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Abstract
We are interested in spoken language understanding within the
domain of automated telecommunication services. Our cur-
rent methodology involves training statistical language models
from large annotated corpora for recognition and understanding.
Since the transcribing of large speech corpora is a resourcecon-
suming task, we are motivated to exploit speechwithout tran-
scriptions. In particular, we learn the semantic associations for
a task exploiting only phone-based sequences from the output of
a task-independent ASR-system. In this paper we present a new
multipass algorithm for acquiring salient phone sequencesfrom
untranscribed speech corpora and evaluate their utility for the
HMIHY task. Compared to our previous strategy, this algorithm
is shown to produce improved call-classification results while
reducing up to 7-fold the number of salient phone-sequences
selected for training.

1. Introduction
The subject of our research is machine understanding of spoken
natural language. Our current methodology comprises word-
based training which needs an annotated training corpus at the
word level. Since the annotating of large amounts of speech data
is time consuming and expensive, we are exploring the possibil-
ity of an understanding system that acquires lexicon, syntax and
semantics from untranscribed speech. In particular, our strat-
egy makes use of clusters of semantically meaningful phone se-
quences, which we callacoustic morphemes, for classifying of
utterances. The representations of the utterances at the phone
level are obtained as an output of a task-independent phone rec-
ognizer [6].

We evaluate our algorithms for theHow May I Help You
(HMIHY) task [2], where an automated dialogue system is de-
signed to infer an appropriate machine action upon the service
requests made over the phone by non-expert users. The requests
are made in form of natural language utterances and elicitedby
an open-end prompt“How May I Help You?”.

There are several differences between our methodology and
methods for inferring of words from the subword sequences de-
scribed in the literature (see e.g. [1]). First of all, we exploit the
semantic significance (salience) of phone sequences (phrases),
generalizing thus the problem of learning from speech aloneto
learning from speech and meaning. The utility of semantics for
learning to understand language has been proven in [3, 7]. The
second feature incorporated in our strategy allows us to handle
the output of an imperfect ASR by combining similar phrases
into clusters. Finally, there are no restrictions on the length of
the extracted sequences.

In this paper we propose a new algorithm for acquisition
of salient phone phrases from training data. For this purpose
we employ an iterative scheme. Every iteration includes ex-
tracting of phone phrases from the training corpus and parsing
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this corpus represented at the phone level with these phrases.
Using a ML-parser distinguishes the presented multipass algo-
rithm from our previously described two-pass strategy which
employed a simple filter [4, 5].

The rest of the paper is organized as follows: in the next
section we present a short overview of the data set we are
using in our experiments. Section 3 addresses acoustic mor-
phemes. The iterative procedure for extracting of the salient
phone phrases from the training corpus is described in Section
4. Results of its application are presented in Section 5, andthe
conclusion is given in Section 6.

2. Database
Our database is a collection of sentences generated from the
recordings of callers responding to the prompt“AT&T. How
may I help you?”[2]. There are 7642 and 1000 sentences in our
training and test sets respectively. Sentences are represented at
the phone level and provided with semantic labels drawn from
15 call-types including an open-class denoted “OTHER”. Phone
lattices are produced by a task independent phone recognizer
[6]. The best-path ASR-output is denotedASR-phone. For base-
line comparison purposes we also consider transcriptions at the
phone level obtained by replacing every word in the word level
annotations by its most likely dictionary pronunciation. This
data set is calledtranscr-phone.

3. Acoustic Morphemes
In our methodology we use semantic associations of selected
sequences of phones to classify the whole utterance whose
part they are. To be selected the phone sequence (phrase)f = [p1p2 : : : pk] must be meaningful and entropy reducing.
Selected phrases are then combined into clusters (acoustic mor-
phemes) based on acoustic and semantic similarity measures.
These clusters are then represented asFinite State Machines.

4. Algorithm
The scheme of the multipass algorithm for extracting salient
phrases is shown in Figure 1. At this point we present a high-
level description of the algorithm with specific details explained
in the subsequent sections.

On each iteration we examinephrases: sequences ofevents
which, on their part, either are phones (on the first iteration)
or are created based upon phrases selected on the previous it-
eration. Denote byC(0) the initial corpus represented at the
phone level, we then iterate as follows:

Given: corpusC(t � 1) from the previous iteration — set of
sentences represented as finite sequences of events;

Generator: createF (t): set of phrases (subsequences of ob-
served events) consisting of� n events pruned based on
entropy and salience criteria (Section 4.1);

Stop condition: there are no significant changes inF (t) com-
pared to the previous iteration (Section 4.4);
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Figure 1: Iterative procedure for extracting salient phone
phrases from the training set.

Model: create a stochastic language modelM(t) using the se-
lected phrases fromF (t) as a lexicon (Section 4.2);

Parsing: parse the original corpus using this model and express
it in terms of the phrases fromF (t), creating the corpusC(t) (Section 4.3);

Loop variable: define the new set of events as the phrases fromF (t) observed inC(t) plus the 51 phones.

To illustrate this procedure consider phone sequence fromC(0):
ay n iy D T uw m ey K ey K ax l eh K T K ao l

which represents the sentenceI need to make a collect call. Letn = 4. Under our experiment conditions the set of phrases se-
lected on the first iteration includes phrases [n iy D], [m ey K ey],
[K ax l] and [T K ao l], and the parser segments the original se-
quence into the sequence fromC(1):

ay n iy D T uw mey K ey K ax l eh K T K ao l,

wherea b c denotes a new event representing the phrase [a b c].
On the2nd iteration we acquire new longer phrases:
[K ax l eh K T K ao l], [n iy D T uw mey K ey] and
[ay n iy D T uw], so that intoC(2) goes the sequence:

ay n iy D T uw m ey K ey K ax l eh K T K ao l.

4.1. Phrase generator
We now describe the generator module of the algorithm in more
detail. On each iteration, we prune the set of observed phrases
based on three criteria. Given a phrasef = [p1p2 : : : pk] we
compute its:� utility for within-language modeling (reducing entropy):

In particular, define the mutual information (MI) off as:I(f) = log2 P (p1 : : : pk)P (p1) : : : P (pk)
and Inorm(f) = I(f)=lengthphone(f), where
lengthphone(f) is the number of phones comprised in
the phrasef (k);� utility for understanding (salience for the task):
In particular, a simple salience measure is:Pmax(f) = maxc Pr(cjf):
Also a more general measure based on Kullback-Leibler
distance can be used [3];

� reliability of these characteristics:
The number of occurances#f of the phrasef in the cor-
pus is a simple correlate of reliability. One more precise
criterion of reliability of the salience measure is given by
themultinomial significance test[9]. It examines possi-
ble partitions of total of#f observations of phrasef in
different semantic classes. The probabilities of the par-
titions are then estimated under the null-hypotheses of
the statistical independence off and c. If the sum of
probabilities of partitions which are less probable than
the actually observed one is less than some threshold�,
phrasef is accepted.

4.2. Creating the language model
On each iteration probability of any phrase isMaximum-
Likelihood-estimated within the set of phrases consisting of the
same number of events:p(f) = #f=Pi#fi; length(f) =
length(fi) 8i. On the iteration to follow the phrases of different
lengths which survived pruning and occur in the new represen-
tation of the corpus will be represented as events (and thus as
phrases consisting of one event) themselves, so that their prob-
abilities will be re-estimated and normalized within a set they
all belong to. As we proceed with the iterations and the process
converges (only few phrases of more than one events are gener-
ated – see next section) we finally obtain a unigram stochastic
language model containing all selected phrases.

4.3. Parser
In our experiments we usedFinite State Machinesto perform a
ML-parsing of the corpus. Therefore every phrase is provided
with the scores equal to its mutual information (without length
normalization). Among all possible competing segmentations
the one with the highest sum of scores is then chosen. It is not
difficult to see that the parser built this way is equivalent to a
ML-parser.

4.4. Remarks on convergence
The reason why the iterative process converges is its relation
to the EM algorithm with the phone-representations of the sen-
tences as observed variables and their segmentations in phrases
as hidden variables. However, since we Viterbi-re-estimate
statistics (based on the best path returned by the ML-parser)
it is not the classical version of EM-algorithm but the so called
EM� simplification [8]. In fact it takes only a few iterations
before the process converges. Here we say that convergence is
attained if the number of one-event-phrases selected on some
iteration doesn’t exceed 5% of the total number of phrases se-
lected on this iteration.

5. Experiments
For our experiments the following strategy turned out to be the
most successful: we divide iterations in two phases. Duringthe
first phase we reduce the entropy of the corpus: the generator
module only selects the phrases which occur frequently enough
in the corpus and possess relatively high values of mutual infor-
mation (being thus important for the within-language modeling
task). In our experiments we reduced the normalized entropy
from 5.0 to 2.3 bit/phone.

Once the convergence is attained we introduce the salience
thresholdPmax(f) combined with the multinomial significance
test in the generator module reducing thus the set of the phrases
common in the language down to the phrases which are also
charged with strong semantic associations. This strategy is jus-
tified by the observation that shorter phone sequences (unlike
shorter word sequences) are of low salience [4].

The thresholds for the generator module were set:
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Figure 2: Length of selected phrases after introducing of the
salience threshold and multinomial significance test.� mutual information:Inorm(f) � 0:5;� salience:Pmax(f) � 0:5;� number of occurances:#f � 5;� multinomial significance threshold� = 0:05 (see [9] for

details).

We conducted our experiments using 7462 training and
1000 test utterances, each set labeled in two different waysas
described in Section 2. After the classifier [9] has been trained
with selected acoustic morphemes we apply it to the test utter-
ances to classify them as one of 15 call-types or reject.

5.1. Results

Our first experiment onASR-phonedetermined the optimal
value for the parametern: the maximal length of phrases in
events considered on every iteration.

Figure 2 shows for differentn the distributions of salient en-
tropy reducing phrases selected by the algorithm over the num-
ber of phones they consist of. The reason for the differences
in shapes the curves exhibit is that longer phrases tend to pos-
sess higher values of salience and mutual information [4]. This
leads to the algorithmical artifacts: maxima byn and its multi-
ples, which can be clearly seen in the distributionsn = 7; 10,
whereas the distributionn = 4 exhibits a rather smooth shape
which also seems to be more natural.

In fact the longer phrases tend to have higher values of the
length-normalized MI too. The dependency between
lengthphone(f) andInorm(f) at the end of the entropy reduc-
ing phase of iterative process is plotted in Figure 3.

The number of selected salient phrases after convergence,
the number of iterations and elapsed CPU-time are given for
differentn in the following table:

experiment iter. selected phrases time
entr. red. sal.+sign.testn = 2 6 5170 217 15 minn = 4 6 5168 239 20 minn = 7 5 5230 232 35 minn = 10 5 5304 237 55 min

We observe that the iterative process described in Section 4has
a clearly better time behavior for the smaller values ofn. Com-
pared to the two-pass algorithm with filter (2P-F) [4] which
produced 1691 salient phrases, the multipass algorithms result
in a 7-fold reduction of salient phone phrases.
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Figure 3: Normalized mutual information of phone phrases at
the end of the first phase of the iterations;n = 4.

False rejection rate (%)

T
ru

e 
cl

as
si

fic
at

io
n 

ra
te

 (
%

)

70 7555 6560 85

n=4
n=2

9080

90

75

70

n=10
n=7

80

5045

100

95

85

Figure 4: Influence of the maximal phrase length on every iter-
ation (n) on the call-classification performance on speech.

To assess the impact ofn on the classifier performance we
employ another evaluation criterion: the ROC-curve which re-
flects dependency of the True Classification Rate on the False
Rejection Rate, varying the rejection salience-thresholdfor the
classification2.

From Figure 4 we see that the choice of parametern is not
decisive for the performance of the classifier. We also trained
the classifier on the union of phrases selected by three processes
(n = 4; 7; 10), increased their number up to 363, which yielded
only a 5%-extension of the ROC-curve in the direction of the
lower False Rejection Rates (Figure 5). We conclude thus that
differences in the sets of selected phrases we obtain for different
parametern don’t affect the performance. Compared to 2P-F
algorithm [4] we achieved slight improvements of true recogni-
tion rates while the working area slid by 10% in the direction
of the higher False Rejection Rates (Figure 5). Higher FRR are
explained by the fact that the most false rejections in the 2P-F
algorithm were caused by not finding in the test utterances any
acoustic morphemes at all, and the multipass algorithm reduced
the number of selected phrases farther by factor seven.

Finally we classified on pruned lattices instead of best paths
(reducing thus the FRR, [5]), our new strategy incorporatedone
additional improvement which allowed us to use for classifi-
cation all cluster detections made in the pruned lattices ofthe
test utterances, weighted by the probabilities of the lattice paths
they lie on. In the previous version of the classification on lat-

2We focus here on the rank one results, in contrast to the rank two
results in previous papers.



T
ru

e 
cl

as
si

fic
at

io
n 

ra
te

 (
%

)

False rejection rate (%)

858070 7565

n=4

75

n=4 OR n=7 OR n=10

2P−F

9040

90

85

80

70

95

60555045

100

Figure 5: Comparison of classification results for the 2P-F al-
gorithm, multipass algorithm withn = 4 and disjunction of
multipass algorithmsn = 4; 7; 10.
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Figure 6: Comparison of classification results on pruned lat-
tices for the 2P-F algorithm (only the most probable detections
considered) and multipass algorithm withn = 4.

tices [5] only the detections made on the most probable path
containing any detections at all were considered. The new algo-
rithm resulted in2-3% better ROC-curves (see Figure 6) with
the 3-fold reduction in the number of selected salient phrases
(multinomial significance test was not employed).

With the baseline experiment, we carried out on thetranscr-
phone corpus, we proved that the multipass algorithm can
make the phone-based understanding system even outperform
the word-based systems. For this purpose we compared the
ROC-curves obtained ontranscr-phoneusing the training al-
gorithm presented above with the ROC-curve on the same cor-
pus but represented at the word level and trained after one-pass
training scheme. In both cases parameter settingn = 4 was
used. The comparison in Figure 7 shows that automated phone-
based understanding produces results even slightly betterthan
the word-based understanding while requiring much less train-
ing expenses.

6. Conclusions
Our experiments show that the problem of training automated
language understanding can be attacked at the phone level, sav-
ing the considerable effort of transcribing large amounts of
training data. We described a new multipass algorithm for ac-
quisition of salient phone phrases from untranscribed speech
corpora. This algorithm is shown to reduce the number of ex-
tracted phrases by a factor of seven while producing results
similar to our previous algorithm [4, 5]. We also obtained an
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Figure 7: Call-classification performance on text with word-
based standard and phone-based multipass strategies.

improvement of the ROC-curves by 2 percentage points with
a 3-fold reduction. The best performance-to-time relationwas
achieved considering sequences of up to four events on every
iteration when splitting the iterative process in two phases: find
entropy reducing phone phrases and select those of them which
are reliably salient.
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