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rosoft Resear
h, CambridgeAlan Je�reyDePaul University, Chi
agoAbstra
tWoo and Lam propose 
orresponden
e assertions for spe
ifying authenti
ity proper-ties of se
urity proto
ols. The only prior work on 
he
king 
orresponden
e assertionsdepends on model-
he
king and is limited to �nite-state systems. We propose a de-pendent type and e�e
t system for 
he
king 
orresponden
e assertions. Sin
e itis based on type-
he
king, our method is not limited to �nite-state systems. Thispaper presents our system in the simple and general setting of the �-
al
ulus. Weshow how to type-
he
k 
orre
tness properties of example 
ommuni
ation proto
olsbased on se
ure 
hannels. In a related paper, we extend our system to the more
omplex and spe
i�
 setting of 
he
king 
ryptographi
 proto
ols based on en
ryptedmessages sent over inse
ure 
hannels.1 Introdu
tionCorresponden
e Assertions To a �rst approximation, a 
orresponden
eassertion about a 
ommuni
ation proto
ol is an intention that follows thepattern:If one prin
ipal ever rea
hes a 
ertain point in a proto
ol, then some otherprin
ipal has previously rea
hed some other mat
hing point in the proto
ol.We re
ord su
h intentions by annotating the program representing theproto
ol with labelled assertions of the form beginL or endL. These assertionshave no e�e
t at runtime, but notionally indi
ate that a prin
ipal has rea
heda 
ertain point in the proto
ol. The following more a

urately states theintention re
orded by these annotations:If the program embodying the proto
ol ever asserts end L, then there is adistin
t previous assertion of begin L.

2001 Published by Elsevier S
ien
e B. V.



Gordon and JeffreyWoo and Lam [WL93℄ introdu
e 
orresponden
e assertions to state in-tended properties of authenti
ation proto
ols based on 
ryptography. Con-sider a proto
ol where a prin
ipal a generates a new session key k and trans-mits it to b. We intend that if a run of b ends a key ex
hange believing thatit has re
eived key k from a, then a generated k as part of a key ex
hangeintended for b. We re
ord this intention by annotating a's generation of k bythe label begin ha; b; ki, and b's re
eption of k by the label end ha; b; ki.A proto
ol 
an fail a 
orresponden
e assertion be
ause of several kinds ofbug. One kind 
onsists of those bugs that 
ause the proto
ol to go wrongwithout any external interferen
e. Other kinds are bugs where an unreliableor mali
ious network or parti
ipant 
auses the proto
ol to fail.This Paper We show in this paper that 
orre
tness properties expressed by
orresponden
e assertions 
an be proved by type-
he
king. We embed 
orre-sponden
e assertions in a 
on
urrent programming language (the �-
al
ulus ofMilner, Parrow, and Walker [Mil99℄) and present a new type and e�e
t systemthat guarantees safety of well-typed assertions. We show several examples ofhow 
orresponden
e assertions 
an be proved by type-
he
king.Woo and Lam's paper introdu
es 
orresponden
e assertions but providesno te
hniques for proving them. Clarke and Marrero [CM00℄ use 
orrespon-den
e assertions to spe
ify properties of e-
ommer
e proto
ols, su
h as au-thorizations of transa
tions. To the best of our knowledge, the only previouswork on 
he
king 
orresponden
e assertions is a proje
t by Marrero, Clarke,and Jha [MCJ97℄ to apply model-
he
king te
hniques to �nite state versions ofse
urity proto
ols. Sin
e our work is based on type-
he
king, it is not limitedto �nite state systems. Moreover, type-
he
king is 
ompositional: we 
an ver-ify 
omponents in isolation, and know that their 
omposition is safe, withouthaving to verify the entire system. Unlike Marrero, Clarke, and Jha's work,however, the system of the present paper does not deal with 
ryptographi
primitives, and nor does it deal with an arbitrary opponent. Still, in anotherpaper [GJ01a℄, we adapt our type and e�e
t system to the setting of the spi-
al
ulus [AG99℄, an extension of the �-
al
ulus with abstra
t 
ryptographi
primitives. This adaptation 
an show, moreover, that properties hold in thepresen
e of an arbitrary untyped opponent.A te
hni
al report [GJ01b℄ in
ludes proofs omitted from this paper.Review of The Untyped �-Cal
ulus Milner, Parrow, and Walker's �-
al
ulus is a 
on
urrent formalism to whi
h many kinds of 
on
urrent 
om-putation may be redu
ed. Its simpli
ity makes it an attra
tive vehi
le fordeveloping the ideas of this paper, while its generality suggests they may bewidely appli
able. Its basi
 data type is the name, an unguessable identi�erfor a 
ommuni
ations 
hannel. Computation is based on the ex
hange of mes-sages, tuples of names, on named 
hannels. Programming in the �-
al
ulus isbased on the following 
onstru
ts (written, unusually, with keywords, for the2



Gordon and Jeffreysake of 
larity). The rest of the paper 
ontains many examples. An outputpro
ess out xhy1; : : : ; yni represents a message hy1; : : : ; yni sent on the 
hannelx. An input pro
ess inp x(z1; : : : ; zn);P blo
ks till it �nds a message sent onthe 
hannel x, reads the names in the message into the variables z1; : : : ; zn,and then runs P . The pro
ess P j Q is the parallel 
omposition of the two pro-
esses P and Q; the two may run independently or 
ommuni
ate on shared
hannels. The name generation pro
ess new(x);P generates a fresh name,
alls it x, then runs P . Unless P reveals x, no other pro
ess 
an use this freshname. The repli
ation pro
ess repeat P behaves like an unbounded parallelarray of repli
as of P . The pro
ess stop represents ina
tivity; it does nothing.Finally, the 
onditional if x = y then P else Q 
ompares the names x and y.If they are the same it runs P ; otherwise it runs Q.2 Corresponden
e Assertions, by ExampleThis se
tion introdu
es the idea of de�ning 
orresponden
e assertions by an-notating 
ode with begin- and end-events. We give examples of both safe 
odeand of unsafe 
ode, that is, of 
ode that satis�es the 
orresponden
e assertionsindu
ed by its annotations, and of 
ode that does not.A transmit-a
knowledge handshake is a standard 
ommuni
ations idiom,easily expressed in the �-
al
ulus: along with the a
tual message, the sendertransmits an a
knowledgement 
hannel, upon whi
h the re
eiver sends ana
knowledgement. We intend that:During a transmit-a
knowledge handshake, if the sender re
eives an a
-knowledgment, then the re
eiver has obtained the message.Corresponden
e assertions 
an express this intention formally. Supposethat a and b are the names of the sender and re
eiver, respe
tively. Weannotate the 
ode of the re
eiver b with a begin-assertion at the point afterit has re
eived the message msg. We annotate the 
ode of the sender a withan end-assertion at the point after it has re
eived the a
knowledgement. Welabel both assertions with the names of the prin
ipals and the transmittedmessage, ha; b;msgi. Hen
e, we assert that if after sending msg to b, thesender a re
eives an a
knowledgement, then a distin
t run of b has re
eivedmsg.Suppose that 
 is the name of the 
hannel on whi
h prin
ipal b re
eivesmessages from a. Here is the �-
al
ulus 
ode of the annotated sender andre
eiver: R
ver(a; b; 
) �=inp 
(msg; a
k);begin ha; b;msgi;out a
khi Snder(a; b; 
) �=new(msg); new(a
k);out 
hmsg; a
ki; inp a
k();end ha; b;msgiThe sender 
reates a fresh message msg and a fresh a
knowledgement 
hannel3



Gordon and Jeffreya
k , sends the two on the 
hannel 
, waits for an a
knowledgement, and thenasserts an end-event labelled ha; b;msgi.The re
eiver gets the message msg and the a
knowledgement 
hannel a
ko� 
, asserts a begin-event labelled ha; b;msgi, and sends an a
knowledgementon a
k .We say a program is safe if it satis�es the intentions indu
ed by the begin-and end-assertions. More pre
isely, a program is safe just if for every run ofthe program and for every label L, there is a distin
t begin-event labelled Lpre
eding every end-event labelled L. (We formalize this de�nition in Se
-tion 5.)Here are three 
ombinations of our examples: two safe, one unsafe.new(
);Snder(a; b; 
) jR
ver(a; b; 
) (Example 1: safe)Example 1 uses one instan
e of the sender and one instan
e of the re
eiverto represent a single instan
e of the proto
ol. The restri
tion new(
); makesthe 
hannel 
 private to the sender and the re
eiver. This assembly is safe; itsonly run 
orre
tly implements the handshake proto
ol.new(
);Snder(a; b; 
) jSnder(a; b; 
) jrepeat R
ver(a; b; 
) (Example 2: safe)
Example 2 uses two 
opies of the sender|representing two attempts by a singleprin
ipal a to send a message to b|and a repli
ated 
opy of the re
eiver|representing the prin
ipal b willing to a

ept an unbounded number of mes-sages. Again, this assembly is safe; any run 
onsists of an interleaving of two
orre
t handshakes.new(
);Snder(a; b; 
) jSnder(a0; b; 
) jrepeat R
ver(a; b; 
) (Example 3: unsafe)
Example 3 is a variant on Example 2, where we keep the repli
ated re
eiverb, but 
hange the identity of one of the senders, so that the two sendersrepresent two di�erent prin
ipals a and a0. These two prin
ipals share a single
hannel 
 to the re
eiver. Sin
e the identity a of the sender is a parameterof R
ver(a; b; 
) rather than being expli
itly 
ommuni
ated, this assembly isunsafe. There is a run in whi
h a0 generates msg and a
k , and sends them to b;b asserts a begin-event labelled ha; b;msgi and outputs on a
k ; then a0 assertsan end-event labelled ha0; b;msgi. This end-event has no 
orresponding begin-event so the assembly is unsafe, re
e
ting the possibility that the re
eiver 
an4



Gordon and Jeffreybe mistaken about the identity of the sender.3 Typing Corresponden
e Assertions3.1 Types and E�e
tsOur type and e�e
t system is based on the idea of assigning types to namesand e�e
ts to pro
esses. A type des
ribes what operations are allowed on aname, su
h as what messages may be 
ommuni
ated on a 
hannel name. Ane�e
t des
ribes the 
olle
tion of labels of events the pro
ess may end whilenot itself beginning. We 
ompute e�e
ts based on the intuition that end-events are a

ounted for by pre
eding begin-events; a begin-event is a 
reditwhile an end-event is a debit. A

ording to this metaphor, the e�e
t of apro
ess is an upper bound on the debt a pro
ess may in
ur. If we 
an assigna pro
ess the empty e�e
t, we know all of its end-events are a

ounted forby begin-events. Therefore, we know that the pro
ess is safe, that is, its
orresponden
e assertions are true.An essential ingredient of our typing rules is the idea of atta
hing a latente�e
t to ea
h 
hannel type. We allow any pro
ess re
eiving o� a 
hannel totreat the latent e�e
t as a 
redit towards subsequent end-events. This is soundbe
ause we require any pro
ess sending on a 
hannel to treat the latent e�e
tas a debit that must be a

ounted for by previous begin-events. Latent e�e
tsare at the heart of our method for type-
he
king events begun by one pro
essand ended by another.The following table des
ribes the syntax of types and e�e
ts. As in mostversions of the �-
al
ulus, we make no lexi
al distin
tion between names andvariables, ranged over by a; b; 
; x; y; z. An event label, L, is simply a tuple ofnames. Event labels identify the events asserted by begin- and end-assertions.An e�e
t, e, is a multiset, that is, an unordered list, of event labels, writtenas [L1; : : : ; Ln℄. A type, T , takes one of two kinds. The �rst kind, Name, is thetype of pure names, that is, names that only support equality operations, but
annot be used as 
hannels. We use Name as the type of names that identifyprin
ipals, for instan
e. The se
ond kind, Ch(x1:T1; : : : ; xn:Tn)e, is a type ofa 
hannel 
ommuni
ating n-tuples of names, of types T1, . . . , Tn, with latente�e
t e. The names x1, . . . , xn are bound; the s
ope of ea
h xi 
onsists ofthe types Ti+1, . . . , Tn, and the latent e�e
t e. We identify types up to the
onsistent renaming of bound names.Names, Event Labels, E�e
ts, and Types:a; b; 
; x; y; z names, variablesL ::= hx1; : : : ; xni event label: tuple of namese ::= [L1; : : : ; Ln℄ e�e
t: multiset of event labelsT ::= typeName pure name5



Gordon and JeffreyCh(x1:T1; : : : ; xn:Tn)e 
hannel with latent e�e
t eFor example:� Ch()[ ℄, a syn
hronization 
hannel (that is, a 
hannel used only for syn
hro-nization) with no latent e�e
t.� Ch(a:Name)[hbi℄, a 
hannel for 
ommuni
ating a pure name, 
osting [hbi℄ tosenders and paying [hbi℄ to re
eivers, where b is a �xed name.� Ch(a:Name)[hai℄, a 
hannel for 
ommuni
ating a pure name, 
osting [hai℄to senders and paying [hai℄ to re
eivers, where a is the name 
ommuni
atedon the 
hannel.� Ch(a:Name; b:Ch()[hai℄)[ ℄, a 
hannel with no latent e�e
t for 
ommuni
atingpairs of the form a; b, where a is a pure name, and b is the name of a syn-
hronization 
hannel, 
osting [hai℄ to senders and paying [hai℄ to re
eivers.The following is a 
onvenient shorthand for the lists of typed variable de
la-rations found in 
hannel types:Notation for Typed Variables:~x:~T �= x1:T1; : : : ; xn:Tn where ~x = x1; : : : ; xn and ~T = T1; : : : ; Tn� �= () the empty listThe following equations de�ne the the sets of free names of our syntaxas follows: variable de
larations, fn(�:�) �= ? and fn(~x:~T ; x:T ) �= fn(~x:~T ) [(fn(T )�f~xg); types, fn(Name) �= ? and fn(Ch(~x:~T )e) �= fn(~x:~T )[(fn(e)�f~xg);event labels, fn(hx1; : : : ; xni) �= fx1; : : : ; xng; and events, fn([L1; : : : ; L1℄) �=fn(L1) [ � � � [ fn(Ln).For any of these forms of syntax, we write �fx yg for the operation of
apture-avoiding substitution of the name y for ea
h free o

urren
e of thename x. We write �f~x ~yg, where ~x = x1; : : : ; xn and ~y = y1; : : : ; yn for theiterated substitution �fx1 y1g � � � fxn yng.3.2 Syntax of our Typed �-Cal
ulusWe explained the informal semanti
s of begin- and end-assertions in Se
tion 2,and of the other 
onstru
ts in Se
tion 1.Pro
esses:P;Q;R ::= pro
essout xhy1; : : : ; yni polyadi
 asyn
hronous outputinp x(y1:T1; : : : ; yn:Tn);P polyadi
 inputif x = y then P else Q 
onditionalnew(x:T );P name generationP j Q 
ompositionrepeat P repli
ation6



Gordon and Jeffreystop ina
tivitybegin L;P begin-assertionend L;P end-assertionThere are two name binding 
onstru
ts: input and name generation. Inan input pro
ess inp x(y1:T1; : : : ; yn:Tn);P , ea
h name yi is bound, with s
ope
onsisting of Ti+1, . . . , Tn, and P . In a name restri
tion new(x:T );P , thename x is bound; its s
ope is P . We write Pfx yg for the out
ome of a
apture-avoiding substitution of the name y for ea
h free o

urren
e of thename x in the pro
ess P . We identify pro
esses up to the 
onsistent renamingof bound names. We let fn(P ) be the set of free names of a pro
ess P . Wesometimes write an output as out xh~yi where ~y = y1; : : : ; yn, and an inputas inp x(~y:~T );P , where ~y:~T is a variable de
laration written in the notationintrodu
ed in the previous se
tion. We write out xh~yi;P as a shorthand forout xh~yi j P .3.3 Intuitions for the Type and E�e
t SystemAs a prelude to our formal typing rules, we present the underlying intuitions.Re
all the intuition that end-events are 
osts to be a

ounted for by begin-events. When we say a pro
ess P has e�e
t e, it means that e is an upperbound on the begin-events needed to pre
ede P to make the whole pro
esssafe. In other words, if P has e�e
t [L1; : : : ; Ln℄ then beginL1; � � � ; beginLn;Pis safe.Typing Assertions An assertion beginL;P pays for one end-event labelledL in P ; so if P is a pro
ess with e�e
t e, then begin L;P is a pro
ess withe�e
t e�[L℄, that is, the multiset e with one o

urren
e of L deleted. So wehave a typing rule of the form:P : e ) begin L;P : e�[L℄If P is a pro
ess with e�e
t e, then endL;P is a pro
ess with e�e
t e+[L℄,that is, the 
on
atenation of e and [L℄. We have a rule:P : e ) end L;P : e+[L℄Typing Name Generation and Con
urren
y The e�e
t of a name gen-eration pro
ess new(x:T );P , is simply the e�e
t of P . To prevent s
ope 
on-fusion, we forbid x from o

urring in this e�e
t.P : e; x =2 fn(e) ) new(x:T );P : eThe e�e
t of a 
on
urrent 
omposition of pro
esses is the multiset unionof the 
onstituent pro
esses.P : eP ; Q : eQ ) P j Q : eP+eQThe ina
tive pro
ess asserts no end-events, so its e�e
t is empty.7



Gordon and Jeffreystop : [ ℄The repli
ation of a pro
ess P behaves like an unbounded array of repli-
as of P . If P has a non-empty e�e
t, then its repli
ation would have anunbounded e�e
t, whi
h 
ould not be a

ounted for by pre
eding begin-assertions. Therefore, to type repeat P we require P to have an empty e�e
t.P : [ ℄ ) repeat P : [ ℄Typing Communi
ations We begin by presenting the rules for typing
ommuni
ations on monadi
 
hannels with no latent e�e
t, that is, those withtypes of the form Ch(y:T )[ ℄. The 
ommuni
ated name has type T . An outputout xhzi has empty e�e
t. An input inp x(y:T );P has the same e�e
t as P .Sin
e the input variable in the pro
ess and in the type are both bound, wemay assume they are the same variable y.x : Ch(y:T )[ ℄; z : T ) out xhzi : [ ℄x : Ch(y:T )[ ℄; P : e; y =2 fn(e) ) inp x(y:T );P : eNext, we 
onsider the type Ch(y:T )e` of monadi
 
hannels with latent e�e
te`. The latent e�e
t is a 
ost to senders, a bene�t to re
eivers, and is the s
opeof the variable y. We assign an output out xhzi the e�e
t e`fy zg, wherewe have instantiated the name y bound in the type of the 
hannel with z,the name a
tually sent on the 
hannel. We assign an input inp x(y:T );P thee�e
t e� e`, where e is the e�e
t of P . To avoid s
ope 
onfusion, we requirethat y is not free in e� e`.x : Ch(y:T )e`; z : T ) out xhzi : e`fy zgx : Ch(y:T )e`; P : e; y =2 fn(e� e`) ) inp x(y:T );P : e� e`The formal rules for input and output in the next se
tion generalize theserules to deal with polyadi
 
hannels.Typing Conditionals When typing a 
onditional if x = y then P else Q,it is useful to exploit the fa
t that P only runs if the two names x and yare equal. To do so, we 
he
k the e�e
t of P after substituting one for theother. Suppose then pro
ess Pfx yg has e�e
t ePfx yg. Suppose also thatpro
ess Q has e�e
t eQ. Let eP _ eQ be the least upper bound of any twoe�e
ts eP and eQ. Then eP _eQ is an upper bound on the begin-events neededto pre
ede the 
onditional to make it safe, whether P or Q runs. An examplein Se
tion 4.2 illustrates this rule.Pfx yg : ePfx yg; Q : eQ ) if x = y then P else Q : eP _ eQ3.4 Typing RulesOur typing rules depend on several operations on e�e
t multisets, most ofwhi
h were introdu
ed informally in the previous se
tion. Here are the formalde�nitions. 8



Gordon and JeffreyOperations on e�e
ts: e+ e0, e � e0, e� e0, L 2 e, e _ e0[L1; : : : ; Lm℄ + [Lm+1; : : : ; Lm+n℄ �= [L1; : : : ; Lm+n℄e � e0 if and only if e0 = e+ e00 for some e00e� e0 �= the smallest e00 su
h that e � e0 + e00L 2 e if and only if [L℄ � ee _ e0 �= the smallest e00 su
h that e � e00 and e0 � e00The typing judgments of this se
tion depend on an environment to assigna type to all the variables in s
ope.Environments:E ::= ~x:~T environmentdom(~x:~T ) �= f~xg domain of an environmentTo equate two names in an environment, needed for typing 
onditionals,we de�ne a name fusion fun
tion. We obtain the fusion Efx x0g from E byturning all o

urren
es of x and x0 in E into x0.Fusing x with x0 in E: Efx x0g(x1:T1; : : : ; xn:Tn)fx x0g �=(x1fx x0g):(T1fx x0g); : : : ; (xnfx x0g):(Tnfx x0g)where E; x:T �= �E if x 2 dom(E)E; x:T otherwiseThe following table summarizes the �ve judgments of our type system,whi
h are indu
tively de�ned by rules in subsequent tables. Judgment E ` �means environment E is well-formed. Judgment E ` T means type T iswell-formed. Judgment E ` x : T means name x is in s
ope with type T .Judgment E ` h~xi : h~y:~T i means tuple h~xi mat
hes the variable de
laration~y:~T . Judgment E ` P : e means pro
ess P has e�e
t e.Judgments:E ` � good environmentE ` T good type TE ` x : T good name x of type TE ` h~xi : h~y:~T i good message ~x mat
hing ~y:~TE ` P : e good pro
ess P with e�e
t eThe rules de�ning the �rst three judgments are standard.
9



Gordon and JeffreyGood environments, types, and names:(Env ?)? ` � (Env x)E ` T x =2 dom(E)E; x:T ` � (Type Name)E ` �E ` Name(Type Chan)E; ~x:~T ` � fn(e) � dom(E) [ f~xgE ` Ch(~x:~T )e (Name x)E 0; x:T;E 00 ` �E 0; x:T;E 00 ` x : TThe next judgment, E ` h~xi : h~y:~T i, is an auxiliary judgment used fortyping output pro
esses; it is used in the rule (Pro
 Output) to 
he
k thatthe message h~xi sent on a 
hannel of type Ch(~y:~T )e mat
hes the variablede
laration ~y:~T .Good message:(Msg hi)E ` �E ` hi : hi (Msg x) (where y =2 f~yg [ dom(E))E ` h~xi : h~y:~T i E ` x : (Tf~y ~xg)E ` h~x; xi : h~y:~T ; y:T iFinally, here are the rules for typing pro
esses. The e�e
t of a pro
ess is anupper bound; the rule (Pro
 Subsum) allows us to in
rease this upper bound.Intuitions for all the other rules were explained in the previous se
tion.Good pro
esses:(Pro
 Subsum) (where e � e0 and fn(e0) � dom(E))E ` P : eE ` P : e0(Pro
 Output)E ` x : Ch(~y:~T )e E ` h~xi : h~y:~T iE ` out xh~xi : (ef~y ~xg)(Pro
 Input) (where fn(e� e0) � dom(E))E ` x : Ch(~y:~T )e0 E; ~y:~T ` P : eE ` inp x(~y:~T );P : e� e0(Pro
 Cond)E ` x : T E ` y : T Efx yg ` Pfx yg : ePfx yg E ` Q : eQE ` if x = y then P else Q : eP _ eQ(Pro
 Res) (where x =2 fn(e))E; x:T ` P : eE ` new(x:T );P : e (Pro
 Par)E ` P : eP E ` Q : eQE ` P j Q : eP + eQ10



Gordon and Jeffrey(Pro
 Repeat)E ` P : [ ℄E ` repeat P : [ ℄ (Pro
 Stop)E ` �E ` stop : [ ℄(Pro
 Begin) (where fn(L) � dom(E))E ` P : eE ` begin L;P : e� [L℄(Pro
 End) (where fn(L) � dom(E))E ` P : eE ` end L;P : e+ [L℄Se
tion 5 presents our main type safety result, Theorem 5.2, that E ` P : [ ℄implies P is safe. Like most type systems, ours is in
omplete. There are safepro
esses that are not typeable in our system. For example, we 
annot assignthe pro
ess if x = x then stop else (end x; stop) the empty e�e
t, and yet it isperfe
tly safe.
4 Appli
ationsIn this se
tion, we present some examples of using 
orresponden
e assertionsto validate safety properties of 
ommuni
ation proto
ols. For more examples,in
luding examples with 
ryptographi
 proto
ols whi
h are se
ure against ex-ternal atta
kers, see the 
ompanion paper [GJ01a℄.
4.1 Transmit-A
knowledge HandshakeRe
all the untyped sender and re
eiver 
ode from Se
tion 2. Suppose we makethe type de�nitions:Msg �= Name A
k(a; b;msg) �= Ch()[ha; b;msgi℄Host �= Name Req(a; b) �= Ch(msg:Msg ; a
k :A
k(a; b;msg))[ ℄11



Gordon and JeffreySuppose also that we annotate the sender and re
eiver 
ode, and the 
ode ofExample 1 as follows:
Snder(a:Host ; b:Host ; 
:Req(a; b)) �=new(msg:Msg);new(a
k :A
k(a; b;msg));out 
hmsg; a
ki;inp a
k();end ha; b;msgi

R
ver(a:Host ; b:Host ; 
:Req(a; b)) �=inp 
(msg:Msg ; a
k :A
k(a; b;msg));begin ha; b;msgi;out a
khiExample1 (a:Host ; b:Host) �=new(
:Req(a; b));Snder(a; b; 
) jR
ver(a; b; 
)
We 
an then 
he
k that a:Host ; b:Host ` Example1 (a; b) : [ ℄. Sin
e the systemhas the empty e�e
t, by Theorem 5.2 it is safe. It is routine to 
he
k thatExample 2 from Se
tion 2 also has the empty e�e
t, but that Example 3
annot be type-
he
ked (as to be expe
ted, sin
e it is unsafe).
4.2 Hostname LookupIn this example, we present a simple hostname lookup system, where a 
lientb wishing to ping a server a 
an 
onta
t a name server query , to get a networkaddress ping for a. The 
lient 
an then send a ping request to the address ping,and get an a
knowledgement from the server. We shall 
he
k two properties:� When the ping 
lient b �nishes, it believes that the ping server a has beenpinged.� When the ping server a �nishes, it believes that it was 
onta
ted by theping 
lient b.We write \a was pinged by b" as shorthand for ha; bi, and \b tried to ping a"for hb; a; ai. These examples are well-typed, with types whi
h we de�ne laterin this se
tion. 12



Gordon and JeffreyWe program the ping 
lient and server as follows.PingClient(a:Hostname; b:Hostname; query :Query) �=new(res : Res(a));out queryha; resi;inp res(ping : Ping(a));new(a
k : A
k(a; b));begin \b tried to ping a";out pinghb; a
ki;inp a
k();end \a was pinged by b"PingServer(a : Hostname; ping : Ping(a)) �=repeatinp ping(b : Hostname; a
k : A
k(a; b));begin \a was pinged by b";end \b tried to ping a";out a
khiIf these pro
esses are safe, then any ping request and response must 
omeas mat
hing pairs. In pra
ti
e, the name server would require some datastru
ture su
h as a hash table or database, but for this simple example wejust use a large if-statement:NameServer(query :Query ;h1:Hostname; : : : ; hn:Hostname;ping1:Ping(h1); : : : ; pingn:Ping(hn)) �=repeatinp query(h; res);if h = h1 then out reshping1i else � � �if h = hn then out reshpingni else stopTo get the system to type-
he
k, we use the following types:Hostname �= NameA
k(a; b) �= Ch()[\a was pinged by b"℄Ping(a) �= Ch(b:Hostname; a
k :A
k(a; b))[\b tried to ping a"℄Res(a) �= Ch(ping:Ping(a))[ ℄Query �= Ch(a:Hostname; res:Res(a))[ ℄13



Gordon and JeffreyThe most subtle part of type-
he
king the system is the 
onditional in thename server. A typi
al bran
h is:hi : Hostname; ping i : Ping(hi); h : Hostname; res : Res(h)` if h = hi then out reshping ii else � � � : [ ℄When type-
he
king the then-bran
h, (Pro
 Cond) assumes h = hi by apply-ing a substitution to the environment:(hi : Hostname; ping i : Ping(hi); h : Hostname; res : Res(h))fh hig= (hi : Hostname; ping i : Ping(hi); res : Res(hi))In this environment, we 
an type-
he
k the then-bran
h:hi : Hostname; pingi : Ping(hi); res : Res(hi)` out reshpingii : [ ℄If (Pro
 Cond) did not apply the substitution to the environment, this example
ould not be type-
he
ked, sin
e:hi : Hostname; ping i : Ping(hi); h : Hostname; res : Res(h)0 out reshping ii : [ ℄4.3 Fun
tionsIt is typi
al to 
ode the �-
al
ulus into the �-
al
ulus, using a return 
hannelk as the destination for the result. For instan
e, the hostname lookup exampleof the previous se
tion 
an be rewritten in the style of a remote pro
edure 
all.The 
lient and server are now:PingClient(a:Hostname; b:Hostname; query :Query) �=let (ping : Ping(a)) = query hai;begin \b tried to ping a";let () = ping hbi;end \a was pinged by b"PingServer(a : Hostname; ping : Ping(a)) �=fun ping(b:Hostname) fbegin \a was pinged by b";end \b tried to ping a";return hig 14



Gordon and JeffreyThe name server is now:NameServer(query :Query ;h1:Hostname; : : : ; hn:Hostname;ping1:Ping(h1); : : : ; pingn:Ping(hn)) �=fun query(h:Hostname) fif h = h1 then return hping1i else � � �if h = hn then return hpingni else stopgIn order to provide types for these examples, we have to provide a fun
tion typewith latent e�e
ts. These e�e
ts are pre
ondition/post
ondition pairs, whi
ha
t like Hoare triples. In the type (~x:~T )e ! (~y:~U)e0 we have a pre
onditione whi
h the 
allee must satisfy, and a post
ondition e0 whi
h the 
aller mustsatisfy. For example, the types for the hostname lookup example are:Ping(a) �= (b:Hostname)[\b tried to ping a"℄! ()[\a was pinged by b"℄Query �= (a:Hostname)[ ℄! (ping:Ping(a))[ ℄whi
h spe
i�es that the remote ping 
all has a pre
ondition \b tried to ping a"and a post
ondition \a was pinged by b".This 
an be 
oded into the �-
al
ulus using a translation [Mil99℄ in 
on-tinuation passing style.fun f(~x:~T ) fPg �= repeat inp f(~x:~T ; k:Ch(~y:~U)e0);Plet (~y:~U) = f h~xi;P �= new(k:Ch(~y:~U)e0); out fh~x; ki; inp k(~y:~U);Preturn h~zi �= out kh~zi(~x:~T )e! (~y:~U)e0 �= Ch(~x:~T ; k:Ch(~y:~U)e0)eThis translation is standard, ex
ept for the typing. It is routine to verify itssoundness.5 Formalizing Corresponden
e AssertionsIn this se
tion, we give the formal de�nition of the tra
e semanti
s for the�-
al
ulus with 
orresponden
e assertions, whi
h is used in the de�nition ofa safe pro
ess. We then state the main result of this paper, whi
h is thate�e
t-free pro
esses are safe.We give the tra
e semanti
s as a labelled transition system. FollowingBerry and Boudol [BB92℄ and Milner [Mil99℄ we use a stru
tural 
ongruen
eP � Q, and give our operational semanti
s up to �.15



Gordon and JeffreyStru
tural Congruen
e: P � QP � P (Stru
t Re
)Q � P ) P � Q (Stru
t Symm)P � Q;Q � R) P � R (Stru
t Trans)P � Q) inp x(~y:~T );P � inp x(~y:~T );Q (Stru
t Input)P � Q) new(x:T );P � new(x:T );Q (Stru
t Res)P � Q) P j R � Q j R (Stru
t Par)P � Q) repeat P � repeat Q (Stru
t Repl)P j stop � P (Stru
t Par Zero)P j Q � Q j P (Stru
t Par Comm)(P j Q) j R � P j (Q j R) (Stru
t Par Asso
)repeat P � P j repeat P (Stru
t Repl Par)new(x:T ); (P j Q) � P j new(x:T );Q (Stru
t Res Par) (where x =2 fn(P ))new(x1:T1); new(x2:T2);P �new(x2:T2); new(x1:T1);P (Stru
t Res Res)(where x1 6= x2; x1 =2 fn(T2); x2 =2 fn(T1))There are four a
tions in this labelled transition system:� P begin L����! P 0 when P rea
hes a begin L assertion.� P end L���! P 0 when P rea
hes an end L assertion.� P gen hxi����! P 0 when P generates a new name x.� P ��! P 0 when P 
an perform an internal a
tion.For example:(new(x:Name); begin hxi; end hxi; stop) gen hxi����! (begin hxi; end hxi; stop)begin hxi�����! (end hxi; stop)end hxi����! (stop)Next, we de�ne the syntax of a
tions �, and their free names and generatednames.A
tions:�; � ::= a
tionsbegin L begin-eventend L end-eventgen hxi name generation� internal16



Gordon and JeffreyFree names, fn(�), and generated names, gn(�), of an a
tion �:fn(�) �= ? fn(begin L) �= fn(L) fn(end L) �= fn(L) fn(gen hxi) �= fxggn(�) �= ? gn(begin L) �= ? gn(end L) �= ? gn(gen hxi �= fxgThe labelled transition system P ��! P 0 is de�ned here.Transitions: P ��! P 0out xh~xi j inp x(~y);P ��! Pf~y ~xg (Trans Comm)if x = x then P else Q ��! P (Trans Mat
h)if x = y then P else Q ��! Q (Trans Mismat
h) (where x 6= y)begin L;P begin L����! P (Trans Begin)end L;P end L���! P (Trans End)new(x:T );P gen hxi����! P (Trans Gen)P ��! P 0 ) P j Q ��! P 0 j Q (Trans Par) (where gn(�) \ fn(Q) = ?)P ��! P 0 ) new(x:T );P ��! new(x:T );P 0 (Trans Res) (where x =2 fn(�))P � P 0; P 0 ��! Q0; Q0 � Q) P ��! Q (Trans �)From this operational semanti
s, we 
an de�ne the tra
es of a pro
ess, withredu
tions P s�! P 0 where s is a sequen
e of a
tions.Tra
es:s; t ::= �1; : : : ; �n tra
eFree names, fn(s), and generated names, gn(s), of a tra
e s:fn(�1; : : : ; �n) �= fn(�1) [ � � � [ fn(�n)gn(�1; : : : ; �n) �= gn(�1) [ � � � [ gn(�n)Tra
ed transitions: P s�! P 0P � P 0 ) P "�! P 0 (Tra
e �)P ��! P 00; P 00 s�! P 0 ) P �;s�! P 0 (Tra
e A
tion) (where fn(�) \ gn(s) = ?)We require a side-
ondition on (Tra
e A
tion) to ensure that generatednames are unique, otherwise we 
ould observe tra
es su
h as(new(x); new(y); stop) gen hxi;gen hxi��������! (stop)Having formally de�ned the tra
e semanti
s of our �-
al
ulus, we 
an de�newhen a tra
e is a 
orresponden
e: this is when every end L has a distin
t,17



Gordon and Jeffreymat
hing begin L. For example:begin L; end L is a 
orresponden
ebegin L; end L; end L is not a 
orresponden
ebegin L; begin L; end L; end L is a 
orresponden
eWe formalize this by 
ounting the number of begin L and end L a
tions thereare in a tra
e.Beginnings, begins (�), and endings, ends (�), of an a
tion �:begins (begin L) �= [L℄ ends (begin L) �= [ ℄begins (end L) �= [ ℄ ends (end L) �= [L℄begins (gen hxi) �= [ ℄ ends (gen hxi) �= [ ℄begins (�) �= [ ℄ ends (�) �= [ ℄Beginnings, begins (s), and endings, ends (s), of a tra
e s:begins (�1; : : : ; �n) �= begins (�1) + � � �+ begins (�n)ends (�1; : : : ; �n) �= ends (�1) + � � �+ ends (�n)Corresponden
e:A tra
e s is a 
orresponden
e if and only if ends (s) � begins (s).A pro
ess is safe if every tra
e is a 
orresponden
e.Safety:A pro
ess P is safe if and only if for all tra
es s and pro
esses P 0if P s�! P 0 then s is a 
orresponden
e.A subtlety of this de�nition of safety is that although we want ea
h end-event of a safe pro
ess to be pre
eded by a distin
t, mat
hing begin-event, atra
e st may be a 
orresponden
e by virtue of a later begin-event in t mat
h-ing an earlier end-event in s. For example, a tra
e like end L; begin L is a
orresponden
e.To see why our de�nition implies that a mat
hing begin-event must pre
edeea
h end-event in ea
h tra
e of a safe pro
ess, suppose a safe pro
ess has atra
e s; endL; t. By de�nition of tra
es, the pro
ess also has the shorter tra
es; end L, whi
h must be a 
orresponden
e, sin
e it is a tra
e of a safe pro
ess.Therefore, the end-event end L is pre
eded by a mat
hing begin-event in s.We 
an now state the formal result of the paper, Theorem 5.2, that everye�e
t-free pro
ess is safe. This gives us a 
ompositional te
hnique for verifyingthe safety of 
ommuni
ations proto
ols. It follows from a subje
t redu
tionresult, Theorem 5.1. The most diÆ
ult parts of the formal development to
he
k in detail are the parts asso
iated with the (Pro
 Cond) rule, be
ause of18



Gordon and Jeffreyits use of a substitution applied to an environment.Theorem 5.1 (Subje
t Redu
tion) Suppose E ` P : e.(1) If P ��! P 0 then E ` P 0 : e.(2) If P begin L����! P 0 then E ` P 0 : e + [L℄.(3) If P end L���! P 0 then E ` P 0 : e� [L℄, and L 2 e.(4) If P gen hxi����! P 0 and x =2 dom(E) then E; x:T ` P 0 : e for some type T .Theorem 5.2 (Safety) If E ` P : [ ℄ then P is safe.6 Related WorkCorresponden
e assertions are not new; we have already dis
ussed prior workon 
orresponden
e assertions for 
ryptographi
 proto
ols [WL93,MCJ97℄. A
ontribution of our work is the idea of dire
tly expressing 
orresponden
eassertions by adding annotations to a general 
on
urrent language, in our
ase the �-
al
ulus.Gi�ord and Lu
assen introdu
ed type and e�e
t systems [GL86,Lu
87℄ tomanage side-e�e
ts in fun
tional programming. There is a substantial lit-erature. Early work on 
on
urrent languages in
ludes systems by Nielsonand Nielson [NN93,NN94℄ and Talpin [Tal93℄. Re
ent appli
ations of typeand e�e
t systems in
lude memory management for high-level [TT97℄ andlow-level [CWM99℄ languages, ra
e-
ondition avoidan
e [FA99℄, and a

ess
ontrol [SS00℄.Early type systems for the �-
al
ulus [Mil99,PS96℄ fo
us on regulating thedata sent on 
hannels. Subsequent type systems also regulate pro
ess be-haviour; for example, session types [THK94,HVK98℄ regulate pairwise inter-a
tions and linear types [Kob98℄ help avoid deadlo
ks. A re
ent paper [DG00℄expli
itly proposes a type and e�e
t system for the �-
al
ulus, and the idea oflatent e�e
ts on 
hannel types. This idea 
an also be represented in a re
entgeneral framework for 
on
urrent type systems [IK01℄. Still, the types of oursystem are dependent in the sense that they may in
lude the names of 
han-nels; to the best of our knowledge, this is the �rst dependent type system forthe �-
al
ulus. Another system of dependent types for a 
on
urrent languageis Flanagan and Abadi's system [FA99℄ for avoiding ra
e 
onditions in the
on
urrent obje
t 
al
ulus of Gordon and Hankin [GH98℄.The rule (Pro
 Cond) for typing name equality if x = y then P else Q
he
ks P under the assumption that the names x and y are the same; weformalize this by substituting y for x in the type environment and the pro
essP . Given that names are the only kind of value, this te
hnique is simplerthan the standard te
hnique from dependent type theory [NPS90,Bar92℄ ofde�ning typing judgments with respe
t to an equivalen
e relation on values.Honda, Vas
on
elos, and Yoshida [HVY00℄ also use the te
hnique of applying19



Gordon and Jeffreysubstitutions to environments while type-
he
king.7 Con
lusionsThe long term obje
tive of this work is to 
he
k se
re
y and authenti
ity prop-erties of se
urity proto
ols by typing. This paper introdu
es several key ideasin the minimal yet general setting of the �-
al
ulus: the idea of expressing
orresponden
es by begin- and end-annotations, the idea of a dependent typeand e�e
t system for proving 
orresponden
es, and the idea of using latente�e
ts to type 
orresponden
es begun by one pro
ess and ended by another.Several examples demonstrate the promise of this system. Unlike a previousapproa
h based on model-
he
king, type-
he
king 
orresponden
e assertionsis not limited to �nite-state systems.A 
ompanion paper [GJ01a℄ begins the work of applying these ideas to
ryptographi
 proto
ols as formalized in the spi-
al
ulus of Abadi and Gor-don [AG99℄, and has already proved useful in identifying known issues inpublished proto
ols. Our �rst type system for spi is spe
i�
 to 
ryptographi
proto
ols based on symmetri
 key 
ryptography. Instead of atta
hing latente�e
ts to 
hannel types, as in this paper, we atta
h them to a new type fornon
es, to formalize a spe
i�
 idiom for preventing replay atta
ks. Anotheravenue for future work is type inferen
e algorithms.The type system of the present paper has independent interest. It intro-du
es the ideas in a more general setting than the spi-
al
ulus, and showsin prin
iple that 
orresponden
e assertions 
an be type-
he
ked in any of themany programming languages that may be redu
ed to the �-
al
ulus.A
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