
Conformance Checking of Components Against Their
Non-deterministic Specifications

Mike Barnett Lev Nachmanson
Wolfram Schulte

{mbarnett,levnach,schulte}@microsoft.com

June 2001

Technical Report
MSR-TR-2001-56

Conformance checking of a component is a testing method to see if
an implementation and its executable specification are behaviorally
equivalent relative to any interactions performed on the implementa-
tion. Such checking is complicated by the presence of non-determinism
in the specification: the specification may permit a set of possible
behaviors. We present a new method to automatically derive a com-
ponent that manages all of the angelic non-determinism for an ar-
bitrary implementation/specification pair. The new component just
plugs in; no instrumentation of any implementation is necessary.
Conformance checking thus helps to keep high-level non-determinstic
specifications of components and their low-level implementations in
sync.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com



1 Introduction

There are two ways of constructing a software design. One way is
to make it so simple that there are obviously no deficiencies and
the other is to make it so complicated that there are no obvious
deficiencies. – C.A.R. Hoare

Software always needs good specifications. A good specification allows soft-
ware to be understood, in fact, we claim that a software component is only as
good as its specification. Unless clients of components understand how to use
them, component-oriented programming will never fulfill its promise. We pro-
vide tools to create human-understandable, yet nevertheless executable specifi-
cations for software components. Using our specification language, AsmL, based
on the theory of Abstract State Machines, we have built models of real-world
components, like intelligent devices, internet protocols, debuggers and network
components.

The central fact about code is that it evolves, and for an executable specifi-
cation to be useful, it too must be capable of evolving. Indeed, it is the static
nature of current specification techniques — primarily human- language descrip-
tions — that leads to the quick obsolescence of such specifications. Given an
executable specification, we provide a system that executes the specification in
parallel with the real implementation and signals an error whenever they do not
agree. This checking is done at the boundary of each interface method; it allows
immediate notification that the specification and implementation have diverged.
The decision as to which is “right” is something that must be left to the hu-
man, but at least they have the automated support for detecting the discord.
We term this automatic checking of an implementation against its specification
conformance checking. Conformance checking of determinstic specifications is
known, see Section 5 for related work.

The major complication of conformance checking is non-determinim in the
specification. Non-determinsm allows the specifier to leave design decisions open;
it’s up to the implementer to provide detailed data structures and algorithms.
Another reason that specifications might be non-determinstic is persistence.
The specification must be written relative to an initial state that is not pre-
cisely known. Component specifications typically expose both kinds of non-
determinism.

The contribution of this paper is that it gives a detailed, automatizable
method for checking the conformance of components and their specifications
in the presence of non-determinism. The central idea is that when running the
implementation against the specification, the specification can be used as a test
oracle — in fact this test oracle becomes a separate component, a proxy. The
proxy maintains a table of correspondances between specification and imple-
mentation objects. If a method is called on the proxy, it forwards the calls to
the implementation and the specification.

• If both calls return values of primitive type, the result of the implemen-
tation can immediately be tested for conformance with the specification.

1



• If both calls return references to deterministically computed objects, their
correspondence is stored; the check whether they conform is postponed.
Non-conformance can be found only when calls of the first kind occur on
those objects as execution proceeds.

• If the specification non-determinstically returns an object, the correspon-
dence that is stored is between the implementation object and the range of
possible specification objects; again the conformance check must deferred
until later, when enough evidence has been accumulated to determine
the correspondence of the implementation object with one of the possible
specification objects.

In previous work, we have constructed a system for automatically check-
ing a COM implementation against a determinstic AsmL specification. It has
been used to check real-world industrial components [2]. We curently have a
prototype for checking non-determinstic specifications. Although our system
is implemented for COM components, it applies to any component technology
that uses dynamic linking.

The paper is organized as follows. Section 2 gives an overview of the no-
tation we use. Then in Section 3 we explain how to use a proxy to check the
implementation against its determinstic specification. Section 4 presents the
extensions needed for checking non-determinstic specifications. An overview
of similar approaches is discussed in Section 5 and Section 6 summarizes and
presents limitations and future work.

2 Notation

We write executable specifications of components in the Abstract State Machine
Language (AsmL). The language is based on the theory of Abstract State Ma-
chines [7]. It is currently used within Microsoft for modeling, rapid prototyping,
analyzing and checking of APIs, devices and protocols.

The key aspects which distinguish AsmL from other related specification
languages are:

• it is executable,

• it uses the ASM approach for dealing with state,

• it has a full-fledged object and component system,

• it supports writing non-deterministic specifications.

See http://www.research.microsoft.com/fse for a detailed description.
Because AsmL has native COM (and .NET) connectivity, one can not only

specify components in AsmL and simulate them but also substitute low-level im-
plementations by high- level specifications. This substition allows heterogeneous
systems to be built, partly developed using standard programming languages

2



Client
C

Server
S�

�callbacks

-

-calls

Figure 1: A client-server architecture

and partly using executable specifications. It is also crucial for implementing
conformance checking without the need for instrumenting the implementation.

Non-determinism is one of the key features of AsmL, that allows designers to
leave room for implementations decisions. However in AsmL non-determinsm is
restricted, you can choose or quantify only over bounded sets [4].

In the sequel we use AsmL as the notation for specifications as well as for
imlementations, although the latter are generally written in languages such as
C++. Note that all of the formal descriptions are executable as is.

3 Deterministic Specifications

First, we explain our implementation of conformance execution in the context
of deterministic specifications. In Section 4, we extend our method for non-
deterministic specifications. We start with a system whose architecture is shown
in Figure 1. It comprises a client, C , and a server, S , that the client accesses.

Both are components: their functionality can be accessed only by calling
methods (i.e., functions) that are grouped into sets called interfaces. In addition,
each method call is attached to a specific object reference which is an implicit
argument (this in C++, or me in AsmL e.g.) to the method.

The internal details of the implementation of an object are never known, or
needed, only that the object provides responses via the methods of the interface
that it supports (which may involve returning a reference to another object
that supports a different interface). However, we rely on the fact that the
object references are stable and can be used as identifiers that can be tested for
equality.

In the following we assume that we have not only implementations of the
client and the server but also an executable model, M , of the server. M is also
a component; it provides the same interfaces as S . M step-for-step simulates
the behavior of S at the method level of granularity. Conformance checking
means that from the client’s point of view, the observational behavior of the
model is indistinguishable from that of the server, i.e., they are observationally
equivalent.

3



interface ICanvas
createFigure(. . .) as IFigure
createInternalFigure(. . .)
minimized() as Boolean
getFigEnum() as IEnumFigure

interface IFigure
getColor() as Color
setColor(c as Color)
getBorder() as IBorder

interface IBorder
getWidth() as Integer
setWidth(i as Integer)

interface IEnumFigure
Next() as IFigure

Figure 2: Example Interfaces

3.1 Example

Figure 2 presents a small example that we use throughout. It is typical for
COM interfaces, but is not COM-specific. The example provides interfaces for
a component-oriented drawing program: a client interacts with a root interface,
ICanvas, to create and manipulate geometric figures, which support the interface
IFigure.

There are two ways to create figures. The method createFigure returns a
reference to the IFigure interface on the figure that is created. Alternatively, the
method createInternalFigure creates a figure, but returns nothing to the client.
When the latter method is used, the client retrieves figures by first getting a
reference to the IEnumFigure interface from the ICanvas interface (by calling
getFigEnum), and then using the Next method from the returned interface to
access individual figures. Each figure has a nested object, a border, which
supports the interface IBorder.

To make our method easier to explain, we assume that each method either
reads the state of the server and returns a value or writes a value into the state
of the server, but not both. (The method createFigure is a special case.) We call
the former methods observers, the latter ones are called modifiers. Of course, in
reality, a method can have an arbitrary number of outputs and may both read
and write values; we support this in our implementation. We leave implicit the
fact that COM methods also return a status value in addition to whatever other
values they return.

Note that the interface definitions allow us to distinguish between data values

4



Client
C

Server
S

Proxy
P

Model
M

� �

?

�callbacks

- -

?

-calls

Figure 3: Proxy Architecture

and references to interfaces.
The method minimized is used only in Section 4.1. The use of createInter-

nalFigure and the IEnumFigure interface will be left to Section 4.2. We defer
the discussion of modifiers until Section 4.4; until then we discuss conformance
checking for observers only.

3.2 Checking

We implement conformance checking for arbitrary clients by using a fourth
component, P , which operates as a proxy, as shown in Figure 3. Using a proxy
allows the interaction of the client C and the server S to be observed without
having to instrument (i.e., modify) either component.

From now on, we use the letters C , S , M , and P to refer to the client, server,
model, and proxy, respectively.

3.2.1 Architecture

All method calls between C and S are intercepted by P . As far as C is con-
cerned, it is accessing the functionality provided by S and is unaware of either
P or M . P manages the concurrent execution of M and S ; it forks every call
so that they are delivered to M as well as S . P compares the results from
both components, checking at each interface call that they agree in terms of
success/failure as well as any return values. (In our examples, we do not ex-
plicitly show the checks for the success or failure of the methods.) As long as
they are the same, the results are delivered to C . Otherwise S and M are not
behaviorally equivalent; the discrepancy is made evident to an observer of the
system.

P also passes on any callbacks from S to C (and returns the results to
S ). Callbacks are delivered to M as well; it acts as a passive sink on the
communication channel between C and S .

We create P automatically from the definition of the interfaces that are
used between C and S . In the following we concentrate on (non-deterministic)

5



map as Map of Object to (Object ∗ Object)

class PCanvas implements ICanvas
createFigure(. . .) as IFigure =

let (M , S ) = map(me)
let m = M .createFigure(. . .)
let s = S .createFigure(. . .)
let p = new PFigure()
if (m = nothing) or (s = nothing) then

throw ConformanceException(. . .)
else
map(p) := (m, s)
return p

Figure 4: Deterministic PCanvas.createFigure

specifications for servers. The specification of callbacks has been explained in
more detail in [3].

3.2.2 Tracking Interface References

P ’s ability to monitor all of the communication between C and S is enabled
by its awareness of all interface references that are passed through any of the
methods. Any object that is created in either C or S and which is made
available to the other component is accessible only through some interface that
it supports. The object’s interface reference must first be passed through some
method, at which point P can intercept and spoof it.

Methods createFigure and getBorder return interface references; since there
are no callbacks in our example, no interface references are passed from C to S .

Figure 4 illustrates the proxy object PCanvas that implements the ICanvas
interface. P maintains a global table map, which stores object references created
in P to pairs of corresponding model and server object references. Initially this
table just contains one entry: the reference of the root object of P to the roots
of S and M . This entry is created when C first connects to P .

When createFigure on PCanvas is called, it forwards the call to the server
and model objects M and S , respectively. M and S will return different objects
representing figures, say m and s, respectively. If only one of the createFigure
methods fails to return an object there is already a discrepancy. When both
methods succeed, P creates a new object of type PFigure (for Proxy Figure),
updates the global correspondence map and returns a reference to the new proxy
figure p. The original interface reference s has been spoofed by p. (This is the
standard way marshalling proxies are created for remote interfaces in COM [6].)

Figure 5 and Figure 6 show the implementation of the Figure proxy. Its
methods are called by C , using the interface reference returned by P from

6



class PFigure implements IFigure
getColor() as Color =

let (M ,S ) = map(me)
let m = M .getColor()
let s = S .getColor()
if s 6= m then

throw ConformanceException(. . .)
else

return s

Figure 5: Deterministic PFigure.getColor

createFigure.
The getColor and getBorder methods have the same prelude as createFigure.

First, we look up the reference to the model M and the server S in the global
map; next we call the appropriate methods. Once the results have been returned
from M and S , P checks to make sure they agree. If the results are deterministic
data (as in case of getColor), they must be the same. In case the results are
determinstic object references (as in case of getBorder), they must stand in
correspondence. That is, either they do not exist in the map, or else they must
occur together as a pair that is indexed by a previously created proxy object
that spoofs them. (Actually, the same checks are made in createFigure, but for
this paper they have been removed since we assume that it creates a new figure
that has never been returned before.)

4 Adding Non-determinism

The proxy P as described in Section 3.2 provides a mechanism to ensure that
M can monitor the behavior of S as it is visible to C through the published
interfaces. As shown, the ability to track object correspondence allows moni-
toring behavior in the presence of objects whose behavior becomes observable
at an arbitrarily later time than their creation, and even for nested objects.

However, the approach is limited to deterministic specifications. When the
specification is non-deterministic, M is allowed to provide any of a range of
results. As long as S returns one of the allowed results, it is in conformance
with its specification.

But if we use a non-deterministic specification for conformance checking,
how can M make the right choice, so that S and M agree (if possible at all)?
Or stated in other words, how can M exhibit angelic choice?

We describe our approach in a layered fashion: Section 4.1 explains how data
non-determinism is handled, then Section 4.2 extends the solution to incorporate
object non-determinism. Coping with nested objects is discussed in Section 4.3,

7



class PFigure implements IFigure
getBorder() as IBorder =

let (M ,S ) = map(me)
let m = M .getBorder()
let s = S .getBorder()

throw ConformanceException(. . .)
if ∃ p where map(p) = (m, s) then

return p
elseif ∃ p where

first(map(p)) = m
or second(map(p)) = s then

throw ConformanceException(. . .)
else

let p = new PBorder()
map(p) := (m, s)
return p

Figure 6: Deterministic PFigure.getBorder

class MCanvas specifies ICanvas
minimized() as Boolean = choose from {true, false}

class SCanvas implements ICanvas
minimized() as Boolean = true

Figure 7: Components M and S for Data Non-determinism

and finally, Section 4.4 introduces the solution for methods that update the
state of an object.

4.1 Data Non-determinism

We illustrate data non-determinism with the minimized method in the ICanvas
interface. Its meaning is that the canvas, when created, is either displayed
in a minimized or maximized view. Its specification, captured in the model
MCanvas, is trivial: it either returns true or false. It is up to the implementation
of S , here SCanvas, to make a choice, Figure 7.

Data non-determinism can easily be handled. Technically, the non-
determinism is controlled by the introduction of an extra component: ND (for
Non-Deterministic), a layer which is inserted in between P and M , as shown
in Figure 8. ND contains interfaces and methods that are derived from M . As

8



Client
C

Server
S

Proxy
P

NonDet
ND

Model
M

� �

?

?

�callbacks

- -

?

?

-calls

Figure 8: Non-deterministic Proxy Architecture

class NDCanvas specifies ICanvas ′

minimized() as Set of Boolean = {true, false}

class PCanvas implements ICanvas
minimized() as Boolean =

let (ND ,S ) = map(me)
let m = ND .minimized()
let s = S .minimized()
if s 6∈ m then

throw ConformanceException(. . .)
else

return s

Figure 9: Components ND and P for Data Non-Determinism

will be seen in the examples, the interfaces are changed only in the return types
of the methods. We use I ′ to denote the modified version of interface I from
M . For any non-deterministic method f in M we introduce a corresponding
method f in ND . Where M .f chooses a particular element and returns it, ND .f
returns the range of possible values that M .f chose from. P searches among the
set of returned results from ND to determine if M allows a behavior that agrees
with the result from S . The component ND and the adaption to the proxy P
for our running example are shown in Figure 9. Note that the only difference
between minimized in Figure 9 and getColor in Figure 5 is the implementation
of the conformance test after the results from M and S are gathered: the latter
checks for set membership, while the former required equality.

The non-deterministic layer, ND , completely captures the non-determinism;
ND is derived automatically from the interface definitions and the definition of

9



class MCanvas specifies ICanvas
getFigEnum() as IEnumFigure =

return new MEnumFigure(figs)

class MEnumFigure(fs) specifies IEnumFigure
var collection as Set of IFigure = fs
Next() as IFigure =

choose f ∈ collection do
collection − = {f }
return f

ifnone // collection = ∅
return nothing

Figure 10: The component M for Collections

M .

4.2 Object Non-determinism: Collections

When the specification non-deterministically chooses an object to return to the
client, conformance testing becomes more complicated than for the data non-
determinism.

We extend the solution from Section 4.1, using as an example a figure enu-
merator. Suppose C no longer uses the method createFigure, but instead cre-
ateInternalFigure. The latter method does not return a reference to the IFigure
interface on the created figure. Instead, after C has created (possibly) several
figures, it then requests an enumerator to retrieve (interfaces to) the individual
figures. Consequently, the proxy will not have seen their interface references,
and so there is no correspondence between them and the figures created in the
model.

We use the naming conventions of COM, and call the interface for iterating
over collections of objects/interfaces IEnumFigure. It is a simplified version of
a COM enumerator: Next returns one element (or nothing), rather than a list
(array) of elements, and there are no methods to skip elements, to reset the
enumerator, or to clone the enumerator.

Typically, the order in which the elements are enumerated is not specified;
M and S may use different criteria for determining which figure to return.

Reflecting the lack of a specified order, M uses internal choice for picking
which figure to return. The layer ND provides the angelic non-determinism by
creating a non-deterministic figure, ndf , that is to say, an object in which the
collection of objects from M is embedded, as shown in Figure 11. The object ndf

has the capability to act in the future as any element in its embedded collection.
We call this collection the object’s constraint set.

10



class NDCanvas implements ICanvas
var figs as Set of IFigure
getFigEnum() as IEnumFigure =

new NDEnumFigure(figs)

class NDEnumFigure(fs) implements IEnumFigure
var collection as Set of IFigure ′ =
{ new NDFigure(fs) | i ∈ {1..size(fs) }

Next() as IFigure =
choose f ∈ collection do
collection − = {f }
return f

ifnone // collection = ∅
return nothing

class NDFigure implements IFigure ′

getColor() as SET of IFigure ∗ Color =
{ (f , f .getColor()) | f ∈ constraints }

Figure 11: The component ND for Collections

As in Section 3.2.2, we use the ability of P to track the correspondence
between objects, but now between objects from S and ND . At each call when
an object from S is observed to behave in a particular fashion, somehow the
object ndf must behave the same way, as long as there is some figure in its
constraint set that could behave in the same fashion.

Corresponding to the method getColor in the interface (IFigure) in M , there
exists a method getColor in ND , as shown in Figure 11. When called, it probes
its constraint set by calling the corresponding method of each object and returns
the set of results to P . In addition to maintaining the correspondence between
ndf and the object returned from S , the constraint set of ndf is pruned by P
to remove all objects from M that cannot expose the behavior of (the object
from) S . Figure 12 illustrates the modified version of the method (compare it
to Figure 5).

Once a constraint set is pruned, all of the constraint sets in the collection of
non-deterministic figures are checked to ensure that a feasible assignment exists
of objects in ND to objects in M . For example, if a figure’s constraint set has
been pruned to the empty set, then that is clearly an infeasible situation: no
object in M is able to behave according to the observed behavior of S . For the
general case, consider the scenario where C has created three figures, f1, f2, and
f3. The enumerator will then be created with three non-deterministic figures,
ndi for i ∈ {1..3}, each of which will initially have the following constraint sets:

nd1 = {f1, f2, f3}

11



class PFigure implements IFigure
getColor() as Color =

let (ND ,S ) = map(me)
let m = ND .getColor()
let s = S .getColor()
let pruned = { f | (f , v) ∈ m where v = s }
M .setConstraints(pruned)
let setOfConstraints =
{ f .constraints | f ∈ NDCanvas.figs }

if not feasible(setOfConstraints)
throw ConformanceException(. . .)

else
return s

Figure 12: The component P for Collections

nd2 = {f1, f2, f3}
nd3 = {f1, f2, f3}

This reflects the fact that until at least one behavior is observed, each of the
non-deterministic figures can act as any of the figures from M . Obviously at this
point, a feasible assignment exists. Suppose that the client peforms sufficient
method calls so that the constraint sets become:

nd1 = {f1, f2}
nd2 = {f1, f2}
nd3 = {f1, f3}

That is, there was a method call on nd1 such that the result returned by f3
did not match the result from S , and similarly for nd2 and nd3. A feasible
assignment could be nd1 = f2,nd2 = f1,nd3 = f3 (as indicated by the bold
face type in the constraint sets). Note that it would not be feasible for both
nd1 and nd3 to be assigned f1, the matching must be complete and unique. A
bipartite-matching algorithm that computes a matching between objects in ND
and objects in M is shown in Figure 13; it is called from getColor in Figure 12.

As long as a feasible assignment exists, P returns the same results as S .
C and S then continue their mediated interaction. Otherwise, an exception is
raised to indicate that S and M are no longer conformant.

Our feasibility analysis depends on knowing the number of underlying ob-
jects that exist in the model. In our example this was provided by the enumer-
ator being provided the set of objects at its creation.

12



feasible(sets as Set of (Set of Object)) as Boolean =
if size(sets) = 0 then

return false
elseif size(sets) = 1 then

return size(choose from (sets)) = 1
else

let s = choose from sets
let rest = sets − {s }
return ∃ f ∈ s

where feasible({s ′ − {f } | s ′ ∈ rest})

Figure 13: Feasibility checking

class NDFigure implements IFigure
var children as Set of Object
var border as IBorder ′ =

new NDBorder(me,
{ f .getBorder() | f ∈ constraints })

getBorder() as IBorder ′ = border

class NDBorder(p, constraints) implements IBorder ′

var parent as Object = p
getWidth() as Set of IBorder ∗ Integer =

{ (b, b.getWidth()) | b ∈ constraints }

Figure 14: Allowing nested objects

4.3 Object Non-determinism: Nested Objects

A further complication arises when an object has nested objects, i.e., objects
contained within it. In our example, figures have borders which support the
interface IBorder; it contains a single method that returns the width (in some
unit) of the border it represents.

Because figures are represented by non-deterministic objects, any nested
objects must be also (and transitively for any objects nested within them).
Consider the implementation of non-deterministic figures, NDFigure, as shown
in Figure 14. It must have a member variable border to return from getBorder,
but it is unable to return an interface to a particular border from M ; instead, it
must return a non-deterministic border, ndb , which has its own constraint set.
As depicted in Figure 15, ndb ’s constraint set is the set of borders corresponding
to the value of f.getBorder() for each f in the constraint set of ndf .

Note that getWidth for NDBorder is implemented in the same way as get-

13



ND
Figure

- F1 F2 F3

�
�

�
�

constraints

?

parent/
child

6

ND
Border

- B1 B2 B3

�
�

�
�

border

? ? ?

Figure 15: Nested Objects

Color was for NDFigure. Having nested objects means that the pruning of
the constraint set of either ndf or ndb induces a pruning of the other object’s
constraint set. These induced updates of the constraint sets must propagate
throughout the tree of any objects in ND which either contain the updated
object, or are nested within the updated object. For instance, consider the
situation depicted in Figure 15, and suppose that getWidth is invoked on ndb .
Furthermore, suppose that as a result of the value returned by S , the constraint
set of ndb is pruned to remove border B2. Then ndf ’s constraint set must have
figure F2 removed from it. On the other hand, suppose that getShape is invoked
on ndf and that as a result of the value returned by S , the constraint set of ndf

is pruned to remove figure F3. Then ndb ’s constraint set must have border B3
removed from it. To effect the propagation of the prunings, non-deterministic
objects are connected by parent and child(ren) references.

4.4 Modifying Object State

The final feature that we consider is to allow methods which update the state
of an object. We do assume, however, that no global variables are updated
and that no externally visible I/O (or any other covert channels of communica-
tion) is performed by the methods. These are not unreasonable restrictions for
component-oriented programming. From the original interfaces in Figure 2, we
now consider setColor and setWidth.

We modify the constraint sets so that they contain copies of the objects
from M . The methods that update state are replicated in ND where they
become updates of every object within that object’s constraint set, as shown in
Figure 16. Performing the updates on an independent copy guarantees that any
state changes do not affect any other object.

The complication is that each constraint set now holds unique objects, so
the equality test used as part of computing a feasible matching for collections
must now compare the object of which each element is a copy of. To allow that,
each copy must have a back reference to the original object.

14



class NDEnumFigure(fs) implements IEnumFigure
var collection as Set of IFigure ′ =
{ new NDFigure({ f .copy() | f ∈ fs })
| i ∈ {1..size(fs)} }

class NDFigure implements IFigure ′

setColor(c as Color) =
forall f ∈ constraints do
f .setColor(c)

class NDBorder implements IBorder ′

setWidth(i as Integer) =
forall b ∈ constraints do
b.setWidth(i)

Figure 16: Allowing updates

5 Related Work

The need to specify and check components is widely recognized (cf. [12]). How-
ever there is still no standard way how to specify components nor any standard
to check an implementation for conformance with the specification. We will
shortly review both areas.

In a recent book, Leavens and Sitaraman [10] summarize the current ap-
proaches for specifying components formally. But only Müller and Poetzsch-
Heffter’s [11] article is really targeted towards the specification of interfaces.
They propose to use pre/postconditions to specify interfaces. Of course pre/post-
condition pairs can be seen as non-determinstic specifications. But these spec-
ifications are not executable in isolation; they can only be used for assertion
checking. However, normally pre/postconditions do not allow the level of ab-
straction to vary; the data structures are fixed by the programming language.
However, we believe that it is important to specify interfaces independently from
implementation (and their data structures).

Jonkers, working at Phillips, is working on interface specifications, too [9].
In their work on Inspect, they use transition systems to provide the semantics
for interface specifications. However they don’t try to execute the model in
isolation or run it in parallel with the implementation. Instead they want to
generate black-box tests.

Closer to our work on conformance checking is the work on program checking
as proposed by Blum and Wasserman [5]. They argue that it is often much easier
to write a program that checks whether a result is correct, than to prove the
algorithm correct that produces the result. For example, it is difficult to factor
an integer, but, given x and y, it is trivial to determine whether or not y is a

15



factor of x. In our case the checker is the specification.
Using this idea, Antoy and Hamlet [1] propose the use of algebraic specifica-

tions to specify software. Algebraic specifications use high level data structures
— thus solving one of the aforementioned problems of pre/postconditions —
The price is that when checking the implementation against the specification
one needs abstraction. Their system is able to run the executable specification
(in fact it is a rewrite system) in parallel with the implementation in C; simi-
lar to our framework, they check the results on the method boundaries. They
include a comprehensive review of similar work; we do not repeat it here. But
due to the restricted nature of algebraic specifications, they cannot deal with
state or with object identities (without a lot of coding), and they don’t con-
sider non-determinstic specifications at all. But we consider non-determinstic
specifications absolutely essential.

Another similar project is the SLAM project by Herranz-Nieva and Moreno-
Navarro [8]. They developed a new specification language and define class op-
erations with pre/postconditions. The resulting specifications are tranlated to
C++; part of the pre/postconditions are compiled to Prolog. Using a bridge
between C++ and Prolog, the Prolog clauses are used as assertions during
run-time. Results are speculative, since the project is in the early stages of
development.

6 Conclusions

As far as we know, result checking of non-deterministic executable specifica-
tions of components, without instrumenting the components at all, is a new
contribution.

To be useful in real-world applications, it is important that the management
of the angelic non-determinism be automatically generated so that the speci-
fication writer is not burdened with all of the bookkeeping details it entails.
We have a complete implementation for automatically creating the proxy for
deterministic specifications. We currently have a prototype implementation for
automatically creating the non-deterministic layer. However, it still requires a
human to write the model. . .

The benefits of non-deterministic specifications do not come without cost:
the checking can suffer from the same sort of exponential explosion that always
results from reducing non-determinism to determinism, e.g., in reducing an NFA
to a DFA. Whether this will occur often in practice will need to be studied.

We have used our methods to model two medium-sized components within
Microsoft (each over 100K LOC), and performed conformance checking during
user scenarios as well as in the context of testing using an automated test
suite. Both times we have been able to find discrepencies between the actual
component and its specification.

We believe that conformance checking shows promise in providing automated
support for keeping a specification alive and for ensuring that an implementation
correctly implements its non-determinsitic specification.

16



References

[1] Sergio Antoy and Richard G. Hamlet. Automatically checking an imple-
mentation against its formal specification. Software Engineering, 26(1):55–
69, 2000.

[2] Mike Barnett, Egon Börger, Yuri Gurevich, Wolfram Schulte, and Margus
Veanes. Using Abstract State Machines at Microsoft: A case study. In
Abstract State Machines: Theory and Applications, volume 1912 of LNCS,
page ??, Berlin, Germany, March 2000. Springer-Verlag.

[3] Mike Barnett, Colin Campbell, Wolfram Schulte, and Margus Veanes. Spec-
ification, simulation and testing of COM components using Abstract State
Machines. In Formal Methods and Tools for Computer Science, Eurocast
2001, pages 266–270. IUCTC Universidad de Las Palmas de Gran Canaria,
February 2001.

[4] Andreas Blass, Yuri Gurevich, and Saharon Shelah. Choiceless polynomial
time. Annals of Pure and Applied Logic, 100:141–187, 1999.

[5] Manuel Blum and Hal Wasserman. Software reliability via run-time result-
checking. Journal of the ACM, 44(6):826–849, November 1997.

[6] Don Box. Essential COM. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1998.

[7] Yuri Gurevich. Evolving algebra 1993: Lipari guide. In Egon Börger, editor,
Specification and Validation Methods, pages 9–36. Oxford University Press,
Oxford, UK, 1995.

[8] Angel Herranz-Nieva and Juan Jose Moreno-Navarro. Generation of and de-
bugging with logical pre and post-conditions. http://lml.ls.fi.upm.es/slam/.

[9] H.B. Jonker. Ispec: Towards practical and sound interface specifications. In
IFM’2000, volume 1954 of LNCS, pages 116–135, Berlin, Germany, Novem-
ber 1999. Springer-Verlag.

[10] G. T. Leavens and M. Sitaraman (eds.). Foundations of Component-Based
Systems. Cambridge University Press, New York, NY, 2000.

[11] P. Müller and A. Poetzsch-Heffter. Modular specification and verification
techniques for object-oriented software components. In Foundations of
Component-Based Systems [10], pages 137–160.

[12] Clemens Szyperski. Component Software. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1999.

17


