the 
amount of annotated training data, with and without the extra 
sentences listed above, as well as the performance of the 
manually authored Phoenix grammar. Fig. 3 illustrates the slot 
performance of the same grammars. These two figures show the 
similar meritorious property observed in [6]: the most significant 
error reduction was achieved with the first 200 annotated 
sentences. Therefore the algorithm does not require developers 
to collect and annotate a large amount of training data. 
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Fig. 2. Topic ID error rate vs. amount of annotated training data. The 
dashed horizontal line represents Phoenix/ATIS. The dashed curve 
represents the grammar trained with ATIS3 set A training data; the solid 
curve represents grammar trained with the extra sentences. Note that 200 
sentences are generally sufficient. 

5. DISCUSSIONS AND SUMMARY 
The evaluation was somehow biased in favor of Phoenix/ATIS 
due to the following reasons: 

1. The schema was derived from the Phoenix grammar. In 
other words, the semantic representation was designed 
to fit the Phoenix analysis grammar; 

2. The test data annotation was derived from the Phoenix 
output. In case that ambiguous parses exist, only the 
one picked by the Phoenix parser is considered correct. 

The grammar used by Phoenix for ATIS is very complicated. It 
consists of 3187 non-terminals and 13291 grammar rules. Our 
learned grammar is much smaller than that. There are 592 
nonterminals (437 from grammar library and 155 from the 
skeleton grammar generated from the schema) and 3225 rules 
(2403 from the grammar library; 134 from the skeleton grammar 
and 688 learned from the annotated data.) The smaller grammar 
size not only makes the parser work faster, but also makes it 
easier to maintain. 
Even with the bias against it, our robust parser achieved 
comparable performance to Phoenix/ATIS, without the intensive 
grammar authoring effort.  The learned grammar is smaller and 

follows a common paradigm. This makes the grammar much 
easier to maintain. 
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Fig. 3. Slot error rate (Ins+Del+Sub) vs. amount of annotated training 
data. The dashed horizontal line represents Phoenix/ATIS. The dashed 
curve represents the grammar trained with ATIS3 training data; the solid 
curve represents grammar trained with the extra sentences. Note that 200 
sentences are generally sufficient. 
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