Playing by the Rules: Rewriting as a practical optimisation technique in GHC

Simon Peyton Jones
Microsoft Research Ltd
simonpjO@microsoft.com

Andrew Tolmach
Portland State University
apt@cs.pdx.edu

Tony Hoare
Microsoft Research Ltd
thoare@microsoft.com

March 19, 2001

Abstract

We describe a facility for improving optimization of Haskell
programs using rewrite rules. Library authors can use rules
to express domain-specific optimizations that the compiler
cannot discover for itself. The compiler can also generate
rules internally to propagate information obtained from au-
tomated analyses. The rewrite mechanism is fully imple-
mented in the released Glasgow Haskell Compiler.

Our system is very simple, but can be effective in optimiz-
ing real programs. We describe two practical applications
involving short-cut deforestation, for lists and for rose trees,
and document substantial performance improvements on a
range of programs.

This paper has been submitted to ICFP 2001.

1 Introduction

Optimising compilers perform program transformations that
improve the efficiency of the program. However, a com-
piler can only use relatively shallow reasoning to guaran-
tee the correctness of its optimisations. In contrast, the
programmer has much deeper information about the pro-
gram and its intended behaviour. For example, a program-
mer may know that integerToInt (intToInteger x) = x,
(where Integer is the type of infinite-precision integers, and
Int is 32-bit integers), but the compiler has little chance of
working this out for itself. While programmers are unlikely
to write such expressions themselves, they can easily ap-
pear when aggressive inlining brings together code that was
written separately.

In this paper we explore a very simple idea: encourage the
programmer to specify properties of the program, and allow
the compiler to use these properties to improve performance,
by treating each property as a rewrite rule. In effect, we give
the programmer the ability to extend the compiler with
domain-specific optimisations, giving it specialised knowl-
edge about the particular vocabulary of functions that are
used heavily in a particular program. Our setting is that of
the purely functional language Haskell, because the lack of
side effects makes it possible to state many properties sim-
ply, without complex side conditions, and to exploit them
using only local information.

We make the following contributions:

e We describe a concrete design, which is fully imple-
mented in the released Glasgow Haskell Compiler, an
optimising compiler for Haskell (Section 2; Section 6).

o We describe two practical applications of the technique,
one to perform list fusion in the Haskell standard Pre-
lude (Section 3) and other to perform tree fusion in an
application-specific library (Section 7).

e We show that rewrite rules can also be generated au-
tomatically as a result of compiler analyses, and then
constitute a useful way to exploit specialised versions
of functions (Section 5).

The idea of allowing the programmer to specify domain-
specific compiler extensions is not new (Section 8), but it
has not yet been widely successful. Our principal selling
point is simplicity. Rewrite rules are expressed declaratively
using the syntax of Haskell itself, and not in a separate meta-
language. They use very simple pattern matching, have no
side conditions, and are applied using a trivial strategy. Yet
they are effective in real programs, assuming some coopera-
tion from library writers.

Traditionally, programs convey the minimum information
about algorithms and data representations that is required
to compile and execute the program. But programmers
have always been encouraged (often ineffectively) to anno-
tate their programs with additional documentation speci-
fying the intended purpose and properties of the program,
independently of the implementation.

Such program properties, expressed as equations, have been
used to explore efficient algorithms and as a design method-
ology that reduces the incidence of programming error (Bird
and Moor, 1996). Another advantage may be reaped in test-
ing and debugging of programs, where they can play the role
of a test oracle (Claessen and Hughes, 2000). Perhaps the
additional incentive of efficiency gains in compilation will re-
ally persuade programmers at last to write more informative
and more accurate documentation?

2 The basic idea

Consider the familiar map function, that applies a function
to each element of a list. Written in Haskell, map looks like
this:

map f [] =0

map f (x:xs) = f x : map f xs

Now suppose that the compiler encounters the following call
of map:

map f (map g xs)
We know that this expression is equivalent to

map (f . g) xs

W »

(where is function composition), and we know that the
latter expression is more efficient than the former because
there is no intermediate list. But the compiler has no such
knowledge.

One possible rejoinder is that the compiler should be smarter
— but the programmer will always know things that the
compiler cannot figure out. Another suggestion is this: allow
the programmer to communicate such knowledge directly to
the compiler. That is the direction we explore here.

The Glasgow Haskell Compiler (GHC) allows the program-
mer to add a rule to the program thus:

{-# RULES
"map/map" forall f g xs.
map f (map g xs) = map (f . g) xs
#-3

The “{-# ... #-}" brackets enclose a pragma, which is
ignored by a non-optimising compiler. The RULES key-
word identifies the pragma as defining a rewrite rule. The
"map/map" part is an arbitrary string that names the rule;
this name is used when reporting which rules fired during a
compilation run in diagnostic mode. The body of the rule
expresses the identity that

map f (map g xs) = map (f . g) xs

while the forall part identifies which of the variables in
the rule body are universally quantified (£, g, and xs in this
case), and which are constants bound elsewhere (map in this
case).

One can regard the rules for a function as extra (redundant)
equations defining the function, thus:

map f [] =[]
map f (x:xs) =f x : map f xs
map f (map g xs) = map (f . g) xs

Unlike ordinary defining equations, of course, rules are not
restricted to having constructors in the patterns on the left
hand side.

Rewrite rules express identities that the programmer knows
to be true, but GHC also assumes that they are oriented, so
that the right hand side is preferable to the left. Throughout
compilation, GHC tries to spot instances of the left hand
side of a rule, and rewrite that call to the right hand side.

A RULES pragma can occur only at the top level of the pro-
gram, and all the free variables of the rule, on both sides
of the equation, must be in scope. However, a rule is not
required to be in the same module as the function whose
definition it extends. For example the "map/map" rule does
not have to be given in the module that defined map. So
rules can incrementally extend a function’s definition. This
is important, because a rule may describe the interaction
of an imported function with one defined locally. Rules can
also be given for a class member function, in which case they
work on the corresponding function in each class instance.

2.1 Assumptions

The ability to add rewrite rules to a program is a pretty
powerful weapon, and raises a host of issues. In particular:

e GHC makes no attempt to verify that the rule is in-
deed an identity, apart from ensuring that that the left
and right hand sides of the rule have the same type.
The whole point is that the rule asserts something that
GHC is not smart enough to work out for itself!

Indeed, the rule might not even be “true” in a concrete
sense! For example, consider an abstract data type
for sets. It is sound to give a rule expressing the fact
that union on sets is commutative. But suppose our
implementation represents a set by an unordered list.
Then the concrete representation of a ‘union‘ b may
differ from b ‘union‘ a, even though they represent
the same sets.

Having the rules explicitly codified does, however, raise
the possibility of feeding the same program into a the-
orem prover, and having it prove the veracity of the
rules, perhaps with some human assistance. We have
not explored this avenue so far.

e GHC makes no attempt to ensure that the right hand
side is more “efficient” than the left hand side. Again,
this is a hard problem in general and, what is worse, it
is one that is to some extent compiler-dependent. For
the present, we rely on the (fallible) programmer.

e GHC makes no attempt to ensure that the set of rules
is confluent, or even terminating. For example, the
following rule will send GHC into an infinite loop if it
encounters a call to foo.

{-# RULES
"commute" forall x y. foo x y = foo y x

#-}

There is a considerable literature on proving the con-
fluence or termination of sets of rewrite rules; in par-
ticular, commutativity and associativity have received
special study (Baader and Nipkow, 1999). However,
for us matters are seriously complicated by the other
automatic rewrites that the compiler performs (beta re-
duction, inlining, case switching, let-floating, etc. (Pey-
ton Jones and Santos, 1998)), so we are not able to take
direct advantage of this work.

For an optimising compiler, confluence seems too
strong, since that would implausibly suggest a canoni-
cal optimised form for a program. Termination is cer-
tainly important, but has not proved to be a problem
in practice.

2.2 Restrictions

GHC also places a restriction on the form of a rule. The
left hand side of a rule must take the form of a function
application, thus:

fe ... en

where f is not quantified in the rule (i.e. f is not one of the
forall’d variables), and the e; are arbitrary expressions.

Here, for example, is a plausible rule that we cannot write:

{-# RULES
"let/let" forall f g xs. -- ILLEGAL!
let { x = let { y=el } in e2 } in e3
=let {y=el 2} in let { x = e2 } in e3
#-}

The rule is illegal because the left hand side is not a function
application. This restriction has two advantages. First, it
underpins the idea introduced above, that a rewrite rule
is simply an extra (redundant) equation defining a function.
Second, it makes rule matching much more efficient, because
the rules can be indexed by the function on the left hand
side. At each call of £, GHC need only check matches for
rules for £. If the left hand side of a rule could instead be
an arbitrary expression, matching is likely to be much less
efficient.

The function-application restriction does mean that rules
cannot be used to replace many of GHC’s built-in transfor-
mations. Inlining, let-floating, beta reduction, case swap-
ping, case elimination, and so on are all too complex to ex-
plain using our restricted language of rules. There are, how-
ever, some compiler transformations — such as specialisation
— for which rules do prove directly useful, as we discuss in
Section 5.

2.3 Library writers and library clients

Reading these assumptions and restrictions, one might rea-
sonably ask: are rewrite rules going to be of practical use?
It is certainly easy to shoot oneself in the foot.

For this reason, we regard a set of rewrite rules as some-
thing much more like a domain-specific compiler extension
than a general programming paradigm. We expect rewrite
rules to be written mainly by the author of a library. Such
authors often go to great lengths to craft efficient data struc-
tures and algorithms. Rewrite rules give them the ability to
explain deep truths about their code to the compiler, and
thereby extend its ability to optimise client programs. We
assume also a willingness to cooperate in the optimisation,
to the extent of adapting library code to take advantage of
the optimisation rules, as well as the other way round. In
return, we hope to preserve a level of simplicity, in which
the correctness of the optimisation rules (but not their ef-
fectiveness, unfortunately) is as easy to establish as that of
all the other clauses in a declarative program.

In GHC the rewrite rules defined in a module are embed-
ded in the compiler-readable meta-data (its “.hi file”) that
accompanies the module’s object code. The client of the
library never sees the rules, but GHC can nevertheless use
them to optimise compositions of calls to functions supplied
by the library. Rules are not explicitly exported or imported.
Instead, when compiling module M, GHC can “see” all the
rules given in any module imported by M, or in any module
imported by these imports, and so on transitively. (Haskell’s
instance declarations have exactly the same property.)

Rewrite rules make perfect sense even if the library is writ-
ten in another language, in which case the rules express facts
about the foreign library. For example, in Reid’s graphics
library for Haskell he provides a whole section of the user
manual devoted to algebraic optimisation laws that are sat-
isfied by the library interface (Reid, 2000).

3 Rules in practice

In the rest of the paper we report on our experience of ap-
plying rewrite rules in practice. We have found two main
classes of applications:

e Programmer-written rules in library code. This was
our initial motivation, and we have used it to achieve
list fusion (this section) and more ambitious tree fusion
(Section 7).

e Automatically-generated rules, derived from some kind
of program analysis, invisibly to the programmer (Sec-
tion 5). This was an unexpected, but very persuasive,
practical benefit of implementing the rewrite-rule tech-
nology.

3.1 Short-cut Deforestation

Our initial motivating example for adding rewrite rules was
the case of list fusion. In earlier work we described so-called
short-cut deforestation, a technique for eliminating interme-
diate lists from programs (Gill et al., 1993). At the centre
of the method is the single rewrite rule "foldr/build":

foldr :: (a->b->b) -> b -> [a] > b
foldr k z [1 = z
foldr k z (x:xs) = k x (foldr k z xs)

build :: (forall b. (a->b->b) -> b -> b) -> [a]
build g = g (:) []

{-# RULES

"foldr/build"
forall k z (g::forall b.(a->b->b) -> b -> b)
foldr k z (build g) = g k z

#-}

The definition of foldr is conventional. The function build
takes a “list” g, functionally abstracted over its cons and nil
constructors, and applies g to the ordinary list constructors
(:) and [1 to return an ordinary list. (g's type is a rank-2
polymorphic type, as discussed in (Gill et al., 1993).) The
rule states that when foldr consumes the result of a call to
build, one can eliminate the intermediate list by applying
g directly to k and z.

To give an example of applying this rule we must write list-
consuming and producing functions using foldr and build
respectively. For example:

-- (sum [5,4,3,2,1]) = 15
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

-- (down 5) = [5,4,3,2,1]
down :: Int -> [Int]
down v = build (\c¢ n -> down’ v c n)

down’ O cons nil = nil
down’ v cons nil = cons v (down’ (v-1) cons nil)

Again, the definition of sum in terms of foldr is conven-
tional. The function down returns a list of integers, from
its argument down to 1. We express it as a call to build,
using an auxiliary function down’ which is abstracted over

the functions it uses to construct its result. (We have called
these functions cons and nil for old times’ sake, but they
are simply the formal parameters to down’ and their names
are insignificant.) It is somewhat inconvenient to write sum
and down in this way, but that is the task of the author of
the List library.

Now we can try fusion on the call (sum (down 5)):

sum (down 5)
= {inline sum and down}
foldr (+) 0 (build (down’ 5))
{apply the foldr/build rule}
down’ 5 (+) O

The intermediate list has been eliminated; instead down’
does the arithmetic directly.

3.2 A real (albeit small) example

List fusion works well when the programmer does “bulk”
operations over lists, and then it can be stunningly effec-
tive. Here is an example taken verbatim from the paraffins
code (Partain, 1992), a small program that computes a list
of all the hydrocarbon paraffins of a given size:

three_partitions :: Int -> [(Int,Int,Int)]
three_partitions m
=[(i,j,k) | i <= [0..(m ‘div‘ 3)],
j <= [i..(m-1 ‘div‘ 2)],
let k = m - (i+j)
]

-- A test harness
main = print (length (three_partitions 4000))

The form [0..n] is Haskell’s notation for the list of inte-
gers between 0 and n. The list comprehension builds the
list of all triples (i,j,k) where i is drawn from the list
[0..(m ‘div‘ 3)1, and j is drawn from a similar list, and
k is computed directly from i and j. Finally, the test har-
ness prints the length applying three_partitions to 4000.

GHC translates range notation, [0..n], into an application
of build, much as we did for down above. It translates a
list comprehension into a build, using foldr to consume
the sub-lists. Finally, the Prelude library function length is
implemented using a foldr.

So in this program, all the intermediate lists are removed,
leading to a dramatic drop in allocation. When fusion is
enabled, this program allocates 16 Mbytes; when fusion is
switched off it allocates 188 Mbytes. (Most of the allo-
cation for the fused version is used for the stack, because
the length computation is not properly tail-recursive, so the
stack grows 1.3M activation records.)

3.3 Benchmark Results

Over a broader range of programs from the nofib bench-
mark set (Partain, 1992) the effect of enabling list fusion is
very patchy, as Figure 1 shows. Fusion has no measurable ef-
fect on most programs but it gives a useful 5-25% reduction
in allocation for a few. Only a very few programs are made
worse, and the worst of these by less than 4%. One pro-
gram, a parser called parstof, shows a 96% improvement;
this turns to be because fusion transforms the (artificial)

25
£
[
E i
e 15
[
Q
5 10
]
a
E s
0 T T |_| T
<0% 0% 0-1% 1-5% 5-10% 10-20% >20%
Percentage decrease in allocation

Figure 1: Distribution of fusion effects on programs in “real”
and “spectral” divisions of nofib benchmark suite, under
ghc4.08.2.

outer loop of the benchmark, causing the sample text input
to be parsed once instead of 40 times!

The geometric mean improvement, about 5% if we omit
parstof, seems disappointingly low, but we are undismayed.
Compiler optimisations are like therapeutic drugs. Some,
like antibiotics, are effective on many programs; such opti-
misations tend to be built into a compiler. Others are are
targeted at particular “diseases”, on which they are devas-
tatingly effective, but have no effect at all on most other
programs. The rules mechanism allows library authors to
add targeted, domain-specific optimizations without modi-
fying the internals of the compiler.

We also hope that programmers may adopt a more modular
programming style if they expect fusion to take place. For
example, it is clearer to write

concat (map f xs)
than it is to write

foldr ((++) . £) [] xs

Yet programmers will sometimes write the latter form be-
cause it does not build an intermediate list. Section 7 gives
an extended example of the way in which fusion can make
modular programming practically efficient.

Finally, note that our measurements relate to un-modified
benchmark programs. None of the functions in these pro-
grams use build, so fusion only occurs for compositions of
functions from the Standard Prelude, whose functions we re-
implemented using foldr and build. If the compiler were to
transform user-written functions to use foldr and build we
might see greater benefits — but that is beyond the scope of
this paper, and in any case certainly would require compiler
modification (Launchbury and Sheard, 1995).

4 The sticky details

So far we have implied that one simply needs to add one
rewrite rule, and re-implement some key functions using

foldr and build. In practice, though, we encountered a
number of obstacles that we discuss in this section.

4.1 Phases

First, there is a subtle interaction between function inlin-
ing — a transformation that GHC does aggressively (Pey-
ton Jones and Marlow, 1999) — and rule application. Re-
turning to our sum/down example, we can see:

e sum and down must both be inlined before the rule can
fire.

e On the other hand foldr and build must not be in-
lined. For example, inlining build before firing the rule
would give

foldr (+) 0 (down’ 5 (:) [1)
and we have lost the fusion opportunity.

On the other hand, once we have run out of opportunities
to use the foldr/build rule, there is no further point in
not inlining build. Indeed, recall that its definition is both
small and higher-order:

build g = g (:) [I

Inlining a function like this is very beneficial. So we are led
inevitably to a phase ordering: first apply rules, and then
inline build.

Alas, two phases are not necessarily enough. In general, a
program uses many layers of abstract data types, each im-
plemented using the layer below. First we want to apply
rewrite rules for the top-level ADT; then we want to expose
its implementation (only to the compiler, of course) by in-
lining, and apply rewrite rules for the next layer; then we
want to inline that layer and apply rewrite rules for the layer
below; and so on.

Organising rules into phases is a form of rewriting strategy,
a subject that has received considerable attention (Visser,
1999; Clavel et al., 1996; Visser et al., 1998) However, one of
the merits of rewrite rules is their simple, declarative nature:
“here is a true fact: please use it whenever possible”. We
resist polluting this story with elaborate rewrite strategies.
Nevertheless, it seems that some very simple strategy, such
as a phase organisation is necessary. To gain experience, we
have implemented a simple scheme, whereby the program-
mer can specify in which phase a function should be inlined.
Thus we might say:

{-# INLINE 2 build #-}
build g = g (:) [I

to mean “inline build in phase 2”. Of course, this means
the programmer must know something about GHC’s phases,
which is undesirable. Though various more elaborate
schemes have occurred to us — using the module hierar-
chy, for example — we have not yet found one we regard as
satisfactory.

4.2 Backing out

Suppose fusion does not take place. That is, suppose we
have an isolated call (down 34). It would be bad to actu-
ally implement down using build and down’, because do-
ing so involves much more run-time function-passing than a
straightforward implementation of down. It is unacceptable
for programs to run slower in the (common) places when
fusion fails than using the original library.

One solution is to rewrite down’ to be non-recursive, and
inline vigorously:

down :: Int -> [Int]
down v = build (\c¢ n -> down’ v c n)

down’ v cons nil = go v
where
go 0 = nil
go v = cons v (go (v-1))

Now suppose we have inlined down at a call (down 34), but
alas it has not fused with a foldr. We can now inline as
follows:

build (\¢ n -> down’ 34 ¢ n) -- Did not fuse
= { Inline build }
down’ 34 (:) [
{ Inline down’ }
(go 34) where
go 0 = []

go v =v:

go (v-1)

This code is as good as the original, straightforward imple-
mentation of down — because is is the original, straightfor-
ward implementation of down! The trouble is that we have
effectively made a complete copy of the straightforward code
at every call site. While this is acceptable for a function as
small as down, it would be quite undesirable for larger func-
tions.

An alternative solution, and the one we generally adopt, is
to add a new definition and rewrite rule:

downList :: Int -> [Int]
downList 0 = []
downList v = v : downList (v-1)
{-# RULES "downList"

forall v. down’ v (:) [] = downList v #-}

An isolated call to (down 34) would now transform as fol-
lows:

down 34
= {Inline down}
build (down’ 34)
{Inline build}
down’ 34 (:) [
{Apply "downList" rule}
downList 34

The "downList" rule spots the special case in which down’
is applied the standard list constructors, and transforms the
call to use the directly-code downList function.

4.3 One-shot lambdas

Here is the definition of map in terms of foldr and build:

map f xs = build (\¢ n -> foldr (c . f) n xs)

Now, suppose we find an application (map f (build g)).
We want to transform the call like this:

map f (build g)
= {Inline map} DANGER!
build (\¢ n -> foldr (c . f) n (build g))
= {Apply foldr/build rule}
build (\¢ n -> g (¢ . f) n)

The difficulty is in the step marked DANGER!. Here we sub-
stitute (build g) for xs in the body of map, but this occur-
rence of xs is under a lambda abstraction. In general, one
can make a program run arbitrarily more slowly by substi-
tuting a redex inside a lambda abstraction, so GHC usually
does something more conservative:

map f (build g)
= {Inline map} SAFE!
let xs = build g

in build (\¢ n -> foldr (c . f) n xs)

Alas now the foldr/build rule cannot fire!

The solution 1is to observe that the abstraction
(\c¢ n -> ...) is a one-shot lambda; that is, it is a
function that is only called once. Why? Because it is the
argument to build, and build simply calls its argument,
passing (:) and []. Substituting inside one-shot lambdas
is perfectly safe.

The Right Thing To Do is to analyse the program for one-
shot lambdas and act accordingly. A type-based analy-
sis that achieves this (among other things) is described by
Wansbrough (Wansbrough and Peyton Jones, 1999), but it
is not yet fully implemented in GHC. Instead we have a tem-
porary hack that spots the special case of an application of
build.

4.4 Sharing

Consider this function
f x = sum (filter (> x) [1..10])

One might expect all intermediate lists to be eliminated from
this function, but GHC correctly spots that the expression
[1..10] can be floated out:

one_to_ten = [1..10]
f x = sum (filter (> x) one_to_ten)

Alas, now the filter consumer cannot fuse with the [1..10]
producer. Floating out one_to_ten would be a good trans-
formation if the producer — in this case [1..10] — were
more expensive. It would be worth losing the fusion, in or-
der to share the computation of one_to_ten among all calls
to £. But in the case of [1..10], it would be better to lose
sharing to gain fusion.

This problem turned out to be central when Elliott et al.
tried to use rewrite rules to optimise Pan programs (Elliott
et al., 2000). In Pan, it is crucial to inline absolutely every-
thing, caring nothing for sharing, apply rewrite rules, and
then do aggressive common sub-expression and code-motion
transformations to make up for the loss.

This is a problem that is unlikely to have a cut-and-dried
solution, but we are exploring the idea of using virtual data
types. The programmer declares some data types as virtual,

meaning that all data structures of virtual type should be
eliminated. In particular, the compiler can ignore loss of
sharing when considering inlining a value of virtual type. It
remains to be seen how usable such a feature would be.

5 Dynamically-generated Rules

Thus far we have concentrated on rewrite rules that are
written by the programmer, but we have found that it is
often useful for the compiler itself to generate rewrite rules
dynamically. We give three examples in this section.

5.1 Specialisation

Haskell’s type classes give rise to overloaded functions with
types like this:

invert :: Num elt => Matrix elt -> Matrix elt

Such overloaded functions are somewhat inefficient: invert
takes a tuple (or “dictionary”) of functions as an extra ar-
gument, which give the arithmetic operations over values of
type elt. Optimising compilers for Haskell allow the pro-
grammer to write a SPECIALISE pragma, thus:

{-# SPECIALISE
invert :: Matrix Int -> Matrix Int

#-}

This pragma encourages the compiler to build a specialised
version of invert, in which the matrix elements are known
to be of type Int, giving much more efficient code. (GHC
will also infer such pragmas from the types at which invert
is called, but only within a single module.)

Suppose, then, that the compiler has constructed the spe-
cialised function, and called it (say) invert_Int. The next
task is to make sure that suitable calls to invert are re-
placed by calls to invert_Int. This is where rules come in.
The compiler dynamically generates a rewrite rule like this:

{-# RULES
"invert/Int" forall d::Num Int.
invert @ Int d = invert_Int

#-}

Unlike our earlier, programmer-specified rules, this rule is
written in GHC’s explicitly-typed intermediate language,
called “Core”. In Core, every binder has an explicit type,
and polymorphism is expressed using explicit type abstrac-
tion and application. The rules written by the user in the
(implicitly-typed) Haskell source code are translated into the
Core language by the typechecker (which adds type infor-
mation) followed by the desugarer (which converts Haskell’s
rich syntax into Core’s much more limited forms).

In this case invert is polymorphic, and so takes a type ar-
gument, indicated by the “@ Int” on the left hand side of
the rule. It also takes an argument corresponding to the
Num elt constraint, namely the tuple of arithmetic opera-
tions referred to earlier. So the rule simply says that a call
to invert applied to type Int and tuple d can be rewritten
to invert_Int.

5.2 Evaluated arguments

In array-intensive code, one often encounters a loop like this:

f :: Int -> Int -> Int
f xy=1i1if x == 0 then 0O
else y + £ (x-1) (y+1)

GHC represents values of type Int using the following data
type:
data Int = I# Int#

where Int# is the type of unboxed, 32-bit integers. GHC
will compile f thus:

f :: Int -> Int -> Int
f xy=case x of { I# xv -> fw xv y }

fw :: Int# -> Int -> Int
fw xv y
= if (xv ==# O#) then I# O#
else
case y of { I# yv ->
case fw (xv -# 1#) (I# (yv +# 1#)) of { I# rv ->
I# (yv +# rv) }}

f has turned into a mere “wrapper” that evaluates x be-
fore calling the “worker”, fw (Peyton Jones and Launchbury,
1991). It can do this because f is sure to evaluate x. How-
ever, f is not certain to evaluate y, so the evaluation of y
must be in the else branch of the conditional in the worker,
fw. That means that the worker must re-box y before call-
ing itself (“I# (yv +# 1#)”), and in the common case, y
will immediately be un-boxed again. This is bad.

What can be done? Again, it is a matter of specialisation.
Recognising that there is a recursive call to fw in which
the second argument is a constructor application, GHC can
make a specialised version of fw, and generate an appropri-
ate rule, thus:

fwl :: Int# -> Int# -> Int
ful xv yv = let
y = I# yv
in ...original RHS of fw....
{-# RULES "fwV" forall xv yv.
fw xv (I# yv) = fwl xv yv
#-1}

After simplifying the right hand side of fw1, using the rule,
we get just what we want:

fwl :: Int# -> Int# -> Int
fwl xv yv
= if (xv ==# O#) then I# O
else
case fwl (xv -# 1#) (yv +# 1#) of { I# rv ->
I# (yv +# rv) }

fw remains as an “impedance matcher” embodying the first

iteration of the loop, before calling fwl. However the rule
remains to transform any call of £ with an already-evaluated
second argument into a call to fwl.

All of this is done invisibly by the compiler — the program-
mer is not involved at all. The transformation is fully imple-
mented in GHC, enabled by “-02”. The analysis, generation
of specialised code, and generation of the rewrite rule, takes
only 225 lines of Haskell. The rewrite-rule infrastructure

automatically takes care of applying the rule when it is rel-
evant, and propagating the rule across separate compilation
boundaries.

5.3 Usage types

We are exploring another example of the same pattern.
Wansbrough'’s work on usage types suggests that consider-
able efficiency gains can be made by specialising functions
based on their usage patterns. For example, consider map
again:

map f [] =

map f (x:xs) = f x : map f xs

If map is called in a context in which the result list is con-
sumed at most once, then the thunks for £ x and map f xs
do not need to be self-updating; instead the updates can be
omitted. To express this, GHC adds extra usage-type ar-
guments to map, both at its definition and at its call sites.
Once this is done, a specialised version of map can be com-
piled for the case when the usage-type argument is “once”,
and a rule generated to match such calls, in exactly the same
way as for specialising overloading.

5.4 Summary
In each example, we can discern the same pattern:

e Based on pragmas or program analysis, perform a local
transformation (e.g., generating the specialised version
of invert).

e Generate a rule that explains how that transformation
can be useful to the rest of the program. In some cases
the rule looks at the type arguments, in others at value
arguments.

e Apply the rule throughout the rest of the program.

This may not sound like much, but it is extremely helpful to
have a single, consistent way to propagate the benefits of a
transformation to the rest of the program. For example, it
is not enough for the specialiser to generate specialised ver-
sions of a function and find all appropriate call sites for the
specialised function. There may not be any calls to invert
at type Int when the specialiser runs. Such calls may only
show up after some other inlinings have exposed them. Or
they may be in other modules altogether, so the rule must
be propagated across module boundaries (which is relatively
easily done).

Programmer-defined RULES pragmas are only allowed at top
level, but this is a purely syntactic restriction. Rewrite rules
make perfect sense for nested functions bound by a local 1let
or letrec, and GHC will indeed generate dynamic rules us-
ing the ideas of this section for local functions. This is im-
portant in practice, because inlining generates many nested
function definitions.

6 Implementation

The implementation of the rule rewriting mechanism within
GHC is straightforward. The front-end was extended to

handle rule parsing, type checking, and translation into the
Core intermediate language. The GHC optimiser is struc-
tured as a number of separate passes over Core expres-
sions (Peyton Jones and Santos, 1998; Peyton Jones and
Marlow, 1999). The most fundamental pass — iterated many
times — is the simplifier, which performs inlining, case sim-
plification, and eta-expansion in the course of a single top-
to-bottom traversal of the program. To support rewriting,
we just modified the simplifier to check each function ap-
plication it encounters against a list of active rules; if the
application matches the rule LHS pattern, it is replaced by
a suitably instantiated version of the RHS. We need to take
a little care to make sure that the rule remains attached to
the right function if alpha-renaming takes place.

Including rules adds a modest overhead to GHC compilation
time. For example, using the list fusion rules described in
Section 3 increases compilation times an average of 5% over
the nofib benchmark suite. Some of this increase is prob-
ably due to performing conventional optimisations that are
enabled by rule-based rewrites. In any case, we have made
no serious attempt to analyse or optimise this aspect of com-
piler performance, so it can probably be sped up should this
prove important.

7 Application: Constraint Satisfaction Problems

Next we give an example user application, solving constraint
satisfaction problems (CSPs), in which rewrite rules help
support high-level, modular programming style. The added
rules, which describe short-cut deforestation on rose trees,
are confined to a library, and they make a representative ker-
nel of the application run three times faster, by eliminating
essentially all the overhead due to the modular style.

7.1 Modular search

Many interesting algorithms for solving CSPs are concep-
tually based on trees, whose nodes represent states in the
search space; solutions to the search problem are found by
locating complete, consistent nodes. In a conventional im-
perative recursive implementation, these search trees are
merely notional; they correspond to the tree of procedure
activation histories. In Haskell, one can make the state tree
into an explicit (lazy) data structure instead (Hughes, 19809;
Bird and Wadler, 1988). This approach permits search al-
gorithms to be modularized into separate functions (really
coroutines) that communicate via a lazily-constructed tree
labeled with consistency information. The component func-
tions perform generation of all possible states, consistency
labeling, pruning of inconsistent states, and collection of so-
lutions. A large variety of useful algorithms — which look
quite different from one another when written imperatively
— can be obtained in the lazy framework just by varying the
labeling and pruning functions (Nordin and Tolmach, 2000).

The underlying algorithm is a simple composition of func-
tions, where all the intermediate results are trees or lists.

solver :: Labeler a -> Pruner a -> CSP -> [Statel
solver labeler pruner csp =
(filter (complete csp) . map fst .
prune pruner . (labeler csp)
mkSearchTree) csp

leaves

Here CSP is a type describing instances of constraint satis-
faction problems; for example, we might have a function

queens :: Int -> CSP

to generate instances of the familiar n-queens problem.
State is the type of partial solutions. Function

mkSearchTree :: CSP -> Tree State

constructs a tree of all possible partial solutions to a given
CSP. Here Tree is the type of ordinary “rose trees,” in which
each node has a value and an arbitrary number of children.
The labeler argument to solver has this type:

type Labeler a =
CSP -> Tree State -> Tree (State, a)

It specifies how to attach consistency annotations to each
node in the tree. The pruner argument, of type

type Pruner a = (State,a) -> Bool

says how to inspect the annotations to determine whether
the node is consistent; prune removes subtrees rooted at in-
consistent nodes. leaves returns the leaves of the tree as
a list in left-to-right order. The subsequent list operations
throw away the annotations and weed out nodes represent-
ing incomplete solutions.

To obtain simple back-tracking search, we can provide a
Labeler that checks the consistency of each node individu-
ally, and annotates the node with the boolean result of the
check.

labelInconsistencies
CSP -> Tree State -> Tree (State,Bool)
labelInconsistencies csp = mapTree f
where f s = (s,not (consistent csp s))

btsolver :: CSP -> [Statel
btsolver = solver labelInconsistencies snd

More sophisticated algorithms use labelers that may look
at more than one node at a time or store more information
in the annotations. For example, a well-known algorithm
called forward checking can be implemented by a labeler
that stores a (lazily constructed) cache table of consistency
information at each node.

labelCSCache
CSP -> Tree State ->
Tree (State,Cache ConflictSet)
extractConflict
(State,Cache ConflictSet) -> Bool

fcsolver :: CSP -> [State]
fcsolver = solver labelCSCache extractConflict

Interesting new combinations of algorithms can be obtained
by appropriate composition of labeling functions, giving us a
“mix and match” approach to algorithm construction. The
modular algorithms that result are much simpler to read,
write, and modify than their imperative counterparts, and
have the same asymptotic behavior (in both space and time).

However, the modular Haskell code is much slower than
equivalent C code, if only by a constant factor. We mea-
sured performance of a representative kernel of code that
implements standard backtracking search on the m-queens
problem and counts the number of solutions found. The
modular version of this function is written

gsolns :: Int -> Int
gsolns n = length (btsolver (queens n))

On the 11-queens problem, gsolns runs about 30 times
slower than a conventional recursive C algorithm that
doesn’t use trees at all. More strikingly, perhaps, it is almost
four times slower than a non-modular Haskell transliteration
of the C algorithm. This difference suggests that we try to
fuse the tree traversals to avoid building the nodes of the
several intermediate trees.

In the remainder of this section, we describe short-cut defor-
estation for rose trees, and discuss our experience in using
rules with this application. Full code for the kernel modular
code and the corresponding monolithic function are given in
the Appendix.

7.2 Fusion on rose trees

We treat rose trees as an abstract data type, with public
functions initTree, mapTree, prune, and leaves. The in-
ternal representation data type and foldTree operation are
standard:

data Tree a = T a [Tree a]

foldTree :: (a -> [b] -> b) -> Tree a -> b
foldTree f t = go t
where go (T a ts) = f a (map go ts)

We introduce a buildTree analogous to build on lists, and
the corresponding fusion rule:

buildTree ::
forall a.
(forall b. (a -> [b] -> b) -> b) -> Tree a
buildTree g =g T

{-# RULES
"foldTree/buildTree"
forall k (g::forall b.(a->[b]->b) -> b)
foldTree k (buildTree g) = g k
#-}

Now we must take care that all tree-producing functions use
buildTree, and all tree-consuming functions use foldTree.
Since Tree is as an ADT, we don’t need to worry about
client code using the Tree constructor directly.

Function initTree generates a tree from a function that
computes the children of a node (Hughes, 1989); mapTree is
the analogue of the familiar functions on lists.

initTree :: (a -> [a]) -> a -> Tree a
initTree f a = buildTree g
where g n = go a
where go a = n a (map go (f a))

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f t = buildTree g
where g n = foldTree h t
where h a ts = n (f a) ts

prune p t removes every subtree of ¢ whose root value
matches p. Since we cannot represent empty trees, we re-
quire that p always return False on the root node of the
entire tree, which is always appropriate in our applications.

prune :: (a -> Bool) -> Tree a -> Tree a
prune p t = buildTree g
where
g n = head (foldTree f t)
where f a ts | p a = []
| otherwise = [n a (concat ts)]

Finally, leaves extracts the values at the leaves of a tree
into a list in left-to-right order.

leaves :: Tree a —-> [a]
leaves = foldTree f
where f leaf [] = [leaf]
f _ ts = concat ts

Ideally, we would like leaves to be written as a list build,
so that it can fuse with list consumers further down the
pipeline. Unfortunately, this seems to require doing a
higher-order tree fold, which produces an intermediate list
of function closures; GHC doesn’t handle such lists very ef-
fectively, and it proves more efficient to stick with the simple
definition shown here.

We mark all the functions to be inlined if possible.

7.3 Short-cut deforestation pays again

Given these definitions, GHC is able to completely fuse away
all the rose trees in gsolns; i.e., no T constructors are ap-
plied at all!l Indeed, modifying the implementation of our
rose tree ADT to perform cheap deforestation improves per-
formance of (gsolns 11) by a factor of more than three,
bringing it to within 15% of the running time of a hand-
fused, non-modular Haskell implementation. Moreover, this
improvement comes without requiring any changes to the
search application code itself.

All is not quite so straightforward as it may seem, however.
All the problems we examined in the context of list fusion
appear again for trees:

e Effective application of the fusion law requires that
GHC inline more enthusiastically than it normally
would. For example, our pipeline of tree operations
generates many fusion opportunities that require in-
lining underneath the lambda of a buildTree argu-
ment. This is, in fact, a safe thing to do, since the
lambda is “one shot,” but GHC doesn’t know this —
and since we are thinking of trees as a user-defined li-
brary, it would be obviously inappropriate to hack this
fact about buildTree into the compiler, the way we did
for list build. As it happens, for the particular kernel
of code we show here, GHC can discover for itself — af-
ter repeated iteration of inlining — that these lambdas
are one shot. But in general, we need linearity analysis.

o If fusion fails, the tree library should make sure that the
resulting code is not worse than it would have been had
fusion never been attempted. As with lists, we must ei-
ther ensure that inlining foldTree produces good code,
or provide a “back-out” mechanism, with appropriate
attention to phasing of inlining (c.f. Section 4.2).

e For full effectiveness, we need to make sure that inlining
of list functions (e.g., on the lists of children in nodes)
occurs only after inlining of tree functions (c.f. Sec-
tion 4.1). A simple phasing strategy based on module
dependencies would handle this requirement.

e Most seriously, we might easily write programs for
which fusion fails for legitimate reasons, e.g. because
there are several consumers for a given producer, or
simply because we’ve made a mistake when writing a
rule. But we’ll get no feedback from the compiler about
such failures. This is clearly a crucial area for further
work.

8 Related Work

The basic concepts of our rules system are far from new.
There have been a great many attempts to build frameworks
for user-directed or application-specific optimization, often
by adding additional semantic specifications to functions.

These ideas have been of particular interest in the high-
performance computing community. Scientific codes often
use well-established, high-level libraries, such as LINPACK
or PLAPACK. Because these libraries need to work effi-
ciently over a wide range of machine architectures and data
sets, they typically have multiple implementations, each
with its own complex interface. For portability and main-
tainability, client code should be written using portable,
high-level library calls, leaving the compiler to determine the
appropriate low-level calls to use and optimizing the client
code accordingly. To achieve this, library interfaces can be
annotated with additional specification information. Sys-
tems and proposals along these lines include TAMPR (Boyle
et al., 1997), Broadway (Guyer and Lin, 1999; Guyer and
Lin, 2000), MetaScript (Kennedy et al., 2000), and Active
Libraries (Veldhuizen and Gannon, 1998).

Another set of systems has developed from the algebraic
specification community. For example, the OPAL lan-
guage (Didrich et al., 1994) combines functional program-
ming and algebraic specification in a uniform framework.
OPAL laws are used to justify or guard rewrites of func-
tional code; since laws are first-order predicate formulas over
equality of functional expressions, this makes the system
very powerful (and of course undecidable). It is unclear to
what extent the existing implementation of OPAL supports
automated optimization.

Compared to existing systems and proposals, ours is notable
primarily for what it leaves out. More precisely, we can
identify the following contrasts between our systems and
others:

No meta language. Our rules are source-to-source, and
their right-hand sides are simple source expression, so
they can be defined just using Haskell. With the excep-
tion of TAMPR (Boyle et al., 1997), most of the other
tools known to us operate on internal program rep-
resentations, such as abstract syntax tress or control-
flow graphs, and they typically allow right-hand sides
to be defined using some kind of meta-programming
facility. The choice of a meta-programming language
is delicate. A specialized language or notation such
as metal (Engler et al., 2000) is concise, but must be
learned from scratch by the library author and can
be unduly constraining; using a general-purpose pro-
gramming language, such as LISP (as in early work on
Aspect-Oriented Programming (Kiczales et al., 1997;
Mendhekar et al., 1997)) is more flexible, but requires

10

the author to take great care to maintain essential in-
variants.

Simple rewrite strategy We rely on a very simple, built-
in strategy, modified by “phases”, for determining
when and where rules should be applied. As rule
sets become more elaborate, authors may need to ex-
ercise explicit control over strategy, e.g., as in Strat-
ego (Visser et al., 1998).

Simple pattern-matching. We rely on the programmer
to use high-level operators, such as foldr, that en-
capsulate control flow. Thus we don’t need to pro-
vide sophisticated contextual pattern matching to
identify loops or recursions, unlike systems like OP-
TRAN (Lipps et al., 1988), Dora/Tess (Farnum, 1990),
and KHEPERA (Faith et al., 1997). Nor do we have to
deal with the unpredictability and possible high cost of
higher-order matching, as used in MAG (de Moor and
Sittampalam, 1999).

No side conditions. We work with a purely functional
language, which means that many useful optimizing
transformations are context independent and don’t re-
quire elaborate side-conditions. By contrast, most use-
ful transformations on imperative programs must be
justified by non-syntactic, and often non-trivial, analy-
sis, e.g., of control flow, dependence, aliasing, etc. Thus
many tools for imperative languages focus on specify-
ing analyses in addition to transformations; examples
include DFA&OPT-MetaFrame (Klein et al., 1996),
Sharlit (Tjiang and Hennessy, 1992), Genesis (Whit-
field and Soffa, 1994), OPTIMIX (Assmann, 1996), In-
tentional Programming (Aitken et al., 1998), and re-
cent work of Lacey and de Moor (Lacey and de Moor,
2001).

No termination guarantees; no AC rewriting. Our
rules are all directed, and we cannot easily express
commutative laws without causing endless rewriting.
In a modern algebraic transformation system like
Maude (Clavel et al., 1996), equations are entirely
symmetric in their left and right hand sides, which can
be arbitrary terms; they can be used for transformation
in either direction. Common algebraic properties of an
operator can be declared by built-in keywords such as
[assoc] and [comm]; in executing the transformations
in a program, all pattern matching is conducted
modulo these properties, which makes for shorter and
more elegant programs.

In summary, we offer simplicity in exchange for more limited
functionality. Simplicity is important, both for implemen-
tors and library authors. From an implementation point of
view, our experience is that simple ideas are seldom easy to
implement in a full-scale, optimising compiler, while com-
plex ideas require heroism that is hard to sustain in the
long term.

From a programming point of view, too, simplicity is im-
portant. Most particularly, the fact that the transforma-
tions are expressed entirely in Haskell itself, and not in some
(necessarily different, and more indirect) meta-language is
a huge advantage. We know of no optimising compiler in
widespread use that supports domain-specific extensions; we
suspect that this is partly due to the complexity of their

meta-programming mechanisms. Of course, GHC’s rules are
not in widespread use by programmers either — but they
are used behind the scenes in every run of GHC, both for list
fusion (Section 3) and specialisation (Section 5). It is also
possible that our approach is just too simple: we do not yet
know how the tradeoff between simplicity and expressiveness
will play out.

9 Conclusions and further work

We have described a simple, but fully implemented and de-
ployed, way to write domain-specific extensions to a com-
piler for Haskell, by means of rewrite rules. We have demon-
strated that, though simple, rewrite rules are useful in prac-
tice. Indeed, the list fusion rules have been deployed in the
Prelude of the released GHC compiler for two years. In re-
cent work, Chakravarty and Keller are using GHC’s rewrite
rules to perform array fusion in their work on nested data-
parallel programming (Chakravarty and Keller, 2001); their
application is more sophisticated than any we have described
here.

The previous section described many directions in which
one could imagine make our system more expressive, but we
plan to develop more experience of its practical use before
elaborating it much further. Indeed, the most pressing area
for further work is not even mentioned in Section 8: it is the
question of how best to provide feedback to the programmer
about which rules have fired and, more especially, which
have not and why not. Since rewrites are done on Core,
which is quite far from Haskell, providing comprehensible
feedback is a hard problem.

The status of this paper is as a report of work in progress.
We present it in the hope that it will attract the interest of
the writers of library packages, and will encourage them to
experiment with the feature and report on its inadequacies.
For the longer term, we wish to promote the principle that a
programmer should supply further declarative information
together with the code of the program; and suggest that
compilers and other programming tools should take maxi-
mum advantage of these declarations.

Acknowledgements

We gratefully thank Manuel Chakravarty, Andy Gill, Oege
de Moor, and Eelco Visser for their helpful feedback on ear-
lier versions of this paper.

References

Aitken, W., Dickens, B., Kwiatkowski, P., de Moor, O.,
Richter, D., and Simonyi, C. (1998). Transformation
in intentional programming. In Proc. 5th International
Conference on Software Reuse. IEEE Press.

Assmann, U. (1996). How to uniformly specify program
analysis and transformation with graph rewrite sys-
tems. In Proc. Compiler Construction 1996, volume
1060 of LNCS.

Baader, F. and Nipkow, T. (1999). Term rewriting and all
that. Cambridge University Press.

11

Bird, R. and Moor, O. D. (1996). The Algebra of Program-
ming. Prentice Hall.

Bird, R. and Wadler, P. (1988). Introduction to Functional
Programming. Prentice Hall.

Boyle, J., Harmer, T., and Winter, V. (1997). The TAMPR
program transformation system: Design and applica-
tions. In Arge, E., Bruaset, A., and Langtangen, H.,
editors, Modern Software Tools for Scientific Comput-
ing. Birkhauser.

Chakravarty, M. and Keller, G. (2001). Functional array fu-
sion. Technical report, School of Computer Science and
Engineering, University of New South Wales, Sydney.

Claessen, K. and Hughes, J. (2000). QuickCheck: a
lightweight tool for random testing of Haskell programs.
In ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’00), pages 268-279, Mon-
treal. ACM.

Clavel, M., Eker, S., Lincoln, P., and Meseguer, J. (1996).
Principles of Maude. In Meseguer, J., editor, Proceed-
ings of the First International Workshop on Rewriting
Logic, volume 4 of Electronic Notes in Theoretical Com-
puter Science, pages 65—89. Elsevier.

de Moor, O. and Sittampalam, G. (1999). Generic program
transformation. In Proc. 3rd International Summer
School on Advanced Functional Programming, volume
1608 of LNCS, pages 116-149.

Didrich, K., Fett, A., Gerke, C., Grieskamp, W., and Pep-
per, P. (1994). OPAL: Design and Implementation of
an Algebraic Programming Language. In Gutknecht,
J., editor, Programming Languages and System Ar-
chitectures, International Conference, Zurich, Switzer-
land, March 1994, volume 782 of LNCS, pages 228-244.
Springer.

Elliott, C., Finne, S., and de Moor, O. (2000). Compil-
ing embedded languages. In Proc. Semantics, Appli-
cations, and Implementation of Program Generation
(SAIG 2000), volume 1924 of LNCS.

Engler, D., Chelf, B., Chou, A., and Hallem, S.
(2000). Checking system rules using system-specific,
programmer-written compiler extensions. In Sympo-

sium on Operating Systems Design and Implementation
(OSDI 2000), San Diego, CA.

Faith, R. E., Nyland, L. S., and Prins, J. F. (1997). KHEP-
ERA: A system for rapid implementation of domain
specific languages. In Proc. USENIX Conference on
Domain-Specific Languages, pages 243-255.

Farnum, C. D. (1990). Pattern-Based Languages for Proto-
typing of Compiler Optimizers. PhD thesis, University
of California, Berkeley. Technical Report CSD-90-608.

Gill, A., Launchbury, J., and Peyton Jones, S. (1993). A
short cut to deforestation. In ACM Conference on
Functional Programming and Computer Architecture
(FPCA’93), pages 223-232. ACM, Cophenhagen.

Guyer, S. Z. and Lin, C. (1999). An annotation language
for optimizing software libraries. In Proceedings of the
2nd Conference on Domain-Specific Languages, pages
39-52, Berkeley, CA. USENIX Association.

Guyer, S. Z. and Lin, C. (2000). Optimizing the use of
high performance software libraries. In Proc. 13th In-
ternational Workshop on Languages and Compilers for
Parallel Computing (LCPCO00).

Hughes, J. (1989). Why functional programming matters.
The Computer Journal, 32(2):98-107.

Kennedy, K., Broo, B., Cooper, K., Dongarra, J., Fowler,
R., Gannon, D., Johnsson, L., Mellor-Crummey, J., and
Torczon, L. (2000). Telescoping languages: A strategy
for automatic generation of scientific problem-solving
systems from annotated libraries. Journal of Parallel
and Distributed Computing. (To Appear).

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., and Irwin, J. (1997).
Aspect-oriented programming. In ECOOP 97 —
Object-Oriented Programming 11th European Confer-
ence, volume 1241 of LNCS, pages 220-242.

Klein, M., Knoop, J., Koschiitzki, D., and Steffen, B. (1996).
DFA and OPT-METAFrame: A tool kit for program
analysis and optimization. In Proc. 2nd International
Workshop on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’96), volume 1055
of LNCS, pages 418-421.

Lacey, D. and de Moor, O. (2001). Imperative program
transformation by rewriting. In Proc. Compiler Con-
struction 2001. (To appear.).

Launchbury, J. and Sheard, T. (1995). Warm fusion.
In ACM Conference on Functional Programming and
Computer Architecture (FPCA’95), pages 314-323.
ACM, La Jolla, California.

Lipps, P., Méncke, U., and Wilhelm, R. (1988). OPTRAN
- a language/system for the specification of program
transformations: System overview and experiences. In
Proc 2nd Workshop on Compiler Compilers and High
Speed Compilation, volume 371 of LNCS, pages 52-65.

Mendhekar, A., Kiczales, G., and Lamping, J. (1997). RG: A
case-study for aspect-oriented programming. Technical
Report SPL97-009, Xerox Palo Alto Research Center,
Palo Alto, CA, USA.

Nordin, T. and Tolmach, A. (2000). Modular lazy search for
constraint satisfaction problems. Journal of Functional
Programming. (To appear.).

Partain, W. (1992). The nofib benchmark suite of Haskell
programs. In Launchbury, J. and Sansom, P., editors,
Functional Programming, Glasgow 1992, Workshops in
Computing, pages 195-202. Springer Verlag.

Peyton Jones, S. and Launchbury, J. (1991). Unboxed values
as first class citizens. In ACM Conference on Functional
Programming and Computer Architecture (FPCA’91),
pages 636-666, Boston. ACM.

Peyton Jones, S. and Marlow, S. (1999). Secrets of the Glas-
gow Haskell Compiler inliner. In Workshop on Imple-
menting Declarative Languages, Paris, France.

Peyton Jones, S. and Santos, A. (1998). A transformation-
based optimiser for Haskell. Science of Computer Pro-
gramming, 32(1-3):3-47.

Reid, A. (2000). The Hugs graphics library. Technical re-
port, School of Computing, University of Utah.

Tjiang, S. and Hennessy, J. (1992). Sharlit — a tool for build-
ing optimizers. In Proc. ACM SIGPLAN 92 Confer-
ence on Programming Language Design and Implemen-
tation, pages 82-93, San Francisco, CA.

Veldhuizen, T. L. and Gannon, D. (1998). Active libraries:
Rethinking the roles of compilers and libraries. In Pro-
ceedings of the SIAM Workshop on Object Oriented
Methods for Inter-operable Scientific and Engineering
Computing (00’98). STAM Press.

Visser, E. (1999). Strategic pattern matching. In Rewriting
Techniques and Applications (RTA’99), Trento, Lecture
Notes in Computer Science. Springer Verlag.

Visser, E., Benaissa, Z.-e.-A., and Tolmach, A. (1998).
Building program optimizers with rewriting strategies.
In Proceedings of the International Conference on Func-
tional Programming (ICFP’98), pages 13-26.

Wansbrough, K. and Peyton Jones, S. (1999). Once upon a
polymorphic type. In 26th ACM Symposium on Princi-
ples of Programming Languages (POPL’99), pages 15—
28, San Antonio. ACM.

Whitfield, D. and Soffa, M. L. (1994). The design and im-
plementation of Genesis. Software — Practice and Ez-
perience, 24(3):307-325.

Appendix: Constraint Satisfaction Problems

Here is the complete code for the constraint satisfaction
problem (CSP) search kernel described in Section 7

Problem Definition

A CSP is characterized by a number of variables vars, a
number of values vals, and a consistency relation rel be-
tween pairs of assignments of values to vars. We represent
assignments using an infix constructor :=. To solve the CSP,
we must assign a value to each variable such that all pair-
wise combinations of assignments are in rel. A well-known
example is the n-queens problem, under the standard opti-
mization that we only try to place one queen in each col-
umn; this can be modeled as a CSP with n variables (the
columns), n values (the rows), and a relation that permits
two assignments provided the corresponding positions are
on different rows or different diagonals.

type Var = Int
type Value = Int

data Assignment = Var := Value

type Relation = Assignment -> Assignment -> Bool

data CSP = C {vars, vals :: Int, rel :: Relation}
queens :: Int -> CSP
queens n = C{vals=n,vars=n,rel=safe}

where safe (coll := rowl) (col2 := row2) =

(rowl /= row2) &&
abs (coll - col2) /= abs (rowl - row2)

Search States

We model each state in the space of possible solutions as a se-
quence of assignments, together with the number of the most
recently assigned variable. States are built from emptyState
by repeated use of extensions, which takes a state and con-
structs a list of extended states formed by assigning each
possible value to the next variable.

data State = S [Assignment] Var

emptyState :: CSP -> State
emptyState C{vars=vars} =S [] 0

extensions :: CSP -> State -> [State]
extensions C{vars=vars,vals=vals} (S as lastvar) =
[S ((nextvar := val):as) nextvar |
let nextvar = lastvar+l, nextvar <= vars,

val <- [1..vals]]
complete :: CSP -> State -> Bool
complete C{vars=vars} (S _ lastvar) =
lastvar == vars
consistent :: CSP -> State -> Bool

_) = True
all (rel a) as

consistent _ (s
consistent C{rel=rel} (S (a:as) _) =

A solution is a complete, consistent state.

Rose Trees

Here is sample library code for rose trees written without
concern for fusion. For convenience, we do use foldTree in
the definition of prune and leaves

data Tree a = T a [Tree al

-> [al)
go a
T a (map go (f a))

initTree :: (a -> a -> Tree a
initTree f a =

where go a =

foldTree (a => [b]
foldTree f t = go t
where go (T a cs) = f a (map go cs)

->b) -> Tree a -> b

-> Tree a -> Tree b
T (f a) (map (mapTree f) ts)

mapTree (a => b)

mapTree £ (T a ts) =

prune (a => Bool) -> Tree a -> Tree a
prune p t =

head (foldTree f t)
where f a ts | p a = []

| otherwise = [T a (concat ts)]

leaves :: Tree a -> [a]

leaves = foldTree f

where f leaf [] =

f _ ts =

[leaf]
concat ts

Rose trees supporting fusion

The code for these was shown in Section 7.2 .

13

Backtracking Search for CSPs

mkSearchTree :: CSP -> Tree State
mkSearchTree csp =
initTree (extensions csp) (emptyState csp)

type Labeler a =

CSP -> Tree State -> Tree (State, a)
type Pruner a = (State,a) -> Bool
labelInconsistencies :: Labeler Bool

labelInconsistencies csp = mapTree f
where f s = (s,not (consistent csp s))

solver :: Labeler a -> Pruner a -> CSP -> [Statel
solver labeler pruner csp =
(filter (complete csp) . map fst
prune pruner . (labeler csp)
mkSearchTree) csp

. leaves

btsolver :: CSP -> [State]
btsolver csp = solver labellnconsistencies snd

Int -> Int
length (btsolver (queens n))

gsolns
gsolns n =

Hand-fused Code

A hand-fused version of gsolns in Haskell:

gsolns’ Int -> Int
gsolns’ n = f (emptyState csp)
where

csp = queens n
f state | complete csp state = 1
| otherwise = g (extensions csp state)

gll=o0
g (s’:rest) | consistent csp s’ = f s’ + g rest
g (_:rest) = g rest

