Electronic Notes in Theoretical Computer Science 45 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume45.html 22 pages

Typing Correspondence Assertions for
Communication Protocols

Andrew D. Gordon

Microsoft Research, Cambridge

Alan Jeffrey

DePaul University, Chicago

Abstract

Woo and Lam propose correspondence assertions for specifying authenticity proper-
ties of security protocols. The only prior work on checking correspondence assertions
depends on model-checking and is limited to finite-state systems. We propose a de-
pendent type and effect system for checking correspondence assertions. Since it
is based on type-checking, our method is not limited to finite-state systems. This
paper presents our system in the simple and general setting of the 7-calculus. We
show how to type-check correctness properties of example communication protocols
based on secure channels. In a related paper, we extend our system to the more
complex and specific setting of checking cryptographic protocols based on encrypted
messages sent over insecure channels.

1 Introduction

Correspondence Assertions To a first approximation, a correspondence
assertion about a communication protocol is an intention that follows the
pattern:

If one principal ever reaches a certain point in a protocol, then some other
principal has previously reached some other matching point in the protocol.

We record such intentions by annotating the program representing the
protocol with labelled assertions of the form begin L or end .. These assertions
have no effect at runtime, but notionally indicate that a principal has reached
a certain point in the protocol. The following more accurately states the
intention recorded by these annotations:

If the program embodying the protocol ever asserts end L, then there is a
distinct previous assertion of begin L.

(©2001 Published by Elsevier Science B. V.

(GORDON AND JEFFREY

Woo and Lam [WL93] introduce correspondence assertions to state in-
tended properties of authentication protocols based on cryptography. Con-
sider a protocol where a principal a generates a new session key k and trans-
mits it to b. We intend that if a run of b ends a key exchange believing that
it has received key k from a, then a generated k as part of a key exchange
intended for b. We record this intention by annotating a’s generation of £ by
the label begin (a, b, k), and b’s reception of k& by the label end {(a, b, k).

A protocol can fail a correspondence assertion because of several kinds of
bug. One kind consists of those bugs that cause the protocol to go wrong
without any external interference. Other kinds are bugs where an unreliable
or malicious network or participant causes the protocol to fail.

This Paper We show in this paper that correctness properties expressed by
correspondence assertions can be proved by type-checking. We embed corre-
spondence assertions in a concurrent programming language (the 7-calculus of
Milner, Parrow, and Walker [Mil99]) and present a new type and effect system
that guarantees safety of well-typed assertions. We show several examples of
how correspondence assertions can be proved by type-checking.

Woo and Lam’s paper introduces correspondence assertions but provides
no techniques for proving them. Clarke and Marrero [CMO00] use correspon-
dence assertions to specify properties of e-commerce protocols, such as au-
thorizations of transactions. To the best of our knowledge, the only previous
work on checking correspondence assertions is a project by Marrero, Clarke,
and Jha [MCJ97] to apply model-checking techniques to finite state versions of
security protocols. Since our work is based on type-checking, it is not limited
to finite state systems. Moreover, type-checking is compositional: we can ver-
ify components in isolation, and know that their composition is safe, without
having to verify the entire system. Unlike Marrero, Clarke, and Jha’s work,
however, the system of the present paper does not deal with cryptographic
primitives, and nor does it deal with an arbitrary opponent. Still, in another
paper [GJ01a], we adapt our type and effect system to the setting of the spi-
calculus [AG99], an extension of the m-calculus with abstract cryptographic
primitives. This adaptation can show, moreover, that properties hold in the
presence of an arbitrary untyped opponent.

A technical report [GJO1b] includes proofs omitted from this paper.

Review of The Untyped n-Calculus Milner, Parrow, and Walker’s -
calculus is a concurrent formalism to which many kinds of concurrent com-
putation may be reduced. Its simplicity makes it an attractive vehicle for
developing the ideas of this paper, while its generality suggests they may be
widely applicable. Its basic data type is the name, an unguessable identifier
for a communications channel. Computation is based on the exchange of mes-
sages, tuples of names, on named channels. Programming in the 7-calculus is
based on the following constructs (written, unusually, with keywords, for the

2

(GORDON AND JEFFREY

sake of clarity). The rest of the paper contains many examples. An output
process out z{yi, ..., y,) represents a message (yi, ..., y,) sent on the channel
z. An input process inp z(z1,...,2,); P blocks till it finds a message sent on
the channel z, reads the names in the message into the variables z, ..., 2,,
and then runs P. The process P | @ is the parallel composition of the two pro-
cesses P and (Q; the two may run independently or communicate on shared
channels. The name generation process new(z); P generates a fresh name,
calls it x, then runs P. Unless P reveals x, no other process can use this fresh
name. The replication process repeat P behaves like an unbounded parallel
array of replicas of P. The process stop represents inactivity; it does nothing.
Finally, the conditional if x = y then P else () compares the names x and y.
If they are the same it runs P; otherwise it runs Q).

2 Correspondence Assertions, by Example

This section introduces the idea of defining correspondence assertions by an-
notating code with begin- and end-events. We give examples of both safe code
and of unsafe code, that is, of code that satisfies the correspondence assertions
induced by its annotations, and of code that does not.

A transmit-acknowledge handshake is a standard communications idiom,
easily expressed in the m-calculus: along with the actual message, the sender
transmits an acknowledgement channel, upon which the receiver sends an
acknowledgement. We intend that:

During a transmit-acknowledge handshake, if the sender receives an ac-
knowledgment, then the receiver has obtained the message.

Correspondence assertions can express this intention formally. Suppose
that a and b are the names of the sender and receiver, respectively. We
annotate the code of the receiver b with a begin-assertion at the point after
it has received the message msg. We annotate the code of the sender a with
an end-assertion at the point after it has received the acknowledgement. We
label both assertions with the names of the principals and the transmitted
message, {a,b, msg). Hence, we assert that if after sending msg to b, the
sender a receives an acknowledgement, then a distinct run of b has received
msg.

Suppose that ¢ is the name of the channel on which principal b receives
messages from a. Here is the w-calculus code of the annotated sender and
receiver:

Rever(a, b, ¢) = Snder(a,b,) =
inp c(msg, ack); new(msg); new(ack);
begin (a, b, msg); out ¢(msg, ack);inp ack();
out ack() end (a, b, msg)

The sender creates a fresh message msg and a fresh acknowledgement channel

3

(GORDON AND JEFFREY

ack, sends the two on the channel ¢, waits for an acknowledgement, and then
asserts an end-event labelled (a, b, msg).

The receiver gets the message msg and the acknowledgement channel ack
off ¢, asserts a begin-event labelled (a, b, msg), and sends an acknowledgement
on ack.

We say a program is safe if it satisfies the intentions induced by the begin-
and end-assertions. More precisely, a program is safe just if for every run of
the program and for every label L, there is a distinct begin-event labelled L
preceding every end-event labelled L. (We formalize this definition in Sec-
tion 5.)

Here are three combinations of our examples: two safe, one unsafe.

new(c); (Example 1: safe)
Snder(a, b, c) |
Rever(a, b, c)

Example 1 uses one instance of the sender and one instance of the receiver
to represent a single instance of the protocol. The restriction new(c); makes
the channel ¢ private to the sender and the receiver. This assembly is safe; its
only run correctly implements the handshake protocol.

new(c); (Example 2: safe)
Snder(a, b, c) |
Snder(a, b, c) |
repeat Rcver(a, b, c)

Example 2 uses two copies of the sender—representing two attempts by a single
principal a to send a message to b—and a replicated copy of the receiver—
representing the principal b willing to accept an unbounded number of mes-
sages. Again, this assembly is safe; any run consists of an interleaving of two
correct handshakes.

new(c); (Example 3: unsafe)
Snder(a, b, c) |
Snder(a',b, c) |
repeat Rcver(a,b, c)

Example 3 is a variant on Example 2, where we keep the replicated receiver
b, but change the identity of one of the senders, so that the two senders
represent two different principals a and a’. These two principals share a single
channel ¢ to the receiver. Since the identity a of the sender is a parameter
of Rcver(a,b, c) rather than being explicitly communicated, this assembly is
unsafe. There is a run in which o’ generates msg and ack, and sends them to b;
b asserts a begin-event labelled (a, b, msg) and outputs on ack; then o’ asserts
an end-event labelled (a’, b, msg). This end-event has no corresponding begin-
event so the assembly is unsafe, reflecting the possibility that the receiver can

4

(GORDON AND JEFFREY

be mistaken about the identity of the sender.

3 Typing Correspondence Assertions

3.1 Types and Effects

Our type and effect system is based on the idea of assigning types to names
and effects to processes. A type describes what operations are allowed on a
name, such as what messages may be communicated on a channel name. An
effect describes the collection of labels of events the process may end while
not itself beginning. We compute effects based on the intuition that end-
events are accounted for by preceding begin-events; a begin-event is a credit
while an end-event is a debit. According to this metaphor, the effect of a
process is an upper bound on the debt a process may incur. If we can assign
a process the empty effect, we know all of its end-events are accounted for
by begin-events. Therefore, we know that the process is safe, that is, its
correspondence assertions are true.

An essential ingredient of our typing rules is the idea of attaching a latent
effect to each channel type. We allow any process receiving off a channel to
treat the latent effect as a credit towards subsequent end-events. This is sound
because we require any process sending on a channel to treat the latent effect
as a debit that must be accounted for by previous begin-events. Latent effects
are at the heart of our method for type-checking events begun by one process
and ended by another.

The following table describes the syntax of types and effects. As in most
versions of the m-calculus, we make no lexical distinction between names and
variables, ranged over by a, b, c,z,y, z. An event label, L, is simply a tuple of
names. Event labels identify the events asserted by begin- and end-assertions.
An effect, e, is a multiset, that is, an unordered list, of event labels, written
as [L1,...,L,]. A type, T, takes one of two kinds. The first kind, Name, is the
type of pure names, that is, names that only support equality operations, but
cannot be used as channels. We use Name as the type of names that identify
principals, for instance. The second kind, Ch(z:T},...,x,:T,)e, is a type of
a channel communicating n-tuples of names, of types 71, ..., T,, with latent
effect e. The names z;, ..., x, are bound; the scope of each x; consists of
the types T;,q, ..., T,, and the latent effect e. We identify types up to the
consistent renaming of bound names.

Names, Event Labels, Effects, and Types:

a,b,c,z,y, 2 names, variables
L= {x,...,x,) event label: tuple of names
e = [Ly,...,Ly] effect: multiset of event labels
T = type
Name pure name

(GORDON AND JEFFREY

Ch(x:Th, ...,z Ty)e channel with latent effect e

For example:

« Ch()[], a synchronization channel (that is, a channel used only for synchro-
nization) with no latent effect.

» Ch(a:Name)[(b})], a channel for communicating a pure name, costing [(b)] to
senders and paying [(b)] to receivers, where b is a fixed name.

» Ch(a:Name)[(a})], a channel for communicating a pure name, costing [{(a)]
to senders and paying [(a)] to receivers, where a is the name communicated
on the channel.

» Ch(a:Name, b:Ch()[{a)])[], a channel with no latent effect for communicating
pairs of the form a, b, where a is a pure name, and b is the name of a syn-
chronization channel, costing [(a)] to senders and paying [(a)] to receivers.

The following is a convenient shorthand for the lists of typed variable decla-
rations found in channel types:

Notation for Typed Variables:

1>

11, .. 2T, where Z =21,...,z, and T =1Ty,...,T,

—
~—

the empty list

SR
>,

The following equations define the the sets of free names of our syntax
as follows: variable declarations, fn(e:¢) = @ and fn(Z:T,z:T) = fn(Z:T) U
(fn(T)—{2}); types, fn(Name) = & and fn(Ch(Z:T)e) = fn(:T)U(fn(e)—{T});
event labels, fn((zy,...,2,)) = {z1,...,2,}; and events, fn([Ly,...,L]) =
fn(Ly)U---Ufn(Ly,).

For any of these forms of syntax, we write —{z<y} for the operation of
capture-avoiding substitution of the name y for each free occurrence of the
name x. We write —{Z«y}, where ¥ = z1,...,x, and ¥ =y, ..., y, for the
iterated substitution —{zy<y;}---{zp<yn}.

3.2 Syntaz of our Typed m-Calculus

We explained the informal semantics of begin- and end-assertions in Section 2,
and of the other constructs in Section 1.

Processes:
PQ R:= process
out (Y1, ..., Yn) polyadic asynchronous output
inp z(y1:T1, ..., yn:Ty); P polyadic input
if x =y then P else () conditional
new(x:T); P name generation
P|Q composition
repeat P replication

(GORDON AND JEFFREY

stop inactivity
begin L; P begin-assertion
end L; P end-assertion

There are two name binding constructs: input and name generation. In
an input process inp z(y1:11, . .., yn:Ty); P, each name y; is bound, with scope
consisting of T;yy, ..., Ty, and P. In a name restriction new(x:T); P, the
name z is bound; its scope is P. We write P{z<y} for the outcome of a
capture-avoiding substitution of the name y for each free occurrence of the
name x in the process P. We identify processes up to the consistent renaming
of bound names. We let fn(P) be the set of free names of a process P. We
sometimes write an output as out z(%) where ¥ = y,...,y,, and an input
as inp x(y"f), P, where :T is a variable declaration written in the notation
introduced in the previous section. We write out z(7); P as a shorthand for
out x(7) | P.

3.3 Intuitions for the Type and Effect System

As a prelude to our formal typing rules, we present the underlying intuitions.
Recall the intuition that end-events are costs to be accounted for by begin-
events. When we say a process P has effect ¢, it means that e is an upper
bound on the begin-events needed to precede P to make the whole process
safe. In other words, if P has effect [Ly,..., L,] then begin Ly;- - ; begin L,; P
is safe.

Typing Assertions An assertion begin L; P pays for one end-event labelled
L in P; so if P is a process with effect e, then begin L; P is a process with
effect e—[L], that is, the multiset e with one occurrence of L deleted. So we
have a typing rule of the form:

P:e = beginL;P:e—[L]

If P is a process with effect e, then end L; P is a process with effect e+[L],
that is, the concatenation of e and [L]. We have a rule:

P:e = endL;P:e+[[]

Typing Name Generation and Concurrency The effect of a name gen-
eration process new(x:T); P, is simply the effect of P. To prevent scope con-
fusion, we forbid x from occurring in this effect.

P:e, x¢fnle) = new(z:T);P:e

The effect of a concurrent composition of processes is the multiset union
of the constituent processes.

P:ep, Q:eq = P|Q:epteq
The inactive process asserts no end-events, so its effect is empty.
7

(GORDON AND JEFFREY

stop : []

The replication of a process P behaves like an unbounded array of repli-
cas of P. If P has a non-empty effect, then its replication would have an
unbounded effect, which could not be accounted for by preceding begin-
assertions. Therefore, to type repeat P we require P to have an empty effect.

P:[] = repeat P:[]

Typing Communications We begin by presenting the rules for typing
communications on monadic channels with no latent effect, that is, those with
types of the form Ch(y:T)[]. The communicated name has type 7. An output
out 2:(z) has empty effect. An input inp z(y:T); P has the same effect as P.
Since the input variable in the process and in the type are both bound, we
may assume they are the same variable 3.

z:Ch(y:T)[], z: T = outxz(z):]]
z:Ch(y:T)[], P:e, y¢fnle) = inpa(y:T);P:e

Next, we consider the type Ch(y:T")e, of monadic channels with latent effect
eq,. The latent effect is a cost to senders, a benefit to receivers, and is the scope
of the variable y. We assign an output out x(z) the effect e,{y<z}, where
we have instantiated the name y bound in the type of the channel with z,
the name actually sent on the channel. We assign an input inp x(y:T); P the
effect e — e, where e is the effect of P. To avoid scope confusion, we require
that y is not free in e — e,.

x:Ch(y:T)epy, z:T = outx(z):efy+=z}
z:Ch(y:T)ey, P:e, yé¢fnle—e) = inpa(y:T);P:e—e

The formal rules for input and output in the next section generalize these
rules to deal with polyadic channels.

Typing Conditionals When typing a conditional if x = y then P else @),
it is useful to exploit the fact that P only runs if the two names x and y
are equal. To do so, we check the effect of P after substituting one for the
other. Suppose then process P{z<y} has effect ep{z<y}. Suppose also that
process () has effect eg. Let ep V eg be the least upper bound of any two
effects ep and eg. Then ep Veg is an upper bound on the begin-events needed
to precede the conditional to make it safe, whether P or () runs. An example
in Section 4.2 illustrates this rule.

P{o<y} ep{o<y}, Q:eq = ifx=ythen Pelse Q:epVeg

3.4 Typing Rules

Our typing rules depend on several operations on effect multisets, most of
which were introduced informally in the previous section. Here are the formal
definitions.

(GORDON AND JEFFREY

Operations on effects: e+e¢', e <ée,e—¢,L€e,eVe

(L1, ..., Lon] + [Lonsts s Longn] = [L1, - -+, Lionn)]

e < ¢ if and only if ¢/ = e + €” for some ¢”

e — ¢ = the smallest ¢’ such that e < ¢/ + ¢”
Leeifandonlyif [L] <e

eVe = the smallest ¢” such that e < ¢ and ¢/ < ¢

The typing judgments of this section depend on an environment to assign
a type to all the variables in scope.

Environments:
I 1
E :=2zT environment
S A — . .
dom(#:T) = {%} domain of an environment

To equate two names in an environment, needed for typing conditionals,
we define a name fusion function. We obtain the fusion E{z<—2'} from E by
turning all occurrences of x and 2’ in E into z'.

Fusing = with 2’ in E: E{z<2a'}
(21T, ... 2 Ty {wea'} =
(e {2 }):(Ti{x2'});. . 5 (wp{xa'}): (T {x+2'})

A [E if x € dom(F)
where F;x:T = E,z:T otherwise

The following table summarizes the five judgments of our type system,
which are inductively defined by rules in subsequent tables. Judgment E |- ¢
means environment F is well-formed. Judgment F + T means type T is
well-formed. Judgment E + z : T means name z is in scope with type T.
Judgment E + (&) : (:T) means tuple (Z) matches the variable declaration
y"f Judgment E F P : e means process P has effect e.

Judgments:

Ero good environment

EET good type T'

Erax:T good name z of type T

E+ (D) : (7:T) good message & matching 7:T
EFP:e good process P with effect e

The rules defining the first three judgments are standard.

(GORDON AND JEFFREY

Good environments, types, and names:

I(Emv @) (Env) (Type Name)
E+T 2z ¢ dom(E) Eto
TEo E.xTkFo E = Name
(Type_)Chan) (Name x)
E, T Fo fn(e) C dom(E)U {7} E' xT,E"F o
E+ Ch(f:f)e E T ,E"tax:T

The next judgment, E + (Z) : <g7:f), is an auxiliary judgment used for
typing output processes; it is used in the rule (Proc Output) to check that
the message (Z) sent on a channel of type Ch(#:T)e matches the variable
declaration i:7T'.

Good message:

(Msg () (Msg z) (where y ¢ {yj} Udom(E))
Eto E={(Z):(yT) EtFx:(T{y+})
EF{(:{ E (% z): (gj’:f,y:T)

Finally, here are the rules for typing processes. The effect of a process is an
upper bound; the rule (Proc Subsum) allows us to increase this upper bound.
Intuitions for all the other rules were explained in the previous section.
Good processes:

(Proc Subsum) (where e < ¢’ and fn(e') C dom(E))
EFP:e

EF-P:¢

(Proc Output)
Ebz:Ch(gT)e EF(Z): (§:T)
(e

E Fout (%) : (e{y«7})
(Proc Input) (where fn(e —€’) C dom(E))
Etvx: Ch(7:T Egjfl—P

)¢’
Etinpz(§T);P:e—e

(Proc Cond)
Etrz:T Etry:T E{z<y}t P{ey}:ep{ay}l EFQ:eqg
EFif x =y then Pelse Q:epVeg

(Proc Res) (where x ¢ fn(e)) (Proc Par)
ExTHP:e EFP:ep EFQ:eqg
Etnew(z:T);P:e EFP|Q:ep+eq

10

(GORDON AND JEFFREY

(Proc Repeat) (Proc Stop)
EFP:]] EFo
Etrepeat P:[] E b stop:|[]

(Proc Begin) (where fn(L) C dom(FE))
EF-P:e

EtbeginL; P :e—[L]

(Proc End) (where fn(L) C dom(FE))
EF-P:e

ErendL;P:e+]I]

Section 5 presents our main type safety result, Theorem 5.2, that E + P : []
implies P is safe. Like most type systems, ours is incomplete. There are safe
processes that are not typeable in our system. For example, we cannot assign
the process if x = x then stop else (end z;stop) the empty effect, and yet it is
perfectly safe.

4 Applications

In this section, we present some examples of using correspondence assertions
to validate safety properties of communication protocols. For more examples,
including examples with cryptographic protocols which are secure against ex-
ternal attackers, see the companion paper [GJ01a].

4.1 Transmit-Acknowledge Handshake

Recall the untyped sender and receiver code from Section 2. Suppose we make
the type definitions:

Name Ack(a, b, msg) = Ch()[(a,b, msg)]
Name Req(a,b) = Ch(msg:Msg, ack:Ack(a,b, msg))|]

11

Msg
Host

e 11

(GORDON AND JEFFREY

Suppose also that we annotate the sender and receiver code, and the code of
Example 1 as follows:

Snder(a:Host,b: Host, c:Req(a,b)) = Rever(a:Host,b:Host, c:Req(a, b)) =
new(msg:Msg); inp c(msg:Msg, ack:Ack(a,b, msg));
new(ack:Ack(a,b, msg)); begin (a, b, msg);
out ¢(msg, ack); out ack()
inp ack();

end (a, b, msg)
Ezamplel (a:Host, b: Host) =
new(c:Req(a, b));
Snder(a, b, c) |
Rever(a, b, c)

We can then check that a:Host, b: Host = Ezamplel (a,b) : []. Since the system
has the empty effect, by Theorem 5.2 it is safe. It is routine to check that
Example 2 from Section 2 also has the empty effect, but that Example 3
cannot be type-checked (as to be expected, since it is unsafe).

4.2 Hostname Lookup

In this example, we present a simple hostname lookup system, where a client
b wishing to ping a server a can contact a name server query, to get a network
address ping for a. The client can then send a ping request to the address ping,
and get an acknowledgement from the server. We shall check two properties:

* When the ping client b finishes, it believes that the ping server a has been
pinged.

* When the ping server a finishes, it believes that it was contacted by the
ping client b.

We write “a was pinged by b” as shorthand for (a,b), and “b tried to ping a”
for (b,a,a). These examples are well-typed, with types which we define later
in this section.

12

GORDON AND JEFFREY
We program the ping client and server as follows.

A

PingClient(a: Hostname, b: Hostname, query: Query)
new(res : Res(a));
out query(a, res);
inp res(ping : Ping(a));
new(ack : Ack(a,b));
begin “b tried to ping a”;
out ping(b, ack);
inp ack();
end “a was pinged by b”
PingServer(a : Hostname, ping : Ping(a)) =
repeat
inp ping(b : Hostname, ack : Ack(a,b));
begin “a was pinged by b”;
end “b tried to ping a”;
out ack()

If these processes are safe, then any ping request and response must come
as matching pairs. In practice, the name server would require some data
structure such as a hash table or database, but for this simple example we
just use a large if-statement:

NameServer(
query: Query,
hi:Hostname, . .., hy,:Hostname,
Apz’ngl:ng(hl), ..., ping,,:Ping(hy)
)=
repeat
inp query(h, res);
if h = hy then out res(ping,) else ---
if h = h, then out res(ping,) else stop

To get the system to type-check, we use the following types:

Hostname = Name
Ack(a,b) = Ch()[“a was pinged by b”]
Ping(a) = Ch(b:Hostname, ack:Ack(a,b))[“b tried to ping a”]
Res(a) = Ch(ping:Ping(a))|]
Query = Ch(a:Hostname, res:Res(a))|]

13

(GORDON AND JEFFREY

The most subtle part of type-checking the system is the conditional in the
name server. A typical branch is:

h; : Hostname, ping; : Ping(h;), h : Hostname, res : Res(h)
- if h = h; then out res(ping,) else ---:[]

When type-checking the then-branch, (Proc Cond) assumes h = h; by apply-
ing a substitution to the environment:

(h; : Hostname, ping; : Ping(h;), h : Hostname, res : Res(h)){h<h;}
= (h; : Hostname, ping; : Ping(h;), res : Res(h;))

In this environment, we can type-check the then-branch:

hi : Hostname, ping; : Ping(h;), res : Res(h;)
- out res(ping;) : []

If (Proc Cond) did not apply the substitution to the environment, this example
could not be type-checked, since:

h; : Hostname, ping, : Ping(h;), h : Hostname, res : Res(h)
¥ out res(ping;) : []

4.3 Functions

It is typical to code the A-calculus into the m-calculus, using a return channel
k as the destination for the result. For instance, the hostname lookup example
of the previous section can be rewritten in the style of a remote procedure call.
The client and server are now:

PingClient(a: Hostname, b: Hostname, query: Query) =
let (ping : Ping(a)) = query {(a);
begin “b tried to ping a”;
let () = ping (b);
end “a was pinged by b”

PingServer(a : Hostname, ping : Ping(a)) =
fun ping(b: Hostname) {
begin “a was pinged by b”;
end “b tried to ping a”;
return ()
¥

14

(GORDON AND JEFFREY
The name server is now:

NameServer(
query: Query,
hy:Hostname, ..., h,:Hostname,
ping,:Ping(hy), ..., ping,:Ping(h,)
) =
fun query(h:Hostname) {
if h = hy then return (ping,) else ---
if h = h, then return (ping,) else stop

}

In order to provide types for these examples, we have to provide a function type
with latent effects. These effects are precondition/postcondition pairs, which
act like Hoare triples. In the type (f:f)e — (37:[7)6’ we have a precondition
e which the callee must satisfy, and a postcondition ¢’ which the caller must
satisfy. For example, the types for the hostname lookup example are:

Ping(a)
Query

= (b:Hostname)[“b tried to ping a”] — ()[“a was pinged by b”]
= (a:Hostname)[] — (ping:Ping(a))[]
which specifies that the remote ping call has a precondition “b tried to ping a”
and a postcondition “a was pinged by b”.

This can be coded into the m-calculus using a translation [Mil99] in con-
tinuation passing style.

fun f(#:T) {P} = repeat inp f(&:T, k:Ch(i:U)e'); P
let (7:0) = f (2); P = new(k:Ch(i:U)e'); out f{(Z, k);inp k(7:U); P
return (Z) = out k(Z)
2 Ch(#T, k:Ch(;:U)e)e

—

(#:T)e — (:0)e

This translation is standard, except for the typing. It is routine to verify its
soundness.

5 Formalizing Correspondence Assertions

In this section, we give the formal definition of the trace semantics for the
m-calculus with correspondence assertions, which is used in the definition of
a safe process. We then state the main result of this paper, which is that
effect-free processes are safe.

We give the trace semantics as a labelled transition system. Following
Berry and Boudol [BB92] and Milner [Mil99] we use a structural congruence
P = (@, and give our operational semantics up to =.

15

(GORDON AND JEFFREY

Structural Congruence: P = (@

P=r (Struct Refl)
Q=P=P=Q (Struct Symm)
P=Q,Q=R=P=R (Struct Trans)

P=Q=inp z(7:T); P =inp z(7:T): Q (Struct Input)

P =@ = new(2:T); P = new(2:T);Q (Struct Res)
P=Q=P|R=Q|R Struct Par)

P = @ = repeat P = repeat () Struct Repl)

(
(
(
(
P | stop= P (Struct Par Zero)
PlQ=Q|P (Struct Par Comm)
(P|Q)|R=P|(Q]|R) (Struct Par Assoc)
repeat P = P | repeat P (Struct Repl Par)
(
(
(

new(x:T); (P | Q) = P | new(z:T); Q
new(z1:T7); new(z2:Ty); P =
new(xo:T5); new(x:Ty); P

Struct Res Par) (where z ¢ fn(P))
Struct Res Res)
where T 7£ T2, T ﬁé fn(Tg),xQ §é fn(Tl))

There are four actions in this labelled transition system:
e P

e P
)

begin L . .
8% P’ when P reaches a begin L assertion.

end L .
—— P’ when P reaches an end L assertion.

P’ when P generates a new name z.

P 5 P’ when P can perform an internal action.

For example:

(new(z:Name); begin (x);end (z); stop) gen o), (begin (x);end (z);stop)

begin (z) (

end (z) (StOp)

end (x);stop)

Next, we define the syntax of actions «, and their free names and generated
names.

Actions:
o, = actions
begin L begin-event
end L end-event
gen (x) name generation
T internal

16

(GORDON AND JEFFREY

Free names, fn(a), and generated names, gn(a), of an action «:
fn(r) = @ fn(begin L) = fn(L) fn(end L) = fn(L) fn(gen (z)) = {x}
gn(r) = @ gn(beginl) = & gn(end L) = & gn(gen (z) 2 {z}

The labelled transition system P = P’ is defined here.

Transitions: P < P’

out z(¥) | inp 2(¥); P = P{ij+7} (Trans Comm)

if v =2 then P else Q = P (Trans Match)

if 2 =1y then Pelse @ 5 Q (Trans Mismatch) (where z # y)

begin L; P —— begn L p (Trans Begin)

endL; P =M% p (Trans End)

new(x:T); P LalUNyS (Trans Gen)
PLP=P|QSPI|Q (Trans Par) (where gn(a) Nfn(Q) = 9)
P % P' = new(2:T); P < new(x:T); P’ (Trans Res) (where z ¢ fn(a))
P=P,P5%Q,Q=Q=P%Q (Trans =)

From this operational semantics, we can define the traces of a process, with
. S . .
reductions P = P’ where s is a sequence of actions.
Traces:

St i=aq,..., 0, trace

Free names, fn(s), and generated names, gn(s), of a trace s:

fn(ay,..., o) = fa(a)) U- - Ufn(ay,)
gn(ag, ..., o) = gn(aq)U---Ugn(ay,)

Traced transitions: P = P’

P=P =P% P (Trace =)
PS5 PP 5P = P25 P (Trace Action) (where fn(a) Ngn(s) = @)

We require a side-condition on (Trace Action) to ensure that generated
names are unique, otherwise we could observe traces such as

(new(z); new(y); stop) gen ()gen (o), (stop)

Having formally defined the trace semantics of our m-calculus, we can define
when a trace is a correspondence: this is when every end L has a distinct,

17

(GORDON AND JEFFREY

matching begin L. For example:

begin L,end L is a correspondence
begin L,end L,end L is not a correspondence
begin L, begin L,end L,end L is a correspondence

We formalize this by counting the number of begin L. and end L actions there
are in a trace.

Beginnings, begins (o), and endings, ends (), of an action a:
begins (begin L) = [L] ends (begin L)

begins (end L) = [] ends (end L)
begins (gen (x)) =[] ends (gen (x))
begins (1) = [] ends (7)

e e e e
e e e e

[
[
[
[

Beginnings, begins (s), and endings, ends (s), of a trace s:

begins (o, ..., a,) = begins (ay) + - - - + begins (a,)
ends (a1, ...,a,) = ends (ay) + - - - + ends (ay,)
Correspondence:

A trace s is a correspondence if and only if ends (s) < begins (s).

A process is safe if every trace is a correspondence.

Safety:

A process P is safe if and only if for all traces s and processes P’
if P % P’ then s is a correspondence.

A subtlety of this definition of safety is that although we want each end-
event of a safe process to be preceded by a distinct, matching begin-event, a
trace st may be a correspondence by virtue of a later begin-event in ¢ match-
ing an earlier end-event in s. For example, a trace like end L, begin L is a
correspondence.

To see why our definition implies that a matching begin-event must precede
each end-event in each trace of a safe process, suppose a safe process has a
trace s,end L, t. By definition of traces, the process also has the shorter trace
s,end L, which must be a correspondence, since it is a trace of a safe process.
Therefore, the end-event end L is preceded by a matching begin-event in s.

We can now state the formal result of the paper, Theorem 5.2, that every
effect-free process is safe. This gives us a compositional technique for verifying
the safety of communications protocols. It follows from a subject reduction
result, Theorem 5.1. The most difficult parts of the formal development to
check in detail are the parts associated with the (Proc Cond) rule, because of

18

(GORDON AND JEFFREY

its use of a substitution applied to an environment.

Theorem 5.1 (Subject Reduction) Suppose E - P : e.
(1) If P 5 P' then E- P' - e.

2) If P 255 P! then B P e + [L).
(3) If p &L pr then EF P':e—[L], and L € e.
(4) If P 0 proand z ¢ dom(FE) then E,xz:T = P’ : e for some type T.

Theorem 5.2 (Safety) If E+ P :[] then P is safe.

6 Related Work

Correspondence assertions are not new; we have already discussed prior work
on correspondence assertions for cryptographic protocols [WL93 MCJ97]. A
contribution of our work is the idea of directly expressing correspondence
assertions by adding annotations to a general concurrent language, in our
case the m-calculus.

Gifford and Lucassen introduced type and effect systems [GL86,Luc87] to
manage side-effects in functional programming. There is a substantial lit-
erature. Early work on concurrent languages includes systems by Nielson
and Nielson [NN93,NN94] and Talpin [Tal93]. Recent applications of type
and effect systems include memory management for high-level [TT97] and
low-level [CWM99] languages, race-condition avoidance [FA99], and access
control [SS00].

Early type systems for the m-calculus [Mil99,PS96] focus on regulating the
data sent on channels. Subsequent type systems also regulate process be-
haviour; for example, session types [THK94 HVK98] regulate pairwise inter-
actions and linear types [Kob98] help avoid deadlocks. A recent paper [DG00]
explicitly proposes a type and effect system for the m-calculus, and the idea of
latent effects on channel types. This idea can also be represented in a recent
general framework for concurrent type systems [IK01]. Still, the types of our
system are dependent in the sense that they may include the names of chan-
nels; to the best of our knowledge, this is the first dependent type system for
the m-calculus. Another system of dependent types for a concurrent language
is Flanagan and Abadi’s system [FA99] for avoiding race conditions in the
concurrent object calculus of Gordon and Hankin [GH9S].

The rule (Proc Cond) for typing name equality if x = y then P else @
checks P under the assumption that the names x and y are the same; we
formalize this by substituting y for = in the type environment and the process
P. Given that names are the only kind of value, this technique is simpler
than the standard technique from dependent type theory [NPS90,Bar92] of
defining typing judgments with respect to an equivalence relation on values.
Honda, Vasconcelos, and Yoshida [HVY00] also use the technique of applying

19

(GORDON AND JEFFREY

substitutions to environments while type-checking.

7 Conclusions

The long term objective of this work is to check secrecy and authenticity prop-
erties of security protocols by typing. This paper introduces several key ideas
in the minimal yet general setting of the m-calculus: the idea of expressing
correspondences by begin- and end-annotations, the idea of a dependent type
and effect system for proving correspondences, and the idea of using latent
effects to type correspondences begun by one process and ended by another.
Several examples demonstrate the promise of this system. Unlike a previous
approach based on model-checking, type-checking correspondence assertions
is not limited to finite-state systems.

A companion paper [GJ0la] begins the work of applying these ideas to
cryptographic protocols as formalized in the spi-calculus of Abadi and Gor-
don [AG99], and has already proved useful in identifying known issues in
published protocols. Our first type system for spi is specific to cryptographic
protocols based on symmetric key cryptography. Instead of attaching latent
effects to channel types, as in this paper, we attach them to a new type for
nonces, to formalize a specific idiom for preventing replay attacks. Another
avenue for future work is type inference algorithms.

The type system of the present paper has independent interest. It intro-
duces the ideas in a more general setting than the spi-calculus, and shows
in principle that correspondence assertions can be type-checked in any of the
many programming languages that may be reduced to the w-calculus.

Acknowledgements We had useful discussions with Andrew Kennedy and
Naoki Kobayashi. Tony Hoare commented on a draft of this paper. Alan
Jeffrey was supported in part by Microsoft Research during some of the time
we worked on this paper.

References

[AG99] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Information and Computation, 148:1-70, 1999.

[Bar92] H. Barendregt. Lambda calculi with types. In S. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer
Science, Volume II. Oxford University Press, 1992.

[BB92] G. Berry and G. Boudol. The chemical abstract machine. Theoretical
Computer Science, 96(1):217-248, April 1992.

[CMO00] E. Clarke and W. Marrero. Using formal methods for analyzing security.
Available at hitp://www.cs.cmu.edu/~marrero/abstract.html, 2000.

20

(GORDON AND JEFFREY

[CWM99] K. Crary, D. Walker, and G. Morrisett. Typed memory management
in a calculus of capabilities. In 26th ACM Symposium on Principles of
Programming Languages, pages 262-275, 1999.

[DGO0] S. Dal Zilio and A.D. Gordon. Region analysis and a w-calculus
with groups. In Mathematical Foundations of Computer Science 2000
(MFCS2000), volume 1893 of Lectures Notes in Computer Science, pages
1-21. Springer, 2000.

[FA99] C. Flanagan and M. Abadi. Object types against races. In J.C.M. Baeten
and S. Mauw, editors, CONCUR’99: Concurrency Theory, volume 1664
of Lectures Notes in Computer Science, pages 288-303. Springer, 1999.

[GHY98] A.D. Gordon and P.D. Hankin. A concurrent object calculus: Reduction
and typing. In Proceedings HLCL’98, ENTCS. Elsevier, 1998.

[GJOla] A.D. Gordon and A. Jeffrey. Authenticity by typing for security
protocols. In 1jth IEEE Computer Security Foundations Workshop,
pages 145-159. IEEE Computer Society Press, 2001. An extended version
appears as Microsoft Research Technical Report MSR-TR-2001-49, May
2001.

[GJO1b] A.D. Gordon and A. Jeffrey. Typing correspondence assertions
for communication protocols. Technical Report MSR-TR-2001-48,
Microsoft Research, May 2001.

[GL86] D.K. Gifford and J.M. Lucassen. Integrating functional and imperative
programming. In ACM Conference on Lisp and Functional Programming,
pages 28-38, 1986.

[HVK98] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming. In
European Symposium on Programming, volume 1381 of Lectures Notes
in Computer Science, pages 122-128. Springer, 1998.

[HVY00] K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow
as typed process behaviour. In FEuropean Symposium on Programming,
Lectures Notes in Computer Science. Springer, 2000.

[TKO1] A. Igarashi and N. Kobayashi. A generic type system for the pi calculus.
In 28th ACM Symposium on Principles of Programming Languages, pages
128-141, 2001.

[Kob98] N. Kobayashi. A partially deadlock-free typed process calculus. ACM
Transactions on Programming Languages and Systems, 20:436-482, 1998.

[Luc87] J.M. Lucassen. Types and effects, towards the integration of functional
and imperative programming. PhD thesis, MIT, 1987. Available as
Technical Report MIT/LCS/TR-408, MIT Laboratory for Computer
Science.

21

(GORDON AND JEFFREY

MCJ97] W. Marrero, E.M. Clarke, and S. Jha. Model checking for security
[g
protocols. In DIMACS Workshop on Design and Formal Verification

of Security Protocols, 1997. Preliminary version appears as Technical
Report TR-CMU-CS-97-139, Carnegie Mellon University, May 1997.

[Mil99] R. Milner. Communicating and Mobile Systems: the m-Calculus.
Cambridge University Press, 1999.

[NN93] F. Nielson and H. Riis Nielson. From CML to process algebras. In
CONCUR 93—Concurrency Theory, volume 715 of Lectures Notes in
Computer Science, pages 493-508. Springer, 1993.

[NN94] H. Riis Nielson and F. Nielson. Higher-order concurrent programs with
finite communication topology. In 21st ACM Symposium on Principles
of Programming Languages (POPL’94), pages 84-97, 1994.

[NPS90] B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-Ldf’s
Type Theory: An Introduction. Oxford University Press, 1990.

[PS96] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409-454, 1996.

[SS00] C. Skalka and S. Smith. Static enforcement of security with types. In
P. Wadler, editor, 2000 ACM International Conference on Functional
Programming, pages 34-45, 2000.

[Tal93] J.-P. Talpin. Aspects théoretiques et pratiques de l'inférence de types et
d’effets. Thése de doctorat, Université Paris VI and Ecole des Mines de
Paris, May 1993.

[THK94] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and
its typing system. In Proceedings 6th European Conference on Parallel
Languages and Architecture, volume 817 of Lectures Notes in Computer
Science, pages 398-413. Springer, 1994.

[TT97] M. Tofte and J.-P. Talpin. Region-based memory management.
Information and Computation, 132(2):109-176, 1997.

[WL93] T.Y.C. Woo and S.S. Lam. A semantic model for authentication
protocols. In IEEE Symposium on Security and Privacy, pages 178-194,
1993.

22

