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Abstra
t

We des
ribe a fa
ility for improving optimization of Haskell

programs using rewrite rules. Library authors 
an use rules

to express domain-spe
i�
 optimizations that the 
ompiler


annot dis
over for itself. The 
ompiler 
an also generate

rules internally to propagate information obtained from au-

tomated analyses. The rewrite me
hanism is fully imple-

mented in the released Glasgow Haskell Compiler.

Our system is very simple, but 
an be e�e
tive in optimiz-

ing real programs. We des
ribe two pra
ti
al appli
ations

involving short-
ut deforestation, for lists and for rose trees,

and do
ument substantial performan
e improvements on a

range of programs.

This paper has been submitted to ICFP 2001.

1 Introdu
tion

Optimising 
ompilers perform program transformations that

improve the eÆ
ien
y of the program. However, a 
om-

piler 
an only use relatively shallow reasoning to guaran-

tee the 
orre
tness of its optimisations. In 
ontrast, the

programmer has mu
h deeper information about the pro-

gram and its intended behaviour. For example, a program-

mer may know that integerToInt (intToInteger x) = x,

(where Integer is the type of in�nite-pre
ision integers, and

Int is 32-bit integers), but the 
ompiler has little 
han
e of

working this out for itself. While programmers are unlikely

to write su
h expressions themselves, they 
an easily ap-

pear when aggressive inlining brings together 
ode that was

written separately.

In this paper we explore a very simple idea: en
ourage the

programmer to spe
ify properties of the program, and allow

the 
ompiler to use these properties to improve performan
e,

by treating ea
h property as a rewrite rule. In e�e
t, we give

the programmer the ability to extend the 
ompiler with

domain-spe
i�
 optimisations, giving it spe
ialised knowl-

edge about the parti
ular vo
abulary of fun
tions that are

used heavily in a parti
ular program. Our setting is that of

the purely fun
tional language Haskell, be
ause the la
k of

side e�e
ts makes it possible to state many properties sim-

ply, without 
omplex side 
onditions, and to exploit them

using only lo
al information.

We make the following 
ontributions:

� We des
ribe a 
on
rete design, whi
h is fully imple-

mented in the released Glasgow Haskell Compiler, an

optimising 
ompiler for Haskell (Se
tion 2; Se
tion 6).

� We des
ribe two pra
ti
al appli
ations of the te
hnique,

one to perform list fusion in the Haskell standard Pre-

lude (Se
tion 3) and other to perform tree fusion in an

appli
ation-spe
i�
 library (Se
tion 7).

� We show that rewrite rules 
an also be generated au-

tomati
ally as a result of 
ompiler analyses, and then


onstitute a useful way to exploit spe
ialised versions

of fun
tions (Se
tion 5).

The idea of allowing the programmer to spe
ify domain-

spe
i�
 
ompiler extensions is not new (Se
tion 8), but it

has not yet been widely su

essful. Our prin
ipal selling

point is simpli
ity. Rewrite rules are expressed de
laratively

using the syntax of Haskell itself, and not in a separate meta-

language. They use very simple pattern mat
hing, have no

side 
onditions, and are applied using a trivial strategy. Yet

they are e�e
tive in real programs, assuming some 
oopera-

tion from library writers.

Traditionally, programs 
onvey the minimum information

about algorithms and data representations that is required

to 
ompile and exe
ute the program. But programmers

have always been en
ouraged (often ine�e
tively) to anno-

tate their programs with additional do
umentation spe
i-

fying the intended purpose and properties of the program,

independently of the implementation.

Su
h program properties, expressed as equations, have been

used to explore eÆ
ient algorithms and as a design method-

ology that redu
es the in
iden
e of programming error (Bird

and Moor, 1996). Another advantage may be reaped in test-

ing and debugging of programs, where they 
an play the role

of a test ora
le (Claessen and Hughes, 2000). Perhaps the

additional in
entive of eÆ
ien
y gains in 
ompilation will re-

ally persuade programmers at last to write more informative

and more a

urate do
umentation?

2 The basi
 idea

Consider the familiar map fun
tion, that applies a fun
tion

to ea
h element of a list. Written in Haskell, map looks like

this:

map f [℄ = [℄

map f (x:xs) = f x : map f xs



Now suppose that the 
ompiler en
ounters the following 
all

of map:

map f (map g xs)

We know that this expression is equivalent to

map (f . g) xs

(where \." is fun
tion 
omposition), and we know that the

latter expression is more eÆ
ient than the former be
ause

there is no intermediate list. But the 
ompiler has no su
h

knowledge.

One possible rejoinder is that the 
ompiler should be smarter

| but the programmer will always know things that the


ompiler 
annot �gure out. Another suggestion is this: allow

the programmer to 
ommuni
ate su
h knowledge dire
tly to

the 
ompiler. That is the dire
tion we explore here.

The Glasgow Haskell Compiler (GHC) allows the program-

mer to add a rule to the program thus:

{-# RULES

"map/map" forall f g xs.

map f (map g xs) = map (f . g) xs

#-}

The \f-# ... #-g" bra
kets en
lose a pragma, whi
h is

ignored by a non-optimising 
ompiler. The RULES key-

word identi�es the pragma as de�ning a rewrite rule. The

"map/map" part is an arbitrary string that names the rule;

this name is used when reporting whi
h rules �red during a


ompilation run in diagnosti
 mode. The body of the rule

expresses the identity that

map f (map g xs) = map (f . g) xs

while the forall part identi�es whi
h of the variables in

the rule body are universally quanti�ed (f, g, and xs in this


ase), and whi
h are 
onstants bound elsewhere (map in this


ase).

One 
an regard the rules for a fun
tion as extra (redundant)

equations de�ning the fun
tion, thus:

map f [℄ = [℄

map f (x:xs) = f x : map f xs

map f (map g xs) = map (f . g) xs

Unlike ordinary de�ning equations, of 
ourse, rules are not

restri
ted to having 
onstru
tors in the patterns on the left

hand side.

Rewrite rules express identities that the programmer knows

to be true, but GHC also assumes that they are oriented, so

that the right hand side is preferable to the left. Throughout


ompilation, GHC tries to spot instan
es of the left hand

side of a rule, and rewrite that 
all to the right hand side.

A RULES pragma 
an o

ur only at the top level of the pro-

gram, and all the free variables of the rule, on both sides

of the equation, must be in s
ope. However, a rule is not

required to be in the same module as the fun
tion whose

de�nition it extends. For example the "map/map" rule does

not have to be given in the module that de�ned map. So

rules 
an in
rementally extend a fun
tion's de�nition. This

is important, be
ause a rule may des
ribe the intera
tion

of an imported fun
tion with one de�ned lo
ally. Rules 
an

also be given for a 
lass member fun
tion, in whi
h 
ase they

work on the 
orresponding fun
tion in ea
h 
lass instan
e.

2.1 Assumptions

The ability to add rewrite rules to a program is a pretty

powerful weapon, and raises a host of issues. In parti
ular:

� GHC makes no attempt to verify that the rule is in-

deed an identity, apart from ensuring that that the left

and right hand sides of the rule have the same type.

The whole point is that the rule asserts something that

GHC is not smart enough to work out for itself!

Indeed, the rule might not even be \true" in a 
on
rete

sense! For example, 
onsider an abstra
t data type

for sets. It is sound to give a rule expressing the fa
t

that union on sets is 
ommutative. But suppose our

implementation represents a set by an unordered list.

Then the 
on
rete representation of a `union` b may

di�er from b `union` a, even though they represent

the same sets.

Having the rules expli
itly 
odi�ed does, however, raise

the possibility of feeding the same program into a the-

orem prover, and having it prove the vera
ity of the

rules, perhaps with some human assistan
e. We have

not explored this avenue so far.

� GHC makes no attempt to ensure that the right hand

side is more \eÆ
ient" than the left hand side. Again,

this is a hard problem in general and, what is worse, it

is one that is to some extent 
ompiler-dependent. For

the present, we rely on the (fallible) programmer.

� GHC makes no attempt to ensure that the set of rules

is 
on
uent, or even terminating. For example, the

following rule will send GHC into an in�nite loop if it

en
ounters a 
all to foo.

{-# RULES

"
ommute" forall x y. foo x y = foo y x

#-}

There is a 
onsiderable literature on proving the 
on-


uen
e or termination of sets of rewrite rules; in par-

ti
ular, 
ommutativity and asso
iativity have re
eived

spe
ial study (Baader and Nipkow, 1999). However,

for us matters are seriously 
ompli
ated by the other

automati
 rewrites that the 
ompiler performs (beta re-

du
tion, inlining, 
ase swit
hing, let-
oating, et
. (Pey-

ton Jones and Santos, 1998)), so we are not able to take

dire
t advantage of this work.

For an optimising 
ompiler, 
on
uen
e seems too

strong, sin
e that would implausibly suggest a 
anoni-


al optimised form for a program. Termination is 
er-

tainly important, but has not proved to be a problem

in pra
ti
e.

2.2 Restri
tions

GHC also pla
es a restri
tion on the form of a rule. The

left hand side of a rule must take the form of a fun
tion

appli
ation, thus:

f e

1

: : : e

n

where f is not quanti�ed in the rule (i.e. f is not one of the

forall'd variables), and the e

i

are arbitrary expressions.

Here, for example, is a plausible rule that we 
annot write:

2



{-# RULES

"let/let" forall f g xs. -- ILLEGAL!

let { x = let { y = e1 } in e2 } in e3

= let { y = e1 } in let { x = e2 } in e3

#-}

The rule is illegal be
ause the left hand side is not a fun
tion

appli
ation. This restri
tion has two advantages. First, it

underpins the idea introdu
ed above, that a rewrite rule

is simply an extra (redundant) equation de�ning a fun
tion.

Se
ond, it makes rule mat
hing mu
h more eÆ
ient, be
ause

the rules 
an be indexed by the fun
tion on the left hand

side. At ea
h 
all of f, GHC need only 
he
k mat
hes for

rules for f. If the left hand side of a rule 
ould instead be

an arbitrary expression, mat
hing is likely to be mu
h less

eÆ
ient.

The fun
tion-appli
ation restri
tion does mean that rules


annot be used to repla
e many of GHC's built-in transfor-

mations. Inlining, let-
oating, beta redu
tion, 
ase swap-

ping, 
ase elimination, and so on are all too 
omplex to ex-

plain using our restri
ted language of rules. There are, how-

ever, some 
ompiler transformations { su
h as spe
ialisation

{ for whi
h rules do prove dire
tly useful, as we dis
uss in

Se
tion 5.

2.3 Library writers and library 
lients

Reading these assumptions and restri
tions, one might rea-

sonably ask: are rewrite rules going to be of pra
ti
al use?

It is 
ertainly easy to shoot oneself in the foot.

For this reason, we regard a set of rewrite rules as some-

thing mu
h more like a domain-spe
i�
 
ompiler extension

than a general programming paradigm. We expe
t rewrite

rules to be written mainly by the author of a library. Su
h

authors often go to great lengths to 
raft eÆ
ient data stru
-

tures and algorithms. Rewrite rules give them the ability to

explain deep truths about their 
ode to the 
ompiler, and

thereby extend its ability to optimise 
lient programs. We

assume also a willingness to 
ooperate in the optimisation,

to the extent of adapting library 
ode to take advantage of

the optimisation rules, as well as the other way round. In

return, we hope to preserve a level of simpli
ity, in whi
h

the 
orre
tness of the optimisation rules (but not their ef-

fe
tiveness, unfortunately) is as easy to establish as that of

all the other 
lauses in a de
larative program.

In GHC the rewrite rules de�ned in a module are embed-

ded in the 
ompiler-readable meta-data (its \.hi �le") that

a

ompanies the module's obje
t 
ode. The 
lient of the

library never sees the rules, but GHC 
an nevertheless use

them to optimise 
ompositions of 
alls to fun
tions supplied

by the library. Rules are not expli
itly exported or imported.

Instead, when 
ompiling module M, GHC 
an \see" all the

rules given in any module imported by M, or in any module

imported by these imports, and so on transitively. (Haskell's

instan
e de
larations have exa
tly the same property.)

Rewrite rules make perfe
t sense even if the library is writ-

ten in another language, in whi
h 
ase the rules express fa
ts

about the foreign library. For example, in Reid's graphi
s

library for Haskell he provides a whole se
tion of the user

manual devoted to algebrai
 optimisation laws that are sat-

is�ed by the library interfa
e (Reid, 2000).

3 Rules in pra
ti
e

In the rest of the paper we report on our experien
e of ap-

plying rewrite rules in pra
ti
e. We have found two main


lasses of appli
ations:

� Programmer-written rules in library 
ode. This was

our initial motivation, and we have used it to a
hieve

list fusion (this se
tion) and more ambitious tree fusion

(Se
tion 7).

� Automati
ally-generated rules, derived from some kind

of program analysis, invisibly to the programmer (Se
-

tion 5). This was an unexpe
ted, but very persuasive,

pra
ti
al bene�t of implementing the rewrite-rule te
h-

nology.

3.1 Short-
ut Deforestation

Our initial motivating example for adding rewrite rules was

the 
ase of list fusion. In earlier work we des
ribed so-
alled

short-
ut deforestation, a te
hnique for eliminating interme-

diate lists from programs (Gill et al., 1993). At the 
entre

of the method is the single rewrite rule "foldr/build":

foldr :: (a->b->b) -> b -> [a℄ -> b

foldr k z [℄ = z

foldr k z (x:xs) = k x (foldr k z xs)

build :: (forall b. (a->b->b) -> b -> b) -> [a℄

build g = g (:) [℄

{-# RULES

"foldr/build"

forall k z (g::forall b.(a->b->b) -> b -> b) .

foldr k z (build g) = g k z

#-}

The de�nition of foldr is 
onventional. The fun
tion build

takes a \list" g, fun
tionally abstra
ted over its 
ons and nil


onstru
tors, and applies g to the ordinary list 
onstru
tors

(:) and [℄ to return an ordinary list. (g's type is a rank-2

polymorphi
 type, as dis
ussed in (Gill et al., 1993).) The

rule states that when foldr 
onsumes the result of a 
all to

build, one 
an eliminate the intermediate list by applying

g dire
tly to k and z.

To give an example of applying this rule we must write list-


onsuming and produ
ing fun
tions using foldr and build

respe
tively. For example:

-- (sum [5,4,3,2,1℄) = 15

sum :: [Int℄ -> Int

sum xs = foldr (+) 0 xs

-- (down 5) = [5,4,3,2,1℄

down :: Int -> [Int℄

down v = build (\
 n -> down' v 
 n)

down' 0 
ons nil = nil

down' v 
ons nil = 
ons v (down' (v-1) 
ons nil)

Again, the de�nition of sum in terms of foldr is 
onven-

tional. The fun
tion down returns a list of integers, from

its argument down to 1. We express it as a 
all to build,

using an auxiliary fun
tion down' whi
h is abstra
ted over

3



the fun
tions it uses to 
onstru
t its result. (We have 
alled

these fun
tions 
ons and nil for old times' sake, but they

are simply the formal parameters to down' and their names

are insigni�
ant.) It is somewhat in
onvenient to write sum

and down in this way, but that is the task of the author of

the List library.

Now we 
an try fusion on the 
all (sum (down 5)):

sum (down 5)

= {inline sum and down}

foldr (+) 0 (build (down' 5))

= {apply the foldr/build rule}

down' 5 (+) 0

The intermediate list has been eliminated; instead down'

does the arithmeti
 dire
tly.

3.2 A real (albeit small) example

List fusion works well when the programmer does \bulk"

operations over lists, and then it 
an be stunningly e�e
-

tive. Here is an example taken verbatim from the paraffins


ode (Partain, 1992), a small program that 
omputes a list

of all the hydro
arbon paraÆns of a given size:

three_partitions :: Int -> [(Int,Int,Int)℄

three_partitions m

= [ (i,j,k) | i <- [0..(m `div` 3)℄,

j <- [i..(m-i `div` 2)℄,

let k = m - (i+j)

℄

-- A test harness

main = print (length (three_partitions 4000))

The form [0..n℄ is Haskell's notation for the list of inte-

gers between 0 and n. The list 
omprehension builds the

list of all triples (i,j,k) where i is drawn from the list

[0..(m `div` 3)℄, and j is drawn from a similar list, and

k is 
omputed dire
tly from i and j. Finally, the test har-

ness prints the length applying three_partitions to 4000.

GHC translates range notation, [0..n℄, into an appli
ation

of build, mu
h as we did for down above. It translates a

list 
omprehension into a build, using foldr to 
onsume

the sub-lists. Finally, the Prelude library fun
tion length is

implemented using a foldr.

So in this program, all the intermediate lists are removed,

leading to a dramati
 drop in allo
ation. When fusion is

enabled, this program allo
ates 16 Mbytes; when fusion is

swit
hed o� it allo
ates 188 Mbytes. (Most of the allo-


ation for the fused version is used for the sta
k, be
ause

the length 
omputation is not properly tail-re
ursive, so the

sta
k grows 1.3M a
tivation re
ords.)

3.3 Ben
hmark Results

Over a broader range of programs from the nofib ben
h-

mark set (Partain, 1992) the e�e
t of enabling list fusion is

very pat
hy, as Figure 1 shows. Fusion has no measurable ef-

fe
t on most programs but it gives a useful 5-25% redu
tion

in allo
ation for a few. Only a very few programs are made

worse, and the worst of these by less than 4%. One pro-

gram, a parser 
alled parstof, shows a 96% improvement;

this turns to be be
ause fusion transforms the (arti�
ial)
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Figure 1: Distribution of fusion e�e
ts on programs in \real"

and \spe
tral" divisions of nofib ben
hmark suite, under

gh
4.08.2.

outer loop of the ben
hmark, 
ausing the sample text input

to be parsed on
e instead of 40 times!

The geometri
 mean improvement, about 5% if we omit

parstof, seems disappointingly low, but we are undismayed.

Compiler optimisations are like therapeuti
 drugs. Some,

like antibioti
s, are e�e
tive on many programs; su
h opti-

misations tend to be built into a 
ompiler. Others are are

targeted at parti
ular \diseases", on whi
h they are devas-

tatingly e�e
tive, but have no e�e
t at all on most other

programs. The rules me
hanism allows library authors to

add targeted, domain-spe
i�
 optimizations without modi-

fying the internals of the 
ompiler.

We also hope that programmers may adopt a more modular

programming style if they expe
t fusion to take pla
e. For

example, it is 
learer to write


on
at (map f xs)

than it is to write

foldr ((++) . f) [℄ xs

Yet programmers will sometimes write the latter form be-


ause it does not build an intermediate list. Se
tion 7 gives

an extended example of the way in whi
h fusion 
an make

modular programming pra
ti
ally eÆ
ient.

Finally, note that our measurements relate to un-modi�ed

ben
hmark programs. None of the fun
tions in these pro-

grams use build, so fusion only o

urs for 
ompositions of

fun
tions from the Standard Prelude, whose fun
tions we re-

implemented using foldr and build. If the 
ompiler were to

transform user-written fun
tions to use foldr and build we

might see greater bene�ts | but that is beyond the s
ope of

this paper, and in any 
ase 
ertainly would require 
ompiler

modi�
ation (Laun
hbury and Sheard, 1995).

4 The sti
ky details

So far we have implied that one simply needs to add one

rewrite rule, and re-implement some key fun
tions using

4



foldr and build. In pra
ti
e, though, we en
ountered a

number of obsta
les that we dis
uss in this se
tion.

4.1 Phases

First, there is a subtle intera
tion between fun
tion inlin-

ing | a transformation that GHC does aggressively (Pey-

ton Jones and Marlow, 1999) | and rule appli
ation. Re-

turning to our sum/down example, we 
an see:

� sum and down must both be inlined before the rule 
an

�re.

� On the other hand foldr and build must not be in-

lined. For example, inlining build before �ring the rule

would give

foldr (+) 0 (down' 5 (:) [℄)

and we have lost the fusion opportunity.

On the other hand, on
e we have run out of opportunities

to use the foldr/build rule, there is no further point in

not inlining build. Indeed, re
all that its de�nition is both

small and higher-order:

build g = g (:) [℄

Inlining a fun
tion like this is very bene�
ial. So we are led

inevitably to a phase ordering: �rst apply rules, and then

inline build.

Alas, two phases are not ne
essarily enough. In general, a

program uses many layers of abstra
t data types, ea
h im-

plemented using the layer below. First we want to apply

rewrite rules for the top-level ADT; then we want to expose

its implementation (only to the 
ompiler, of 
ourse) by in-

lining, and apply rewrite rules for the next layer; then we

want to inline that layer and apply rewrite rules for the layer

below; and so on.

Organising rules into phases is a form of rewriting strategy,

a subje
t that has re
eived 
onsiderable attention (Visser,

1999; Clavel et al., 1996; Visser et al., 1998) However, one of

the merits of rewrite rules is their simple, de
larative nature:

\here is a true fa
t: please use it whenever possible". We

resist polluting this story with elaborate rewrite strategies.

Nevertheless, it seems that some very simple strategy, su
h

as a phase organisation is ne
essary. To gain experien
e, we

have implemented a simple s
heme, whereby the program-

mer 
an spe
ify in whi
h phase a fun
tion should be inlined.

Thus we might say:

{-# INLINE 2 build #-}

build g = g (:) [℄

to mean \inline build in phase 2". Of 
ourse, this means

the programmer must know something about GHC's phases,

whi
h is undesirable. Though various more elaborate

s
hemes have o

urred to us | using the module hierar-


hy, for example | we have not yet found one we regard as

satisfa
tory.

4.2 Ba
king out

Suppose fusion does not take pla
e. That is, suppose we

have an isolated 
all (down 34). It would be bad to a
tu-

ally implement down using build and down', be
ause do-

ing so involves mu
h more run-time fun
tion-passing than a

straightforward implementation of down. It is una

eptable

for programs to run slower in the (
ommon) pla
es when

fusion fails than using the original library.

One solution is to rewrite down' to be non-re
ursive, and

inline vigorously:

down :: Int -> [Int℄

down v = build (\
 n -> down' v 
 n)

down' v 
ons nil = go v

where

go 0 = nil

go v = 
ons v (go (v-1))

Now suppose we have inlined down at a 
all (down 34), but

alas it has not fused with a foldr. We 
an now inline as

follows:

build (\
 n -> down' 34 
 n) -- Did not fuse

= { Inline build }

down' 34 (:) [℄

= { Inline down' }

(go 34) where

go 0 = [℄

go v = v : go (v-1)

This 
ode is as good as the original, straightforward imple-

mentation of down | be
ause is is the original, straightfor-

ward implementation of down! The trouble is that we have

e�e
tively made a 
omplete 
opy of the straightforward 
ode

at every 
all site. While this is a

eptable for a fun
tion as

small as down, it would be quite undesirable for larger fun
-

tions.

An alternative solution, and the one we generally adopt, is

to add a new de�nition and rewrite rule:

downList :: Int -> [Int℄

downList 0 = [℄

downList v = v : downList (v-1)

{-# RULES "downList"

forall v. down' v (:) [℄ = downList v #-}

An isolated 
all to (down 34) would now transform as fol-

lows:

down 34

= {Inline down}

build (down' 34)

= {Inline build}

down' 34 (:) [℄

= {Apply "downList" rule}

downList 34

The "downList" rule spots the spe
ial 
ase in whi
h down'

is applied the standard list 
onstru
tors, and transforms the


all to use the dire
tly-
ode downList fun
tion.

4.3 One-shot lambdas

Here is the de�nition of map in terms of foldr and build:
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map f xs = build (\
 n -> foldr (
 . f) n xs)

Now, suppose we �nd an appli
ation (map f (build g)).

We want to transform the 
all like this:

map f (build g)

= {Inline map} DANGER!

build (\
 n -> foldr (
 . f) n (build g))

= {Apply foldr/build rule}

build (\
 n -> g (
 . f) n)

The diÆ
ulty is in the step marked DANGER!. Here we sub-

stitute (build g) for xs in the body of map, but this o

ur-

ren
e of xs is under a lambda abstra
tion. In general, one


an make a program run arbitrarily more slowly by substi-

tuting a redex inside a lambda abstra
tion, so GHC usually

does something more 
onservative:

map f (build g)

= {Inline map} SAFE!

let xs = build g

in build (\
 n -> foldr (
 . f) n xs)

Alas now the foldr/build rule 
annot �re!

The solution is to observe that the abstra
tion

(\
 n -> ...) is a one-shot lambda; that is, it is a

fun
tion that is only 
alled on
e. Why? Be
ause it is the

argument to build, and build simply 
alls its argument,

passing (:) and [℄. Substituting inside one-shot lambdas

is perfe
tly safe.

The Right Thing To Do is to analyse the program for one-

shot lambdas and a
t a

ordingly. A type-based analy-

sis that a
hieves this (among other things) is des
ribed by

Wansbrough (Wansbrough and Peyton Jones, 1999), but it

is not yet fully implemented in GHC. Instead we have a tem-

porary ha
k that spots the spe
ial 
ase of an appli
ation of

build.

4.4 Sharing

Consider this fun
tion

f x = sum (filter (> x) [1..10℄)

One might expe
t all intermediate lists to be eliminated from

this fun
tion, but GHC 
orre
tly spots that the expression

[1..10℄ 
an be 
oated out:

one_to_ten = [1..10℄

f x = sum (filter (> x) one_to_ten)

Alas, now the �lter 
onsumer 
annot fuse with the [1..10℄

produ
er. Floating out one_to_ten would be a good trans-

formation if the produ
er | in this 
ase [1..10℄ | were

more expensive. It would be worth losing the fusion, in or-

der to share the 
omputation of one_to_ten among all 
alls

to f. But in the 
ase of [1..10℄, it would be better to lose

sharing to gain fusion.

This problem turned out to be 
entral when Elliott et al.

tried to use rewrite rules to optimise Pan programs (Elliott

et al., 2000). In Pan, it is 
ru
ial to inline absolutely every-

thing, 
aring nothing for sharing, apply rewrite rules, and

then do aggressive 
ommon sub-expression and 
ode-motion

transformations to make up for the loss.

This is a problem that is unlikely to have a 
ut-and-dried

solution, but we are exploring the idea of using virtual data

types. The programmer de
lares some data types as virtual,

meaning that all data stru
tures of virtual type should be

eliminated. In parti
ular, the 
ompiler 
an ignore loss of

sharing when 
onsidering inlining a value of virtual type. It

remains to be seen how usable su
h a feature would be.

5 Dynami
ally-generated Rules

Thus far we have 
on
entrated on rewrite rules that are

written by the programmer, but we have found that it is

often useful for the 
ompiler itself to generate rewrite rules

dynami
ally. We give three examples in this se
tion.

5.1 Spe
ialisation

Haskell's type 
lasses give rise to overloaded fun
tions with

types like this:

invert :: Num elt => Matrix elt -> Matrix elt

Su
h overloaded fun
tions are somewhat ineÆ
ient: invert

takes a tuple (or \di
tionary") of fun
tions as an extra ar-

gument, whi
h give the arithmeti
 operations over values of

type elt. Optimising 
ompilers for Haskell allow the pro-

grammer to write a SPECIALISE pragma, thus:

{-# SPECIALISE

invert :: Matrix Int -> Matrix Int

#-}

This pragma en
ourages the 
ompiler to build a spe
ialised

version of invert, in whi
h the matrix elements are known

to be of type Int, giving mu
h more eÆ
ient 
ode. (GHC

will also infer su
h pragmas from the types at whi
h invert

is 
alled, but only within a single module.)

Suppose, then, that the 
ompiler has 
onstru
ted the spe-


ialised fun
tion, and 
alled it (say) invert_Int. The next

task is to make sure that suitable 
alls to invert are re-

pla
ed by 
alls to invert_Int. This is where rules 
ome in.

The 
ompiler dynami
ally generates a rewrite rule like this:

{-# RULES

"invert/Int" forall d::Num Int.

invert � Int d = invert_Int

#-}

Unlike our earlier, programmer-spe
i�ed rules, this rule is

written in GHC's expli
itly-typed intermediate language,


alled \Core". In Core, every binder has an expli
it type,

and polymorphism is expressed using expli
it type abstra
-

tion and appli
ation. The rules written by the user in the

(impli
itly-typed) Haskell sour
e 
ode are translated into the

Core language by the type
he
ker (whi
h adds type infor-

mation) followed by the desugarer (whi
h 
onverts Haskell's

ri
h syntax into Core's mu
h more limited forms).

In this 
ase invert is polymorphi
, and so takes a type ar-

gument, indi
ated by the \� Int" on the left hand side of

the rule. It also takes an argument 
orresponding to the

Num elt 
onstraint, namely the tuple of arithmeti
 opera-

tions referred to earlier. So the rule simply says that a 
all

to invert applied to type Int and tuple d 
an be rewritten

to invert_Int.
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5.2 Evaluated arguments

In array-intensive 
ode, one often en
ounters a loop like this:

f :: Int -> Int -> Int

f x y = if x == 0 then 0

else y + f (x-1) (y+1)

GHC represents values of type Int using the following data

type:

data Int = I# Int#

where Int# is the type of unboxed, 32-bit integers. GHC

will 
ompile f thus:

f :: Int -> Int -> Int

f x y = 
ase x of { I# xv -> fw xv y }

fw :: Int# -> Int -> Int

fw xv y

= if (xv ==# 0#) then I# 0#

else


ase y of { I# yv ->


ase fw (xv -# 1#) (I# (yv +# 1#)) of { I# rv ->

I# (yv +# rv) }}

f has turned into a mere \wrapper" that evaluates x be-

fore 
alling the \worker", fw (Peyton Jones and Laun
hbury,

1991). It 
an do this be
ause f is sure to evaluate x. How-

ever, f is not 
ertain to evaluate y, so the evaluation of y

must be in the else bran
h of the 
onditional in the worker,

fw. That means that the worker must re-box y before 
all-

ing itself (\I# (yv +# 1#)"), and in the 
ommon 
ase, y

will immediately be un-boxed again. This is bad.

What 
an be done? Again, it is a matter of spe
ialisation.

Re
ognising that there is a re
ursive 
all to fw in whi
h

the se
ond argument is a 
onstru
tor appli
ation, GHC 
an

make a spe
ialised version of fw, and generate an appropri-

ate rule, thus:

fw1 :: Int# -> Int# -> Int

fw1 xv yv = let

y = I# yv

in ...original RHS of fw....

{-# RULES "fwV" forall xv yv.

fw xv (I# yv) = fw1 xv yv

#-}

After simplifying the right hand side of fw1, using the rule,

we get just what we want:

fw1 :: Int# -> Int# -> Int

fw1 xv yv

= if (xv ==# 0#) then I# 0#

else


ase fw1 (xv -# 1#) (yv +# 1#) of { I# rv ->

I# (yv +# rv) }

fw remains as an \impedan
e mat
her" embodying the �rst

iteration of the loop, before 
alling fw1. However the rule

remains to transform any 
all of f with an already-evaluated

se
ond argument into a 
all to fw1.

All of this is done invisibly by the 
ompiler | the program-

mer is not involved at all. The transformation is fully imple-

mented in GHC, enabled by \-O2". The analysis, generation

of spe
ialised 
ode, and generation of the rewrite rule, takes

only 225 lines of Haskell. The rewrite-rule infrastru
ture

automati
ally takes 
are of applying the rule when it is rel-

evant, and propagating the rule a
ross separate 
ompilation

boundaries.

5.3 Usage types

We are exploring another example of the same pattern.

Wansbrough's work on usage types suggests that 
onsider-

able eÆ
ien
y gains 
an be made by spe
ialising fun
tions

based on their usage patterns. For example, 
onsider map

again:

map f [℄ = [℄

map f (x:xs) = f x : map f xs

If map is 
alled in a 
ontext in whi
h the result list is 
on-

sumed at most on
e, then the thunks for f x and map f xs

do not need to be self-updating; instead the updates 
an be

omitted. To express this, GHC adds extra usage-type ar-

guments to map, both at its de�nition and at its 
all sites.

On
e this is done, a spe
ialised version of map 
an be 
om-

piled for the 
ase when the usage-type argument is \on
e",

and a rule generated to mat
h su
h 
alls, in exa
tly the same

way as for spe
ialising overloading.

5.4 Summary

In ea
h example, we 
an dis
ern the same pattern:

� Based on pragmas or program analysis, perform a lo
al

transformation (e.g., generating the spe
ialised version

of invert).

� Generate a rule that explains how that transformation


an be useful to the rest of the program. In some 
ases

the rule looks at the type arguments, in others at value

arguments.

� Apply the rule throughout the rest of the program.

This may not sound like mu
h, but it is extremely helpful to

have a single, 
onsistent way to propagate the bene�ts of a

transformation to the rest of the program. For example, it

is not enough for the spe
ialiser to generate spe
ialised ver-

sions of a fun
tion and �nd all appropriate 
all sites for the

spe
ialised fun
tion. There may not be any 
alls to invert

at type Int when the spe
ialiser runs. Su
h 
alls may only

show up after some other inlinings have exposed them. Or

they may be in other modules altogether, so the rule must

be propagated a
ross module boundaries (whi
h is relatively

easily done).

Programmer-de�ned RULES pragmas are only allowed at top

level, but this is a purely synta
ti
 restri
tion. Rewrite rules

make perfe
t sense for nested fun
tions bound by a lo
al let

or letre
, and GHC will indeed generate dynami
 rules us-

ing the ideas of this se
tion for lo
al fun
tions. This is im-

portant in pra
ti
e, be
ause inlining generates many nested

fun
tion de�nitions.

6 Implementation

The implementation of the rule rewriting me
hanism within

GHC is straightforward. The front-end was extended to
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handle rule parsing, type 
he
king, and translation into the

Core intermediate language. The GHC optimiser is stru
-

tured as a number of separate passes over Core expres-

sions (Peyton Jones and Santos, 1998; Peyton Jones and

Marlow, 1999). The most fundamental pass { iterated many

times { is the simpli�er, whi
h performs inlining, 
ase sim-

pli�
ation, and eta-expansion in the 
ourse of a single top-

to-bottom traversal of the program. To support rewriting,

we just modi�ed the simpli�er to 
he
k ea
h fun
tion ap-

pli
ation it en
ounters against a list of a
tive rules; if the

appli
ation mat
hes the rule LHS pattern, it is repla
ed by

a suitably instantiated version of the RHS. We need to take

a little 
are to make sure that the rule remains atta
hed to

the right fun
tion if alpha-renaming takes pla
e.

In
luding rules adds a modest overhead to GHC 
ompilation

time. For example, using the list fusion rules des
ribed in

Se
tion 3 in
reases 
ompilation times an average of 5% over

the nofib ben
hmark suite. Some of this in
rease is prob-

ably due to performing 
onventional optimisations that are

enabled by rule-based rewrites. In any 
ase, we have made

no serious attempt to analyse or optimise this aspe
t of 
om-

piler performan
e, so it 
an probably be sped up should this

prove important.

7 Appli
ation: Constraint Satisfa
tion Problems

Next we give an example user appli
ation, solving 
onstraint

satisfa
tion problems (CSPs), in whi
h rewrite rules help

support high-level, modular programming style. The added

rules, whi
h des
ribe short-
ut deforestation on rose trees,

are 
on�ned to a library, and they make a representative ker-

nel of the appli
ation run three times faster, by eliminating

essentially all the overhead due to the modular style.

7.1 Modular sear
h

Many interesting algorithms for solving CSPs are 
on
ep-

tually based on trees, whose nodes represent states in the

sear
h spa
e; solutions to the sear
h problem are found by

lo
ating 
omplete, 
onsistent nodes. In a 
onventional im-

perative re
ursive implementation, these sear
h trees are

merely notional; they 
orrespond to the tree of pro
edure

a
tivation histories. In Haskell, one 
an make the state tree

into an expli
it (lazy) data stru
ture instead (Hughes, 1989;

Bird and Wadler, 1988). This approa
h permits sear
h al-

gorithms to be modularized into separate fun
tions (really


oroutines) that 
ommuni
ate via a lazily-
onstru
ted tree

labeled with 
onsisten
y information. The 
omponent fun
-

tions perform generation of all possible states, 
onsisten
y

labeling, pruning of in
onsistent states, and 
olle
tion of so-

lutions. A large variety of useful algorithms | whi
h look

quite di�erent from one another when written imperatively

{ 
an be obtained in the lazy framework just by varying the

labeling and pruning fun
tions (Nordin and Tolma
h, 2000).

The underlying algorithm is a simple 
omposition of fun
-

tions, where all the intermediate results are trees or lists.

solver :: Labeler a -> Pruner a -> CSP -> [State℄

solver labeler pruner 
sp =

(filter (
omplete 
sp) . map fst . leaves .

prune pruner . (labeler 
sp) .

mkSear
hTree) 
sp

Here CSP is a type des
ribing instan
es of 
onstraint satis-

fa
tion problems; for example, we might have a fun
tion

queens :: Int -> CSP

to generate instan
es of the familiar n-queens problem.

State is the type of partial solutions. Fun
tion

mkSear
hTree :: CSP -> Tree State


onstru
ts a tree of all possible partial solutions to a given

CSP. Here Tree is the type of ordinary \rose trees," in whi
h

ea
h node has a value and an arbitrary number of 
hildren.

The labeler argument to solver has this type:

type Labeler a =

CSP -> Tree State -> Tree (State, a)

It spe
i�es how to atta
h 
onsisten
y annotations to ea
h

node in the tree. The pruner argument, of type

type Pruner a = (State,a) -> Bool

says how to inspe
t the annotations to determine whether

the node is 
onsistent; prune removes subtrees rooted at in-


onsistent nodes. leaves returns the leaves of the tree as

a list in left-to-right order. The subsequent list operations

throw away the annotations and weed out nodes represent-

ing in
omplete solutions.

To obtain simple ba
k-tra
king sear
h, we 
an provide a

Labeler that 
he
ks the 
onsisten
y of ea
h node individu-

ally, and annotates the node with the boolean result of the


he
k.

labelIn
onsisten
ies ::

CSP -> Tree State -> Tree (State,Bool)

labelIn
onsisten
ies 
sp = mapTree f

where f s = (s,not (
onsistent 
sp s))

btsolver :: CSP -> [State℄

btsolver = solver labelIn
onsisten
ies snd

More sophisti
ated algorithms use labelers that may look

at more than one node at a time or store more information

in the annotations. For example, a well-known algorithm


alled forward 
he
king 
an be implemented by a labeler

that stores a (lazily 
onstru
ted) 
a
he table of 
onsisten
y

information at ea
h node.

labelCSCa
he ::

CSP -> Tree State ->

Tree (State,Ca
he Confli
tSet)

extra
tConfli
t ::

(State,Ca
he Confli
tSet) -> Bool

f
solver :: CSP -> [State℄

f
solver = solver labelCSCa
he extra
tConfli
t

Interesting new 
ombinations of algorithms 
an be obtained

by appropriate 
omposition of labeling fun
tions, giving us a

\mix and mat
h" approa
h to algorithm 
onstru
tion. The

modular algorithms that result are mu
h simpler to read,

write, and modify than their imperative 
ounterparts, and

have the same asymptoti
 behavior (in both spa
e and time).

However, the modular Haskell 
ode is mu
h slower than

equivalent C 
ode, if only by a 
onstant fa
tor. We mea-

sured performan
e of a representative kernel of 
ode that

implements standard ba
ktra
king sear
h on the n-queens

problem and 
ounts the number of solutions found. The

modular version of this fun
tion is written
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qsolns :: Int -> Int

qsolns n = length (btsolver (queens n))

On the 11-queens problem, qsolns runs about 30 times

slower than a 
onventional re
ursive C algorithm that

doesn't use trees at all. More strikingly, perhaps, it is almost

four times slower than a non-modular Haskell transliteration

of the C algorithm. This di�eren
e suggests that we try to

fuse the tree traversals to avoid building the nodes of the

several intermediate trees.

In the remainder of this se
tion, we des
ribe short-
ut defor-

estation for rose trees, and dis
uss our experien
e in using

rules with this appli
ation. Full 
ode for the kernel modular


ode and the 
orresponding monolithi
 fun
tion are given in

the Appendix.

7.2 Fusion on rose trees

We treat rose trees as an abstra
t data type, with publi


fun
tions initTree, mapTree, prune, and leaves. The in-

ternal representation data type and foldTree operation are

standard:

data Tree a = T a [Tree a℄

foldTree :: (a -> [b℄ -> b) -> Tree a -> b

foldTree f t = go t

where go (T a ts) = f a (map go ts)

We introdu
e a buildTree analogous to build on lists, and

the 
orresponding fusion rule:

buildTree ::

forall a.

(forall b. (a -> [b℄ -> b) -> b) -> Tree a

buildTree g = g T

{-# RULES

"foldTree/buildTree"

forall k (g::forall b.(a->[b℄->b) -> b) .

foldTree k (buildTree g) = g k

#-}

Now we must take 
are that all tree-produ
ing fun
tions use

buildTree, and all tree-
onsuming fun
tions use foldTree.

Sin
e Tree is as an ADT, we don't need to worry about


lient 
ode using the Tree 
onstru
tor dire
tly.

Fun
tion initTree generates a tree from a fun
tion that


omputes the 
hildren of a node (Hughes, 1989); mapTree is

the analogue of the familiar fun
tions on lists.

initTree :: (a -> [a℄) -> a -> Tree a

initTree f a = buildTree g

where g n = go a

where go a = n a (map go (f a))

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f t = buildTree g

where g n = foldTree h t

where h a ts = n (f a) ts

prune p t removes every subtree of t whose root value

mat
hes p. Sin
e we 
annot represent empty trees, we re-

quire that p always return False on the root node of the

entire tree, whi
h is always appropriate in our appli
ations.

prune :: (a -> Bool) -> Tree a -> Tree a

prune p t = buildTree g

where

g n = head (foldTree f t)

where f a ts | p a = [℄

| otherwise = [n a (
on
at ts)℄

Finally, leaves extra
ts the values at the leaves of a tree

into a list in left-to-right order.

leaves :: Tree a -> [a℄

leaves = foldTree f

where f leaf [℄ = [leaf℄

f _ ts = 
on
at ts

Ideally, we would like leaves to be written as a list build,

so that it 
an fuse with list 
onsumers further down the

pipeline. Unfortunately, this seems to require doing a

higher-order tree fold, whi
h produ
es an intermediate list

of fun
tion 
losures; GHC doesn't handle su
h lists very ef-

fe
tively, and it proves more eÆ
ient to sti
k with the simple

de�nition shown here.

We mark all the fun
tions to be inlined if possible.

7.3 Short-
ut deforestation pays again

Given these de�nitions, GHC is able to 
ompletely fuse away

all the rose trees in qsolns; i.e., no T 
onstru
tors are ap-

plied at all! Indeed, modifying the implementation of our

rose tree ADT to perform 
heap deforestation improves per-

forman
e of (qsolns 11) by a fa
tor of more than three,

bringing it to within 15% of the running time of a hand-

fused, non-modular Haskell implementation. Moreover, this

improvement 
omes without requiring any 
hanges to the

sear
h appli
ation 
ode itself.

All is not quite so straightforward as it may seem, however.

All the problems we examined in the 
ontext of list fusion

appear again for trees:

� E�e
tive appli
ation of the fusion law requires that

GHC inline more enthusiasti
ally than it normally

would. For example, our pipeline of tree operations

generates many fusion opportunities that require in-

lining underneath the lambda of a buildTree argu-

ment. This is, in fa
t, a safe thing to do, sin
e the

lambda is \one shot," but GHC doesn't know this {

and sin
e we are thinking of trees as a user-de�ned li-

brary, it would be obviously inappropriate to ha
k this

fa
t about buildTree into the 
ompiler, the way we did

for list build. As it happens, for the parti
ular kernel

of 
ode we show here, GHC 
an dis
over for itself { af-

ter repeated iteration of inlining { that these lambdas

are one shot. But in general, we need linearity analysis.

� If fusion fails, the tree library should make sure that the

resulting 
ode is not worse than it would have been had

fusion never been attempted. As with lists, we must ei-

ther ensure that inlining foldTree produ
es good 
ode,

or provide a \ba
k-out" me
hanism, with appropriate

attention to phasing of inlining (
.f. Se
tion 4.2).

� For full e�e
tiveness, we need to make sure that inlining

of list fun
tions (e.g., on the lists of 
hildren in nodes)

o

urs only after inlining of tree fun
tions (
.f. Se
-

tion 4.1). A simple phasing strategy based on module

dependen
ies would handle this requirement.
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� Most seriously, we might easily write programs for

whi
h fusion fails for legitimate reasons, e.g. be
ause

there are several 
onsumers for a given produ
er, or

simply be
ause we've made a mistake when writing a

rule. But we'll get no feedba
k from the 
ompiler about

su
h failures. This is 
learly a 
ru
ial area for further

work.

8 Related Work

The basi
 
on
epts of our rules system are far from new.

There have been a great many attempts to build frameworks

for user-dire
ted or appli
ation-spe
i�
 optimization, often

by adding additional semanti
 spe
i�
ations to fun
tions.

These ideas have been of parti
ular interest in the high-

performan
e 
omputing 
ommunity. S
ienti�
 
odes often

use well-established, high-level libraries, su
h as LINPACK

or PLAPACK. Be
ause these libraries need to work eÆ-


iently over a wide range of ma
hine ar
hite
tures and data

sets, they typi
ally have multiple implementations, ea
h

with its own 
omplex interfa
e. For portability and main-

tainability, 
lient 
ode should be written using portable,

high-level library 
alls, leaving the 
ompiler to determine the

appropriate low-level 
alls to use and optimizing the 
lient


ode a

ordingly. To a
hieve this, library interfa
es 
an be

annotated with additional spe
i�
ation information. Sys-

tems and proposals along these lines in
lude TAMPR (Boyle

et al., 1997), Broadway (Guyer and Lin, 1999; Guyer and

Lin, 2000), MetaS
ript (Kennedy et al., 2000), and A
tive

Libraries (Veldhuizen and Gannon, 1998).

Another set of systems has developed from the algebrai


spe
i�
ation 
ommunity. For example, the OPAL lan-

guage (Didri
h et al., 1994) 
ombines fun
tional program-

ming and algebrai
 spe
i�
ation in a uniform framework.

OPAL laws are used to justify or guard rewrites of fun
-

tional 
ode; sin
e laws are �rst-order predi
ate formulas over

equality of fun
tional expressions, this makes the system

very powerful (and of 
ourse unde
idable). It is un
lear to

what extent the existing implementation of OPAL supports

automated optimization.

Compared to existing systems and proposals, ours is notable

primarily for what it leaves out. More pre
isely, we 
an

identify the following 
ontrasts between our systems and

others:

No meta language. Our rules are sour
e-to-sour
e, and

their right-hand sides are simple sour
e expression, so

they 
an be de�ned just using Haskell. With the ex
ep-

tion of TAMPR (Boyle et al., 1997), most of the other

tools known to us operate on internal program rep-

resentations, su
h as abstra
t syntax tress or 
ontrol-


ow graphs, and they typi
ally allow right-hand sides

to be de�ned using some kind of meta-programming

fa
ility. The 
hoi
e of a meta-programming language

is deli
ate. A spe
ialized language or notation su
h

as metal (Engler et al., 2000) is 
on
ise, but must be

learned from s
rat
h by the library author and 
an

be unduly 
onstraining; using a general-purpose pro-

gramming language, su
h as LISP (as in early work on

Aspe
t-Oriented Programming (Ki
zales et al., 1997;

Mendhekar et al., 1997)) is more 
exible, but requires

the author to take great 
are to maintain essential in-

variants.

Simple rewrite strategy We rely on a very simple, built-

in strategy, modi�ed by \phases", for determining

when and where rules should be applied. As rule

sets be
ome more elaborate, authors may need to ex-

er
ise expli
it 
ontrol over strategy, e.g., as in Strat-

ego (Visser et al., 1998).

Simple pattern-mat
hing. We rely on the programmer

to use high-level operators, su
h as foldr, that en-


apsulate 
ontrol 
ow. Thus we don't need to pro-

vide sophisti
ated 
ontextual pattern mat
hing to

identify loops or re
ursions, unlike systems like OP-

TRAN (Lipps et al., 1988), Dora/Tess (Farnum, 1990),

and KHEPERA (Faith et al., 1997). Nor do we have to

deal with the unpredi
tability and possible high 
ost of

higher-order mat
hing, as used in MAG (de Moor and

Sittampalam, 1999).

No side 
onditions. We work with a purely fun
tional

language, whi
h means that many useful optimizing

transformations are 
ontext independent and don't re-

quire elaborate side-
onditions. By 
ontrast, most use-

ful transformations on imperative programs must be

justi�ed by non-synta
ti
, and often non-trivial, analy-

sis, e.g., of 
ontrol 
ow, dependen
e, aliasing, et
. Thus

many tools for imperative languages fo
us on spe
ify-

ing analyses in addition to transformations; examples

in
lude DFA&OPT-MetaFrame (Klein et al., 1996),

Sharlit (Tjiang and Hennessy, 1992), Genesis (Whit-

�eld and So�a, 1994), OPTIMIX (Assmann, 1996), In-

tentional Programming (Aitken et al., 1998), and re-


ent work of La
ey and de Moor (La
ey and de Moor,

2001).

No termination guarantees; no AC rewriting. Our

rules are all dire
ted, and we 
annot easily express


ommutative laws without 
ausing endless rewriting.

In a modern algebrai
 transformation system like

Maude (Clavel et al., 1996), equations are entirely

symmetri
 in their left and right hand sides, whi
h 
an

be arbitrary terms; they 
an be used for transformation

in either dire
tion. Common algebrai
 properties of an

operator 
an be de
lared by built-in keywords su
h as

[asso
℄ and [
omm℄; in exe
uting the transformations

in a program, all pattern mat
hing is 
ondu
ted

modulo these properties, whi
h makes for shorter and

more elegant programs.

In summary, we o�er simpli
ity in ex
hange for more limited

fun
tionality. Simpli
ity is important, both for implemen-

tors and library authors. From an implementation point of

view, our experien
e is that simple ideas are seldom easy to

implement in a full-s
ale, optimising 
ompiler, while 
om-

plex ideas require heroism that is hard to sustain in the

long term.

From a programming point of view, too, simpli
ity is im-

portant. Most parti
ularly, the fa
t that the transforma-

tions are expressed entirely in Haskell itself, and not in some

(ne
essarily di�erent, and more indire
t) meta-language is

a huge advantage. We know of no optimising 
ompiler in

widespread use that supports domain-spe
i�
 extensions; we

suspe
t that this is partly due to the 
omplexity of their
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meta-programming me
hanisms. Of 
ourse, GHC's rules are

not in widespread use by programmers either | but they

are used behind the s
enes in every run of GHC, both for list

fusion (Se
tion 3) and spe
ialisation (Se
tion 5). It is also

possible that our approa
h is just too simple: we do not yet

know how the tradeo� between simpli
ity and expressiveness

will play out.

9 Con
lusions and further work

We have des
ribed a simple, but fully implemented and de-

ployed, way to write domain-spe
i�
 extensions to a 
om-

piler for Haskell, by means of rewrite rules. We have demon-

strated that, though simple, rewrite rules are useful in pra
-

ti
e. Indeed, the list fusion rules have been deployed in the

Prelude of the released GHC 
ompiler for two years. In re-


ent work, Chakravarty and Keller are using GHC's rewrite

rules to perform array fusion in their work on nested data-

parallel programming (Chakravarty and Keller, 2001); their

appli
ation is more sophisti
ated than any we have des
ribed

here.

The previous se
tion des
ribed many dire
tions in whi
h

one 
ould imagine make our system more expressive, but we

plan to develop more experien
e of its pra
ti
al use before

elaborating it mu
h further. Indeed, the most pressing area

for further work is not even mentioned in Se
tion 8: it is the

question of how best to provide feedba
k to the programmer

about whi
h rules have �red and, more espe
ially, whi
h

have not and why not. Sin
e rewrites are done on Core,

whi
h is quite far from Haskell, providing 
omprehensible

feedba
k is a hard problem.

The status of this paper is as a report of work in progress.

We present it in the hope that it will attra
t the interest of

the writers of library pa
kages, and will en
ourage them to

experiment with the feature and report on its inadequa
ies.

For the longer term, we wish to promote the prin
iple that a

programmer should supply further de
larative information

together with the 
ode of the program; and suggest that


ompilers and other programming tools should take maxi-

mum advantage of these de
larations.
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Appendix: Constraint Satisfa
tion Problems

Here is the 
omplete 
ode for the 
onstraint satisfa
tion

problem (CSP) sear
h kernel des
ribed in Se
tion 7

Problem De�nition

A CSP is 
hara
terized by a number of variables vars, a

number of values vals, and a 
onsisten
y relation rel be-

tween pairs of assignments of values to vars. We represent

assignments using an in�x 
onstru
tor :=. To solve the CSP,

we must assign a value to ea
h variable su
h that all pair-

wise 
ombinations of assignments are in rel. A well-known

example is the n-queens problem, under the standard opti-

mization that we only try to pla
e one queen in ea
h 
ol-

umn; this 
an be modeled as a CSP with n variables (the


olumns), n values (the rows), and a relation that permits

two assignments provided the 
orresponding positions are

on di�erent rows or di�erent diagonals.

type Var = Int

type Value = Int

data Assignment = Var := Value

type Relation = Assignment -> Assignment -> Bool

data CSP = C {vars, vals :: Int, rel :: Relation}

queens :: Int -> CSP

queens n = C{vals=n,vars=n,rel=safe}

where safe (
ol1 := row1) (
ol2 := row2) =

(row1 /= row2) &&

abs (
ol1 - 
ol2) /= abs (row1 - row2)
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Sear
h States

Wemodel ea
h state in the spa
e of possible solutions as a se-

quen
e of assignments, together with the number of the most

re
ently assigned variable. States are built from emptyState

by repeated use of extensions, whi
h takes a state and 
on-

stru
ts a list of extended states formed by assigning ea
h

possible value to the next variable.

data State = S [Assignment℄ Var

emptyState :: CSP -> State

emptyState C{vars=vars} = S [℄ 0

extensions :: CSP -> State -> [State℄

extensions C{vars=vars,vals=vals} (S as lastvar) =

[S ((nextvar := val):as) nextvar |

let nextvar = lastvar+1, nextvar <= vars,

val <- [1..vals℄℄


omplete :: CSP -> State -> Bool


omplete C{vars=vars} (S _ lastvar) =

lastvar == vars


onsistent :: CSP -> State -> Bool


onsistent _ (S [℄ _) = True


onsistent C{rel=rel} (S (a:as) _) = all (rel a) as

A solution is a 
omplete, 
onsistent state.

Rose Trees

Here is sample library 
ode for rose trees written without


on
ern for fusion. For 
onvenien
e, we do use foldTree in

the de�nition of prune and leaves.

data Tree a = T a [Tree a℄

initTree :: (a -> [a℄) -> a -> Tree a

initTree f a = go a

where go a = T a (map go (f a))

foldTree :: (a -> [b℄ -> b) -> Tree a -> b

foldTree f t = go t

where go (T a 
s) = f a (map go 
s)

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (T a ts) = T (f a) (map (mapTree f) ts)

prune :: (a -> Bool) -> Tree a -> Tree a

prune p t =

head (foldTree f t)

where f a ts | p a = [℄

| otherwise = [T a (
on
at ts)℄

leaves :: Tree a -> [a℄

leaves = foldTree f

where f leaf [℄ = [leaf℄

f _ ts = 
on
at ts

Rose trees supporting fusion

The 
ode for these was shown in Se
tion 7.2 .

Ba
ktra
king Sear
h for CSPs

mkSear
hTree :: CSP -> Tree State

mkSear
hTree 
sp =

initTree (extensions 
sp) (emptyState 
sp)

type Labeler a =

CSP -> Tree State -> Tree (State, a)

type Pruner a = (State,a) -> Bool

labelIn
onsisten
ies :: Labeler Bool

labelIn
onsisten
ies 
sp = mapTree f

where f s = (s,not (
onsistent 
sp s))

solver :: Labeler a -> Pruner a -> CSP -> [State℄

solver labeler pruner 
sp =

(filter (
omplete 
sp) . map fst . leaves .

prune pruner . (labeler 
sp) .

mkSear
hTree) 
sp

btsolver :: CSP -> [State℄

btsolver 
sp = solver labelIn
onsisten
ies snd

qsolns :: Int -> Int

qsolns n = length (btsolver (queens n))

Hand-fused Code

A hand-fused version of qsolns in Haskell:

qsolns' :: Int -> Int

qsolns' n = f (emptyState 
sp)

where


sp = queens n

f state | 
omplete 
sp state = 1

| otherwise = g (extensions 
sp state)

g [℄ = 0

g (s':rest) | 
onsistent 
sp s' = f s' + g rest

g (_:rest) = g rest
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