
EVALUATION OF SPOKEN LANGUAGE GRAMMAR
LEARNING IN THE ATIS DOMAIN

Ye-Yi Wang and Alex Acero
Microsoft Research

Redmond, Washington 98052, USA

ABSTRACT
To facilitate the development of speech enabled applications and
services, researchers have been working on a variety of smart
tools. Recently we have introduced a schema-based context free
grammar learning algorithm aiming at the development of real
applications. In that paper we have described the algorithm and
given some experimental results on the data of our in-house
project. To study the general applicability of the algorithm as well
as to provide the research community with more informative
results, we have applied the algorithm to the well studied ATIS
task and compared the performance of the learned grammar with
one of the best performers in ATIS evaluations. The results show
that the semi-automatically learned grammar achieves comparable
performance to the manually authored grammar.

1. INTRODUCTION
While conversational systems have been developed in research
labs for many years, speech-enabled conversational systems are
still not mainstream in the real word. One of the problems, as we
perceive it, is the requirement of intensive language engineering.
For example, semantic-based robust understanding is a
successful technology that has been widely used in research
conversational systems [1-4]. However, such implementations
have relied on manual development of a domain-specific
grammar, a task that is time-consuming, error-prone and
requires a significant amount of expertise.

To facilitate the development of speech enabled applications and
services, researchers have been working on tools for rapid
development of mixed-initiative systems [5, 6]. In [6], we
introduced an engineering approach that could greatly ease
grammar development by taking advantage of many different
sources of prior information. In doing so, a good quality
semantic grammar can be derived semi-automatically with a
small amount of data. The preliminary results indicate that the
proposed machine aided grammar development framework is
very promising: the technique not only significantly reduces the
effort in grammar development, but also improves the
understanding performance: the learned grammar consistently
reduces the error rate by 40% ~ 60%.
However, the results in [6] were obtained from the experiments
with our internal data in the domain of personal information
management. No comparative studies have been conducted
between our baseline system using manual grammar and other
technologies. Therefore the improvement over the baseline in [6]
may not be convincing. Furthermore, the preliminary success
may just be an artifact of the fact that we have worked on the
problem for a long period of time and the solution may simply
be well suited to that particular problem.

To study the general applicability of the algorithm as well as to
provide the research community with more informative results,
we decided to apply our approach to a well studied problem in
the public domain. The Airline Travel Information System
(ATIS) [8] comes naturally as a choice since many labs have
participated in ATIS evaluations. Another reason to use ATIS
for evaluation is that we have the access to one of the best SLU
performers in many years of the DARPA-sponsored ATIS
evaluations, the CMU Phoenix/ATIS system.

In this paper, we will report some experimental results of our
grammar authoring system on the ATIS data and compare it
with the CMU system. The paper starts with a brief introduction
of the algorithm, followed by a detailed description of the
experimental setting and results, and ends with some discussion.

2. GRAMMAR LEARNING REVIEW
The learning algorithm starts with a semantic schema that
defines the entity relations of a specific domain. It can be
viewed as the specification for a language-enabled application.
Schemas are language independent in the sense that they do not
specify the linguistic expressions used to express the semantic
entities. Schemas are manually authored by application
developers. Because of language independency, it is much
simpler to develop a schema than the linguistic context free
grammars for spoken language understanding. For example, the
ATIS schema can be printed out in 2 pages, while the CMU
ATIS grammar requires 200+ pages. We found that an average
developer with good understanding of the application that he is
developing can easily author the semantic schema in half a day
for a fairly complicated application in the PIM domain.
Moreover, since semantic schemas play a critical role in dialog
management [7], they have to be developed anyway in a multi-
modal application; therefore it is not an extra burden for
developers. The following is an example of concept definitions
in a semantic schema:
 <entity type=”ExistingAppt” name=”ApptByAttribute”>
 <slot type=”People”/>
 </entity>

From the schema, a skeleton context free grammar can be
automatically derived according to some templates. This
skeleton CFG incorporates the semantic constraints specified in
the schema. For example, the command in the previous schema
example can derive the following CFG pieces:
<T_ExistingAppt> <C_ApptByAttributes> (1)
<C_ApptByAttributes> {<ApptByAttributeMods>}
 <ApptByAttributeHead> {<ApptByAttributeProperties>} (2)
<ApptByAttributeProperties> <ApptByAttributeProperty>
 {<ApptByAttributeProperties>} (3)
<ApptByAttributeProperty>
 <ApptByAttributePeopleProperty> |

IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. I-41- I-44, IEEE, Orlando, Florida, 2002

 <ApptByAttributeStartTimeProperty> |
 <ApptByAttributeEndTimeProperty> (4)
<ApptByAttributePeopleProperty>
 {<PreApptByAttributePeopleProperty>} <T_People>
 {<PostApptByAttributePeopleProperty>} (5)
<ApptByAttributeHead> NN (6)
<PreApptByAttributePeopleProperty> .*
<T_UpdateAppt> <C_AddAttendee>

Here an entity, like ApptByAttributes, consists of a head, optional
(in braces) modifiers that appear in front of the head (e.g.
“Alex’s meeting”), and optional properties that follow the head
(e.g. “meeting with Alex”) (rule 2). Both modifiers and
properties are defined recursively, so that they finally
incorporate a sequence of different slots (rules 3-4). Each slot is
bracketed by an optional preamble and post-amble (rule 5). The
heads, slot preambles and post-ambles are originally
placeholders (.*). Some placeholders could be specified with
part-of-speech constraints --- e.g., head must be a NN (noun). A
different template can be used to generate the CFG for a
command semantic class. The templates set up the structural
skeleton of a grammar. The placeholders, without any learning,
can match anything. This makes the grammar greatly under-
specified. A robust parser using this kind of grammars may
result in too many ambiguous parses. The task of grammar
learning, therefore, becomes to learn the expressions for these
placeholders such that the grammar could be more specific and
less ambiguous.

In addition to the automatically derived skeleton CFG, some
domain-independent low level semantic entities, such as date,
time, duration, postal address, currency, numbers, percentage,
etc, can be written once and then shared by many applications.
The grammars for these entities are manually authored and
placed in a grammar library. Our grammar authoring tool allows
users to associate a semantic concept in the schema with
grammar rules in a grammar library. The grammar library may
also contain application-dependent lexical rules. Normally these
rules can be automatically obtained from the application-related
database, for example, a list of airline names, aircraft codes, etc,
in the airline travel domain.
To learn the linguistic expression for each of the placeholders in
the skeleton grammar, our grammar learning tool takes
advantage of the training data annotated against the schema. For
example, the sentence “invite Ed to the meeting with Alex” is
annotated against the schema in Fig. 1.

Fig. 1. Semantic annotation of a sentence against the schema.

The annotations are used to reduce the search space for the
grammar rules related to those placeholder pre-terminals. Our
robust parser can find the parse of a sentence that satisfies the
constraints specified in the semantic annotation of the sentence.

In the parse, some input segments must match the CFG non-
terminals that correspond to the marked semantic constituents in
the annotation. These segments serve as the anchor points and
divide the words-to-pre-terminal alignment space: the words that
appear before/after an anchor point can only align to those pre-
terminals that can legally appear before/after those anchor point
non-terminals according to the skeleton CFG derived from the
schema. This, together with some syntactic constraints described
in [6], greatly reduces the search space and makes the learning
plausible.

3. EXPERIMENTAL SETTING
To apply our technique to ATIS data, we need to first define the
schema of the application, and then annotated the training
sentences according to the schema. We did this with the help of
the Phoenix/ATIS system.

3.1 Phoenix/ATIS System

The Phoenix spoken language understanding system was used
by CMU in the ATIS evaluation [1]. It uses frames to represent
semantic relations. A frame represents some basic type of action
for the application. Slots in a frame represent the information
that is relevant to the action. Slots in a frame are filled by
matching patterns in an input string (sentence). The slots are
filled independent of the order in which they appear in the
frame. The patterns which fill slots are represented as Recursive
Transition Networks (RTNs). Each slot has a grammar which
specifies the patterns (strings of words) that can fill the slot.
Since the patterns are compiled into RTNs, they can include
calls to other networks. During parsing, the system uses slot-nets
to match substrings in the input sentence. When a slot-net
matches a substring, it is passed along for incorporation into
frames. The system uses a beam search for frames. When a slot
matches, it will extend all active frames that contain that slot. It
will also activate any currently inactive frames that contain the
slot. At the end of the sentence, the single best parse is returned
from the beam.

3.2 Evaluation Criteria

The original DARPA-sponsored ATIS evaluation was conducted
with a backend database. Sentences are first parsed by Phoenix
with the ATIS RTNs. The analysis results were then translated
into database queries to obtain the information requested by the
user. The obtained database entries were compared with the
target entries manually labeled for each sentence. A target entry
is a pair of minimum and maximum information, which
indicates the columns that have to be returned (minimum
information) and the maximum columns that are allowed to be
returned from the database. The minimum-maximum target
evaluation mechanism penalizes the implementation that always
returns all information regardless of what users have requested
for.

Unfortunately, the translation from the analysis results to SQL
queries depends on the grammar used in the analysis. Hence the
translator for Phoenix/ATIS cannot be used by our system with
learned grammar. The implementation of the translator is as hard
as manual grammar development, if not harder. If possible, we
would like to avoid implementing the translator which is not

<AddAttendee text=”invite Ed to the meeting with Alex”>
 <ApptByAttributes text=”the meeting with Alex”>
 <People text=”Alex”/>
 </ApptByAttributes>
 <People text=”Ed”/>
</AddAttendee>

essential in this study. Fortunately enough, we have the entire
Phoenix system. This makes it possible to evaluate the
performance with respect to a canonical semantic annotation
instead of the database query results --- For Phoenix/ATIS, if the
semantic schema is designed in such a way that it is very close
to the CMU ATIS grammar, the parsing result can be
automatically converted into the semantic annotations like the
one in Fig. 1, and then compared with manual annotations to get
the performance. For our robust parser/learned grammar, it
directly generates the semantic markup of a sentence. The
markups are then compared with the manual annotation. The
number of insertions, deletions and substitutions of slots in the
annotation were then collected for performance evaluation.

3.3 ATIS Schema

To facilitate the automatic conversion from Phoenix/ATIS
parses to the semantic annotation, we have designed the schema
to be as close to the Phoenix ATIS grammar as possible. This
was achieved by looking at the frame definitions of the ATIS
grammar for Phoenix. Strictly speaking, the slots in
Phoenix/ATIS are not semantic slots. They are linguistic chunks
that hold semantic slots together. For example, the slot
“ARRIVE” for the frame “ShowFlight” actually contains multiple
semantic slots like arrive_data, arrive_time and arrive_location.
These semantic slots may also be included in other Phoenix
slots, such as ARRIVE_DATE_RANGE, ARRIVE_LOC, etc.

To find the semantic slot that is related to a semantic class
(frame), we followed the Phoenix/ATIS slot rules and extracted
the semantic concepts like arrive_data, arrive_time. The final
schema contains 8 top level semantic classes and 46 slots for
those classes.

3.4 Grammar Library

Some application dependent CFG lexical rules are converted
from the Phoenix/ATIS RTNs to non-terminal rules in our CFG
grammar. The non-terminals include:

aircraft_name, airline_code, airline_name, airport_code,
airport_name, cityname, class_type (e.g. business coach, etc),
fare_basis_code, flight_number, meal_type (e.g. breakfast, lunch,
dinner, etc), one_way (e.g. one way, round trip, etc), res-
triction_code, state, time, date, transport_type (e.g. taxi, bus, etc).

The grammar library also includes some domain independent
entities such as date, time, duration, number, price, etc. This part
of the library has been used in another domain for in [6].

3.5 Data

We used ATIS3 [8] training set A (sentences that can be
interpreted without context, ~1600 sentences) to learn the
grammar with our grammar authoring tool, and used the ATIS3
1993 test set A (~450 sentences) for testing.

3.6 Annotations

Both training and test data are analyzed with the Phoenix/ATIS
system. The parsing results were converted to XML format. It is
then converted to the schema annotation with an XSL stylesheet.
The annotations are then manually checked to modify the
parsing errors introduced by Phoenix/ATIS.

4. EXPERIMENTAL RESULTS
We studied the topic ID and slot ID performance of the two
grammars. Topic ID performance was measured by comparing
the parser-found frame/semantic class name of a sentence with
the manually labeled one. In slot ID evaluation, slots were
extracted by listing all the paths from the root to the pre-
terminals in the semantic parse tree, and the resulting list was
compared with that of the manual annotation. Hence a topic ID
error will cause all the slots in a parse tree to be incorrect in the
slot ID evaluation.

 Phoenix Learned
Grammar

Learned Grammar w/
extra data

Topic ID 5.52 11.03 5.06
Joint Topic
& Slot ID 9.94 9.35 7.67

Table 1. Error rates for the ATIS task of Phoenix and our Robust Parser
with the learned grammar both when using only the training data and
when augmenting it with 9 sentences to cover topics missing in the
training data. Topic ID refers to the top level command (show flights,
show capacity, etc). Joint topic & slot ID refers to the full path from root
to a leaf slots, i.e. it also includes the corresponding slots (Seattle, New
York, etc).

Table 1 compares the error rates between the Phoenix/ATIS
analysis and our robust parser [3] with the learned grammar
(column 2, 3). It appears that Phoenix/ has much better
performance in topic ID than our system trained with the ATIS
training data. This is due to the fact that some topics that
appeared in the test data has never occurred in the training data.
For example, 4% of the test data are ShowCapacity sentences
(e.g., “what is the capacity of MD 10”), and no single sentence
in the training data covers that topic. While this may be less of a
problem for a grammar authored by an expert with good
knowledge of the application domain, it is impossible for a data
driven system like ours to learn the grammar rules for that topic
from nothing.

However, in the real scenario of grammar development, this
problem rarely happens. The grammar developer would provide
samples for all the semantic classes in the applications. Actually
our learning tool is capable of warning developers that certain
semantic/slots have never been covered by training samples and
therefore asking developers to provide extra samples for them.
To see how this helps, we ran another experiment where we
augmented the ATIS training data with 3 sentences for each of
the 3 topics that our system has prompted for more data:

ShowCapacity:
What is the capacity of the aircraft m eight zero
How many people can m eight zero hold
Tell me the capacity on m eight zero
ShowAirlineServeCity:
List the cities served by united
List the cities that united flies to
What cities does united serve
ExplainCode:
Which airline is A S
What is the abbreviation U S
Tell me about the m eighty aircraft

As shown in Table 1, augmenting training data this way
significantly improves both topic ID and slot ID to the point that
the combined system reduces the Topic ID and the joint
topic&slot ID error rates are lower by 8% and 23% repectively
over those of the Phoenix system. As in [6], we also investigated
the effect of training data on the performance. Fig. 2 shows the
Topic ID error rates of the learned grammar relative to the
amount of annotated training data, with and without the extra
sentences listed above, as well as the performance of the
manually authored Phoenix grammar. Fig. 3 illustrates the slot
performance of the same grammars. These two figures show the
similar meritorious property observed in [6]: the most significant
error reduction was achieved with the first 200 annotated
sentences. Therefore the algorithm does not require developers
to collect and annotate a large amount of training data.

0
5

10
15
20
25
30
35
40

0 500 1000 1500
Number of Sentences

To
pi

c
ID

 E
rro

r

Fig. 2. Topic ID error rate vs. amount of annotated training data. The
dashed horizontal line represents Phoenix/ATIS. The dashed curve
represents the grammar trained with ATIS3 set A training data; the solid
curve represents grammar trained with the extra sentences. Note that 200
sentences are generally sufficient.

5. DISCUSSIONS AND SUMMARY
The evaluation was somehow biased in favor of Phoenix/ATIS
due to the following reasons:

1. The schema was derived from the Phoenix grammar. In
other words, the semantic representation was designed
to fit the Phoenix analysis grammar;

2. The test data annotation was derived from the Phoenix
output. In case that ambiguous parses exist, only the
one picked by the Phoenix parser is considered correct.

The grammar used by Phoenix for ATIS is very complicated. It
consists of 3187 non-terminals and 13291 grammar rules. Our
learned grammar is much smaller than that. There are 592
nonterminals (437 from grammar library and 155 from the
skeleton grammar generated from the schema) and 3225 rules
(2403 from the grammar library; 134 from the skeleton grammar
and 688 learned from the annotated data.) The smaller grammar
size not only makes the parser work faster, but also makes it
easier to maintain.
Even with the bias against it, our robust parser achieved
comparable performance to Phoenix/ATIS, without the intensive
grammar authoring effort. The learned grammar is smaller and

follows a common paradigm. This makes the grammar much
easier to maintain.

0

5

10

15

20

25

30

35

0 500 1000 1500
Number of Sentences

Sl
ot

 ID
 E

rro
r

Fig. 3. Slot error rate (Ins+Del+Sub) vs. amount of annotated training
data. The dashed horizontal line represents Phoenix/ATIS. The dashed
curve represents the grammar trained with ATIS3 training data; the solid
curve represents grammar trained with the extra sentences. Note that 200
sentences are generally sufficient.

6. ACKNOWLEDGEMENTS
The authors would like to thank Wayne Ward, Alex Rudnicky
and the CMU speech group for their help with Phoenix/ATIS.
The slot ID evaluation criteria and the measuring tool were
initially developed by M. Mahajan. We also like to thank C.
Chelba, H. Hon, X. D. Huang, M. Mahajan, and K. Wang for
their constructive suggestions and comments.

7. REFERENCES
[1] W. Ward, "Understanding Spontaneous Speech: the

Phoenix System," ICASSP, Toronto, Canada, 1991.
[2] V. Zue and et al, "JUPITER: A Telephone-Based

Conversational Interface for Weather Information,"
IEEE Transactions on Speech and Audio Processing,
vol. 8, 2000.

[3] Y.-Y. Wang, "Robust Spoken Language Under-
standing in MiPad," Eurospeech, Aalborg, Denmark,
2001.

[4] A. Waibel, "Interactive Translation of Conversational
Speech," Computer, vol. 29, 1996.

[5] J. Glass and E. Weinstein, "SPEECHBUILDER:
Facilitating Spoken Dialogue System Development,"
Eurospeech, Aalborg, Denmark, 2001.

[6] Y.-Y. Wang and A. Acero, "Grammar Learning for
Spoken Language Understanding," IEEE workshop on
Automatic Speech Recognition and Understanding,
Madonna di Campiglio, Italy, 2001.

[7] K. Wang, "A Plan-Based Dialog System with
Probabilistic Inference," ICSLP, Beijing, China, 2000.

[8] D. Dahl and et. al., "Expanding the scope of the ATIS
Task: the ATIS-3 Corpus," Human Language
Technology Workshop, 1994.

