
Typing Corresponden
e Assertions forCommuni
ation Proto
olsAndrew D. GordonMi
rosoft Resear
h Alan Je�reyDePaul UniversityMay 2001Te
hni
al ReportMSR{TR{2001{48
Mi
rosoft Resear
hMi
rosoft CorporationOne Mi
rosoft WayRedmond, WA 98052

Publi
ation HistoryA portion of this work will appear in the pro
eedings of the 17th Conferen
e onthe Mathemati
al Foundations of Programming Semanti
s (MFPS 17), Aarhus,May 24{27, 2001. The pro
eedings will be published by Elsevier in the seriesEle
troni
 Notes in Theoreti
al Computer S
ien
e.AÆliationAlan Je�rey is with DePaul University. The two authors
ompleted part ofthis work at Mi
rosoft Resear
h in Cambridge and part at DePaul Universityin Chi
ago.

Abstra
tWoo and Lam propose
orresponden
e assertions for spe
ifying au-thenti
ity properties of se
urity proto
ols. The only prior work on
he
k-ing
orresponden
e assertions depends on model-
he
king and is limitedto �nite-state systems. We propose a dependent type and e�e
t systemfor
he
king
orresponden
e assertions. Sin
e it is based on type-
he
king,our method is not limited to �nite-state systems. This paper presents oursystem in the simple and general setting of the �-
al
ulus. We show howto type-
he
k
orre
tness properties of example
ommuni
ation proto
olsbased on se
ure
hannels. In a related paper, we extend our system tothe more
omplex and spe
i�
 setting of
he
king
ryptographi
 proto
olsbased on en
rypted messages sent over inse
ure
hannels.

Contents1 Introdu
tion 12 Corresponden
e Assertions, by Example 23 Typing Corresponden
e Assertions 43.1 Types and E�e
ts . 43.2 Syntax of our Typed �-Cal
ulus 63.3 Intuitions for the Type and E�e
t System 73.4 Typing Rules . 84 Appli
ations 114.1 Transmit-A
knowledge Handshake 114.2 Hostname Lookup . 114.3 Fun
tions . 135 Formalizing Corresponden
e Assertions 146 Related Work 187 Con
lusions 19A Proofs 20A.1 Basi
 Fa
ts . 20A.2 Applying Substitutions to Environments 20A.3 Weakening, Ex
hange, Substitution 23A.4 Proofs of Theorems 1 and 2 . 25Referen
es 29

1 Introdu
tionCorresponden
e Assertions To a �rst approximation, a
orresponden
e as-sertion about a
ommuni
ation proto
ol is an intention that follows the pattern:If one prin
ipal ever rea
hes a
ertain point in a proto
ol, then someother prin
ipal has previously rea
hed some other mat
hing point inthe proto
ol.We re
ord su
h intentions by annotating the program representing the pro-to
ol with labelled assertions of the form begin L or end L. These assertionshave no e�e
t at runtime, but notionally indi
ate that a prin
ipal has rea
hed a
ertain point in the proto
ol. The following more a

urately states the intentionre
orded by these annotations:If the program embodying the proto
ol ever asserts endL, then thereis a distin
t previous assertion of begin L.Woo and Lam [WL93℄ introdu
e
orresponden
e assertions to state intendedproperties of authenti
ation proto
ols based on
ryptography. Consider a proto-
ol where a prin
ipal a generates a new session key k and transmits it to b. Weintend that if a run of b ends a key ex
hange believing that it has re
eived key kfrom a, then a generated k as part of a key ex
hange intended for b. We re
ordthis intention by annotating a's generation of k by the label begin ha; b; ki, andb's re
eption of k by the label end ha; b; ki.A proto
ol
an fail a
orresponden
e assertion be
ause of several kinds ofbug. One kind
onsists of those bugs that
ause the proto
ol to go wrongwithout any external interferen
e. Other kinds are bugs where an unreliable ormali
ious network or parti
ipant
auses the proto
ol to fail. Su
h bugs in
ludevulnerabilities to atta
ks su
h as replay or man-in-the-middle atta
ks, where ana
tive opponent on the network
an
ause b to a

ept a message more timesthan it was sent, or to a

ept a message as if it
ame from a when in fa
t it
ame from the opponent.This Paper We show in this paper that
orre
tness properties expressed by
orresponden
e assertions
an be proved by type-
he
king. We embed
orre-sponden
e assertions in a
on
urrent programming language (the �-
al
ulus ofMilner, Parrow, and Walker [Mil99℄) and present a new type and e�e
t systemthat guarantees safety of well-typed assertions. We show several examples ofhow
orresponden
e assertions
an be proved by type-
he
king.Woo and Lam's paper introdu
es
orresponden
e assertions but provides note
hniques for proving them. Clarke and Marrero [CM00℄ use
orresponden
eassertions to spe
ify properties of e-
ommer
e proto
ols, su
h as authorizationsof transa
tions. To the best of our knowledge, the only previous work on
he
k-ing
orresponden
e assertions is a proje
t by Marrero, Clarke, and Jha [MCJ97℄to apply model-
he
king te
hniques to �nite state versions of se
urity proto
ols.Sin
e our work is based on type-
he
king, it is not limited to �nite state sys-tems. Moreover, type-
he
king is
ompositional: we
an verify
omponents in1

isolation, and know that their
omposition is safe, without having to verify theentire system. Unlike Marrero, Clarke, and Jha's work, however, the system ofthe present paper does not deal with
ryptographi
 primitives, and nor does itdeal with an arbitrary opponent. Still, in another paper [GJ01℄, we adapt ourtype and e�e
t system to the setting of the spi-
al
ulus [AG99℄, an extensionof the �-
al
ulus with abstra
t
ryptographi
 primitives. This adaptation
anshow, moreover, that properties hold in the presen
e of an arbitrary untypedopponent.The rest of this paper is organised as follows. We introdu
e
orresponden
eassertions, by example, in Se
tion 2. Se
tion 3 introdu
es a typed �-
al
ulusin whi
h
orresponden
e assertions may be veri�ed by type-
he
king. Se
tion 4explains several appli
ations. Se
tion 5 explains the soundness proof for ourtype system. Se
tion 6 dis
usses related work and Se
tion 7
on
ludes.Review of The Untyped �-Cal
ulus Milner, Parrow, and Walker's �-
al
ulus is a
on
urrent formalism to whi
h many kinds of
on
urrent
om-putation may be redu
ed. Its simpli
ity makes it an attra
tive vehi
le for devel-oping the ideas of this paper, while its generality suggests they may be widelyappli
able. Its basi
 data type is the name, an unguessable identi�er for a
ommuni
ations
hannel. Computation is based on the ex
hange of messages,tuples of names, on named
hannels. Programming in the �-
al
ulus is basedon the following
onstru
ts (written, unusually, with keywords, for the sake of
larity). The rest of the paper
ontains many examples. An output pro
essout xhy1; : : : ; yni represents a message hy1; : : : ; yni sent on the
hannel x. Aninput pro
ess inp x(z1; : : : ; zn);P blo
ks till it �nds a message sent on the
han-nel x, reads the names in the message into the variables z1; : : : ; zn, and thenruns P . The pro
ess P j Q is the parallel
omposition of the two pro
esses Pand Q; the two may run independently or
ommuni
ate on shared
hannels.The name generation pro
ess new(x);P generates a fresh name,
alls it x, thenruns P . Unless P reveals x, no other pro
ess
an use this fresh name. Therepli
ation pro
ess repeat P behaves like an unbounded parallel array of repli-
as of P . The pro
ess stop represents ina
tivity; it does nothing. Finally, the
onditional if x = y then P else Q
ompares the names x and y. If they are thesame it runs P ; otherwise it runs Q.2 Corresponden
e Assertions, by ExampleThis se
tion introdu
es the idea of de�ning
orresponden
e assertions by anno-tating
ode with begin- and end-events. We give examples of both safe
odeand of unsafe
ode, that is, of
ode that satis�es the
orresponden
e assertionsindu
ed by its annotations, and of
ode that does not.A transmit-a
knowledge handshake is a standard
ommuni
ations idiom,easily expressed in the �-
al
ulus: along with the a
tual message, the sendertransmits an a
knowledgement
hannel, upon whi
h the re
eiver sends an a
-knowledgement. We intend that: 2

During a transmit-a
knowledge handshake, if the sender re
eives ana
knowledgment, then the re
eiver has obtained the message.Corresponden
e assertions
an express this intention formally. Suppose thata and b are the names of the sender and re
eiver, respe
tively. We annotate the
ode of the re
eiver b with a begin-assertion at the point after it has re
eived themessagemsg . We annotate the
ode of the sender a with an end-assertion at thepoint after it has re
eived the a
knowledgement. We label both assertions withthe names of the prin
ipals and the transmitted message, ha; b;msgi. Hen
e, weassert that if after sending msg to b, the sender a re
eives an a
knowledgement,then a distin
t run of b has re
eived msg .Suppose that
 is the name of the
hannel on whi
h prin
ipal b re
eivesmessages from a. Here is the �-
al
ulus
ode of the annotated sender andre
eiver: R
ver(a; b;
) �=inp
(msg ; a
k);begin ha; b;msgi;out a
khi Snder(a; b;
) �=new(msg); new(a
k);out
hmsg ; a
ki; inp a
k ();end ha; b;msgiThe sender
reates a fresh message msg and a fresh a
knowledgement
hannela
k , sends the two on the
hannel
, waits for an a
knowledgement, and thenasserts an end-event labelled ha; b;msgi.The re
eiver gets the message msg and the a
knowledgement
hannel a
ko�
, asserts a begin-event labelled ha; b;msgi, and sends an a
knowledgementon a
k .We say a program is safe if it satis�es the intentions indu
ed by the begin-and end-assertions. More pre
isely, a program is safe just if for every runof the program and for every label L, there is a distin
t begin-event labelled Lpre
eding every end-event labelled L. (We formalize this de�nition in Se
tion 5.)Here are three
ombinations of our examples: two safe, one unsafe.new(
);Snder(a; b;
) jR
ver(a; b;
) (Example 1: safe)Example 1 uses one instan
e of the sender and one instan
e of the re
eiver torepresent a single instan
e of the proto
ol. The restri
tion new(
); makes the
hannel
 private to the sender and the re
eiver. This assembly is safe; its onlyrun
orre
tly implements the handshake proto
ol.new(
);Snder(a; b;
) jSnder(a; b;
) jrepeat R
ver(a; b;
) (Example 2: safe)Example 2 uses two
opies of the sender|representing two attempts by a singleprin
ipal a to send a message to b|and a repli
ated
opy of the re
eiver|representing the prin
ipal b willing to a

ept an unbounded number of messages.3

Again, this assembly is safe; any run
onsists of an interleaving of two
orre
thandshakes. new(
);Snder(a; b;
) jSnder(a0; b;
) jrepeat R
ver(a; b;
) (Example 3: unsafe)Example 3 is a variant on Example 2, where we keep the repli
ated re
eiver b, but
hange the identity of one of the senders, so that the two senders represent twodi�erent prin
ipals a and a0. These two prin
ipals share a single
hannel
 to there
eiver. Sin
e the identity a of the sender is a parameter of R
ver(a; b;
) ratherthan being expli
itly
ommuni
ated, this assembly is unsafe. There is a run inwhi
h a0 generates msg and a
k , and sends them to b; b asserts a begin-eventlabelled ha; b;msgi and outputs on a
k ; then a0 asserts an end-event labelledha0; b;msgi. This end-event has no
orresponding begin-event so the assemblyis unsafe, re
e
ting the possibility that the re
eiver
an be mistaken about theidentity of the sender.3 Typing Corresponden
e Assertions3.1 Types and E�e
tsOur type and e�e
t system is based on the idea of assigning types to namesand e�e
ts to pro
esses. A type des
ribes what operations are allowed on aname, su
h as what messages may be
ommuni
ated on a
hannel name. Ane�e
t des
ribes the
olle
tion of labels of events the pro
ess may end while notitself beginning. We
ompute e�e
ts based on the intuition that end-eventsare a

ounted for by pre
eding begin-events; a begin-event is a
redit while anend-event is a debit. A

ording to this metaphor, the e�e
t of a pro
ess is anupper bound on the debt a pro
ess may in
ur. If we
an assign a pro
ess theempty e�e
t, we know all of its end-events are a

ounted for by begin-events.Therefore, we know that the pro
ess is safe, that is, its
orresponden
e assertionsare true.An essential ingredient of our typing rules is the idea of atta
hing a latente�e
t to ea
h
hannel type. We allow any pro
ess re
eiving o� a
hannel totreat the latent e�e
t as a
redit towards subsequent end-events. This is soundbe
ause we require any pro
ess sending on a
hannel to treat the latent e�e
tas a debit that must be a

ounted for by previous begin-events. Latent e�e
tsare at the heart of our method for type-
he
king events begun by one pro
essand ended by another.The following table des
ribes the syntax of types and e�e
ts. As in mostversions of the �-
al
ulus, we make no lexi
al distin
tion between names andvariables, ranged over by a; b;
; x; y; z. An event label, L, is simply a tuple ofnames. Event labels identify the events asserted by begin- and end-assertions.An e�e
t, e, is a multiset, that is, an unordered list, of event labels, written as4

[L1; : : : ; Ln℄. A type, T , takes one of two kinds. The �rst kind, Name, is thetype of pure names, that is, names that only support equality operations, but
annot be used as
hannels. We use Name as the type of names that identifyprin
ipals, for instan
e. The se
ond kind, Ch(x1:T1; : : : ; xn:Tn)e, is a type ofa
hannel
ommuni
ating n-tuples of names, of types T1, . . . , Tn, with latente�e
t e. The names x1, . . . , xn are bound; the s
ope of ea
h xi
onsists ofthe types Ti+1, . . . , Tn, and the latent e�e
t e. We identify types up to the
onsistent renaming of bound names.Names, Event Labels, E�e
ts, and Types:a; b;
; x; y; z names, variablesL ::= hx1; : : : ; xni event label: tuple of namese ::= [L1; : : : ; Ln℄ e�e
t: multiset of event labelsT ::= typeName pure nameCh(x1:T1; : : : ; xn:Tn)e
hannel with latent e�e
t eFor example:� Ch()[℄, a syn
hronization
hannel (that is, a
hannel used only for syn-
hronization) with no latent e�e
t.� Ch(a:Name)[hbi℄, a
hannel for
ommuni
ating a pure name,
osting [hbi℄to senders and paying [hbi℄ to re
eivers, where b is a �xed name.� Ch(a:Name)[hai℄, a
hannel for
ommuni
ating a pure name,
osting [hai℄to senders and paying [hai℄ to re
eivers, where a is the name
ommuni
atedon the
hannel.� Ch(a:Name; b:Ch()[hai℄)[℄, a
hannel with no latent e�e
t for
ommuni
at-ing pairs of the form a; b, where a is a pure name, and b is the nameof a syn
hronization
hannel,
osting [hai℄ to senders and paying [hai℄ tore
eivers.The following is a
onvenient shorthand for the lists of typed variable de
lara-tions found in
hannel types:Notation for Typed Variables:~x:~T �= x1:T1; : : : ; xn:Tn where ~x = x1; : : : ; xn and ~T = T1; : : : ; Tn� �= () the empty listThe following table de�ne the sets of free names of variable de
larations, and ofevent labels, e�e
ts, and types.Free Names of Typed Variables, Event Labels, E�e
ts, and Types:fn(�:�) �= ? 5

fn(~x:~T ; x:T) �= fn(~x:~T) [(fn(T)� f~xg)fn(hx1; : : : ; xni) = fx1; : : : ; xngfn([L1; : : : ; L1℄) �= fn(L1) [� � � [fn(Ln)fn(Name) �= ?fn(Ch(~x:~T)e) �= fn(~x:~T) [(fn(e)� f~xg)For any of these forms of syntax, we write �fx yg for the operation of
apture-avoiding substitution of the name y for ea
h free o

urren
e of the name x.We write �f~x ~yg, where ~x = x1; : : : ; xn and ~y = y1; : : : ; yn for the iteratedsubstitution �fx1 y1g � � � fxn yng.3.2 Syntax of our Typed �-Cal
ulusWe explained the informal semanti
s of begin- and end-assertions in Se
tion 2,and of the other
onstru
ts in Se
tion 1.Pro
esses:P;Q;R ::= pro
essout xhy1; : : : ; yni polyadi
 asyn
hronous outputinp x(y1:T1; : : : ; yn:Tn);P polyadi
 inputif x = y then P else Q
onditionalnew(x:T);P name generationP j Q
ompositionrepeat P repli
ationstop ina
tivitybegin L;P begin-assertionend L;P end-assertionThere are two name binding
onstru
ts: input and name generation. Inan input pro
ess inp x(y1:T1; : : : ; yn:Tn);P , ea
h name yi is bound, with s
ope
onsisting of Ti+1, . . . , Tn, and P . In a name restri
tion new(x:T);P , the namex is bound; its s
ope is P . We write Pfx yg for the out
ome of a
apture-avoiding substitution of the name y for ea
h free o

urren
e of the name x inthe pro
ess P . We identify pro
esses up to the
onsistent renaming of boundnames. We let fn(P) be the set of free names of a pro
ess P . We sometimeswrite an output as out xh~yi where ~y = y1; : : : ; yn, and an input as inp x(~y:~T);P ,where ~y:~T is a variable de
laration written in the notation introdu
ed in theprevious se
tion. We write out xh~yi;P as a shorthand for out xh~yi j P .Free Names of Pro
esses:fn(out xh~yi) �= fxg [f~ygfn(inp x(~y:~T);P) �= fxg [fn(~y:~T) [(fn(P)� f~yg)fn(if x = y then P else Q) �= fx; yg [fn(P) [fn(Q)fn(new(x:T);P) �= fn(T) [(fn(P)� fxg)6

fn(P j Q) �= fn(P) [fn(Q)fn(repeat P) �= fn(P)fn(stop) �= ?fn(begin h~yi;P) �= f~yg [fn(P)fn(end h~yi;P) �= f~yg [fn(P)3.3 Intuitions for the Type and E�e
t SystemAs a prelude to our formal typing rules, we present the underlying intuitions.Re
all the intuition that end-events are
osts to be a

ounted for by begin-events. When we say a pro
ess P has e�e
t e, it means that e is an upperbound on the begin-events needed to pre
ede P to make the whole pro
ess safe.In other words, if P has e�e
t [L1; : : : ; Ln℄ then beginL1; � � � ; beginLn;P is safe.Typing Assertions An assertion begin L;P pays for one end-event labelledL in P ; so if P is a pro
ess with e�e
t e, then beginL;P is a pro
ess with e�e
te�[L℄, that is, the multiset e with one o

urren
e of L deleted. So we have atyping rule of the form:P : e) begin L;P : e�[L℄If P is a pro
ess with e�e
t e, then end L;P is a pro
ess with e�e
t e+[L℄,that is, the
on
atenation of e and [L℄. We have a rule:P : e) end L;P : e+[L℄Typing Name Generation and Con
urren
y The e�e
t of a name gener-ation pro
ess new(x:T);P , is simply the e�e
t of P . To prevent s
ope
onfusion,we forbid x from o

urring in this e�e
t.P : e; x =2 fn(e)) new(x:T);P : eThe e�e
t of a
on
urrent
omposition of pro
esses is the multiset union ofthe
onstituent pro
esses.P : eP ; Q : eQ) P j Q : eP+eQThe ina
tive pro
ess asserts no end-events, so its e�e
t is empty.stop : [℄The repli
ation of a pro
ess P behaves like an unbounded array of repli
as ofP . If P has a non-empty e�e
t, then its repli
ation would have an unbounded ef-fe
t, whi
h
ould not be a

ounted for by pre
eding begin-assertions. Therefore,to type repeat P we require P to have an empty e�e
t.P : [℄) repeat P : [℄ 7

Typing Communi
ations We begin by presenting the rules for typing
om-muni
ations on monadi

hannels with no latent e�e
t, that is, those with typesof the form Ch(y:T)[℄. The
ommuni
ated name has type T . An output out xhzihas empty e�e
t. An input inp x(y:T);P has the same e�e
t as P . Sin
e theinput variable in the pro
ess and in the type are both bound, we may assumethey are the same variable y.x : Ch(y:T)[℄; z : T) out xhzi : [℄x : Ch(y:T)[℄; P : e; y =2 fn(e)) inp x(y:T);P : eNext, we
onsider the type Ch(y:T)e` of monadi

hannels with latent e�e
te`. The latent e�e
t is a
ost to senders, a bene�t to re
eivers, and is the s
opeof the variable y. We assign an output out xhzi the e�e
t e`fy zg, where wehave instantiated the name y bound in the type of the
hannel with z, the namea
tually sent on the
hannel. We assign an input inp x(y:T);P the e�e
t e� e`,where e is the e�e
t of P . To avoid s
ope
onfusion, we require that y is notfree in e� e`.x : Ch(y:T)e`; z : T) out xhzi : e`fy zgx : Ch(y:T)e`; P : e; y =2 fn(e� e`)) inp x(y:T);P : e� e`The formal rules for input and output in the next se
tion generalize theserules to deal with polyadi

hannels.Typing Conditionals When typing a
onditional if x = y then P else Q,it is useful to exploit the fa
t that P only runs if the two names x and y areequal. To do so, we
he
k the e�e
t of P after substituting one for the other.Suppose then pro
ess Pfx yg has e�e
t eP fx yg. Suppose also that pro
essQ has e�e
t eQ. Let eP _eQ be the least upper bound of any two e�e
ts eP andeQ. Then eP _ eQ is an upper bound on the begin-events needed to pre
ede the
onditional to make it safe, whether P or Q runs. An example in Se
tion 4.2illustrates this rule.Pfx yg : eP fx yg; Q : eQ) if x = y then P else Q : eP _ eQ3.4 Typing RulesOur typing rules depend on several operations on e�e
t multisets, most of whi
hwere introdu
ed informally in the previous se
tion. Here are the formal de�ni-tions.Operations on e�e
ts: e+ e0, e � e0, e� e0, L 2 e, e _ e0[L1; : : : ; Lm℄ + [Lm+1; : : : ; Lm+n℄ �= [L1; : : : ; Lm+n℄e � e0 if and only if e0 = e+ e00 for some e00e� e0 �= the smallest e00 su
h that e � e0 + e00L 2 e if and only if [L℄ � ee _ e0 �= the smallest e00 su
h that e � e00 and e0 � e008

The typing judgments of this se
tion depend on an environment to assign atype to all the variables in s
ope.Environments:E ::= ~x:~T environmentdom(~x:~T) �= f~xg domain of an environmentTo equate two names in an environment, needed for typing
onditionals,we de�ne a name fusion fun
tion. We obtain the fusion Efx x0g from E byturning all o

urren
es of x and x0 in E into x0.Fusing x with x0 in E: Efx x0g(x1:T1; : : : ; xn:Tn)fx x0g �=(x1fx x0g):(T1fx x0g); : : : ; (xnfx x0g):(Tnfx x0g)where E;x:T �= � E if x 2 dom(E)E; x:T otherwiseThe following table summarizes the �ve judgments of our type system, whi
hare indu
tively de�ned by rules in subsequent tables. Judgment E ` � meansenvironment E is well-formed. Judgment E ` T means type T is well-formed.Judgment E ` x : T means name x is in s
ope with type T . Judgment E `h~xi : h~y:~T i means tuple h~xi mat
hes the variable de
laration ~y:~T . JudgmentE ` P : e means pro
ess P has e�e
t e.Judgments:E ` � good environmentE ` T good type TE ` x : T good name x of type TE ` h~xi : h~y:~T i good message ~x mat
hing ~y:~TE ` P : e good pro
ess P with e�e
t eThe rules de�ning the �rst three judgments are standard.Good environments, types, and names:(Env ?)? ` � (Env x)E ` T x =2 dom(E)E; x:T ` � (Type Name)E ` �E ` Name(Type Chan)E; ~x:~T ` � fn(e) � dom(E) [f~xgE ` Ch(~x:~T)e (Name x)E0; x:T;E00 ` �E0; x:T;E00 ` x : TThe next judgment, E ` h~xi : h~y:~T i, is an auxiliary judgment used for typingoutput pro
esses; it is used in the rule (Pro
 Output) to
he
k that the messageh~xi sent on a
hannel of type Ch(~y:~T)e mat
hes the variable de
laration ~y:~T .9

Good message:(Msg hi)E ` �E ` hi : hi (Msg x) (where y =2 f~yg [dom(E))E ` h~xi : h~y:~T i E ` x : (Tf~y ~xg)E ` h~x; xi : h~y:~T ; y:T iFinally, here are the rules for typing pro
esses. The e�e
t of a pro
ess is anupper bound; the rule (Pro
 Subsum) allows us to in
rease this upper bound.Intuitions for all the other rules were explained in the previous se
tion.Good pro
esses:(Pro
 Subsum) (where e � e0 and fn(e0) � dom(E))E ` P : eE ` P : e0(Pro
 Output)E ` x : Ch(~y:~T)e E ` h~xi : h~y:~T iE ` out xh~xi : (ef~y ~xg)(Pro
 Input) (where fn(e� e0) � dom(E))E ` x : Ch(~y:~T)e0 E; ~y:~T ` P : eE ` inp x(~y:~T);P : e� e0(Pro
 Cond)E ` x : T E ` y : T Efx yg ` Pfx yg : eP fx yg E ` Q : eQE ` if x = y then P else Q : eP _ eQ(Pro
 Res) (where x =2 fn(e))E; x:T ` P : eE ` new(x:T);P : e (Pro
 Par)E ` P : eP E ` Q : eQE ` P j Q : eP + eQ(Pro
 Repeat)E ` P : [℄E ` repeat P : [℄ (Pro
 Stop)E ` �E ` stop : [℄(Pro
 Begin) (where fn(L) � dom(E))E ` P : eE ` begin L;P : e� [L℄ (Pro
 End) (where fn(L) � dom(E))E ` P : eE ` end L;P : e+ [L℄Se
tion 5 presents our main type safety result, Theorem 2, that E ` P : [℄implies P is safe. Like most type systems, ours is in
omplete. There are safepro
esses that are not typeable in our system. For example, we
annot assignthe pro
ess if x = x then stop else (end x; stop) the empty e�e
t, and yet it isperfe
tly safe. 10

4 Appli
ationsIn this se
tion, we present some examples of using
orresponden
e assertions tovalidate safety properties of
ommuni
ation proto
ols. For more examples, in-
luding examples with
ryptographi
 proto
ols whi
h are se
ure against externalatta
kers, see the
ompanion paper [GJ01℄.4.1 Transmit-A
knowledge HandshakeRe
all the untyped sender and re
eiver
ode from Se
tion 2. Suppose we makethe type de�nitions:Msg �= Name A
k(a; b;msg) �= Ch()[ha; b;msgi℄Host �= Name Req(a; b) �= Ch(msg :Msg ; a
k :A
k(a; b;msg))[℄Suppose also that we annotate the sender and re
eiver
ode, and the
ode ofExample 1 as follows:Snder(a:Host ; b:Host ;
:Req(a; b)) �=new(msg :Msg);new(a
k :A
k(a; b;msg));out
hmsg ; a
k i;inp a
k ();end ha; b;msgi R
ver(a:Host ; b:Host ;
:Req(a; b)) �=inp
(msg :Msg ; a
k :A
k(a; b;msg));begin ha; b;msgi;out a
k hiExample1 (a:Host ; b:Host) �=new(
:Req(a; b));Snder(a; b;
) jR
ver(a; b;
)We
an then
he
k that a:Host ; b:Host ` Example1 (a; b) : [℄. Sin
e the systemhas the empty e�e
t, by Theorem 2 it is safe. It is routine to
he
k that Exam-ple 2 from Se
tion 2 also has the empty e�e
t, but that Example 3
annot betype-
he
ked (as to be expe
ted, sin
e it is unsafe).4.2 Hostname LookupIn this example, we present a simple hostname lookup system, where a
lient bwishing to ping a server a
an
onta
t a name server query , to get a networkaddress ping for a. The
lient
an then send a ping request to the address ping ,and get an a
knowledgement from the server. We shall
he
k two properties:� When the ping
lient b �nishes, it believes that the ping server a has beenpinged.� When the ping server a �nishes, it believes that it was
onta
ted by theping
lient b. 11

We write \a was pinged by b" as shorthand for ha; bi, and \b tried to ping a"for hb; a; ai. These examples are well-typed, with types whi
h we de�ne later inthis se
tion.We program the ping
lient and server as follows.PingClient(a:Hostname; b:Hostname; query :Query) �=new(res : Res(a));out queryha; resi;inp res(ping : Ping(a));new(a
k : A
k(a; b));begin \b tried to ping a";out pinghb; a
ki;inp a
k ();end \a was pinged by b"PingServer(a : Hostname; ping : Ping(a)) �=repeatinp ping(b : Hostname; a
k : A
k(a; b));begin \a was pinged by b";end \b tried to ping a";out a
khiIf these pro
esses are safe, then any ping request and response must
ome asmat
hing pairs. In pra
ti
e, the name server would require some data stru
turesu
h as a hash table or database, but for this simple example we just use a largeif-statement: NameServer (query :Query ;h1:Hostname; : : : ; hn:Hostname;ping1:Ping(h1); : : : ; pingn:Ping(hn)) �=repeatinp query(h; res);if h = h1 then out reshping1i else � � �if h = hn then out reshpingni else stopTo get the system to type-
he
k, we use the following types:Hostname �= NameA
k(a; b) �= Ch()[\a was pinged by b"℄Ping(a) �= Ch(b:Hostname; a
k :A
k(a; b))[\b tried to ping a"℄Res(a) �= Ch(ping :Ping(a))[℄Query �= Ch(a:Hostname; res:Res(a))[℄12

The most subtle part of type-
he
king the system is the
onditional in the nameserver. A typi
al bran
h is:hi : Hostname ; ping i : Ping(hi); h : Hostname; res : Res(h)` if h = hi then out reshping ii else � � � : [℄When type-
he
king the then-bran
h, (Pro
 Cond) assumes h = hi by applyinga substitution to the environment:(hi : Hostname; ping i : Ping(hi); h : Hostname; res : Res(h))fh hig= (hi : Hostname; ping i : Ping(hi); res : Res(hi))In this environment, we
an type-
he
k the then-bran
h:hi : Hostname; ping i : Ping(hi); res : Res(hi)` out reshping ii : [℄If (Pro
 Cond) did not apply the substitution to the environment, this example
ould not be type-
he
ked, sin
e:hi : Hostname ; ping i : Ping(hi); h : Hostname; res : Res(h)0 out reshping ii : [℄4.3 Fun
tionsIt is typi
al to
ode the �-
al
ulus into the �-
al
ulus, using a return
hannelk as the destination for the result. For instan
e, the hostname lookup exampleof the previous se
tion
an be rewritten in the style of a remote pro
edure
all.The
lient and server are now:PingClient(a:Hostname; b:Hostname; query :Query) �=let (ping : Ping(a)) = query hai;begin \b tried to ping a";let () = ping hbi;end \a was pinged by b"PingServer(a : Hostname; ping : Ping(a)) �=fun ping(b:Hostname) fbegin \a was pinged by b";end \b tried to ping a";return hig
13

The name server is now:NameServer(query :Query ;h1:Hostname; : : : ; hn:Hostname;ping1:Ping(h1); : : : ; pingn:Ping(hn)) �=fun query(h:Hostname) fif h = h1 then return hping1i else � � �if h = hn then return hpingni else stopgIn order to provide types for these examples, we have to provide a fun
tion typewith latent e�e
ts. These e�e
ts are pre
ondition/post
ondition pairs, whi
h a
tlike Hoare triples. In the type (~x:~T)e! (~y:~U)e0 we have a pre
ondition e whi
hthe
allee must satisfy, and a post
ondition e0 whi
h the
aller must satisfy. Forexample, the types for the hostname lookup example are:Ping(a) �= (b:Hostname)[\b tried to ping a"℄! ()[\a was pinged by b"℄Query �= (a:Hostname)[℄! (ping :Ping(a))[℄whi
h spe
i�es that the remote ping
all has a pre
ondition \b tried to ping a"and a post
ondition \a was pinged by b".This
an be
oded into the �-
al
ulus using a translation [Mil99℄ in
ontin-uation passing style.fun f(~x:~T) fPg �= repeat inp f(~x:~T ; k:Ch(~y:~U)e0);Plet (~y:~U) = f h~xi;P �= new(k:Ch(~y:~U)e0); out fh~x; ki; inp k(~y:~U);Preturn h~zi �= out kh~zi(~x:~T)e! (~y:~U)e0 �= Ch(~x:~T ; k:Ch(~y:~U)e0)eThis translation is standard, ex
ept for the typing. It is routine to verify itssoundness.5 Formalizing Corresponden
e AssertionsIn this se
tion, we give the formal de�nition of the tra
e semanti
s for the �-
al
ulus with
orresponden
e assertions, whi
h is used in the de�nition of a safepro
ess. We then state the main result of this paper, whi
h is that e�e
t-freepro
esses are safe.We give the tra
e semanti
s as a labelled transition system. Following Berryand Boudol [BB92℄ and Milner [Mil99℄ we use a stru
tural
ongruen
e P � Q,and give our operational semanti
s up to �.Stru
tural Congruen
e: P � QP � P (Stru
t Re
)14

Q � P) P � Q (Stru
t Symm)P � Q;Q � R) P � R (Stru
t Trans)P � Q) inp x(~y:~T);P � inp x(~y:~T);Q (Stru
t Input)P � Q) new(x:T);P � new(x:T);Q (Stru
t Res)P � Q) P j R � Q j R (Stru
t Par)P � Q) repeat P � repeat Q (Stru
t Repl)P j stop � P (Stru
t Par Zero)P j Q � Q j P (Stru
t Par Comm)(P j Q) j R � P j (Q j R) (Stru
t Par Asso
)repeat P � P j repeat P (Stru
t Repl Par)new(x:T); (P j Q) � P j new(x:T);Q (Stru
t Res Par) (where x =2 fn(P))new(x1:T1); new(x2:T2);P �new(x2:T2); new(x1:T1);P (Stru
t Res Res)(where x1 6= x2; x1 =2 fn(T2); x2 =2 fn(T1))There are four a
tions in this labelled transition system:� P begin L����! P 0 when P rea
hes a beginL assertion.� P end L���! P 0 when P rea
hes an end L assertion.� P gen hxi����! P 0 when P generates a new name x.� P ��! P 0 when P
an perform an internal a
tion.For example:(new(x:Name); begin hxi; end hxi; stop) gen hxi����! (begin hxi; end hxi; stop)begin hxi�����! (end hxi; stop)end hxi����! (stop)Next, we give the syntax of a
tions �, and their free and generated names.A
tions:�; � ::= a
tionsbegin L begin-eventend L end-eventgen hxi name generation� internal
15

Free names, fn(�), and generated names, gn(�), of an a
tion �:fn(�) �= ? gn(�) �= ?fn(begin L) �= fn(L) gn(begin L) �= ?fn(end L) �= fn(L) gn(end L) �= ?fn(gen hxi) �= fxg gn(gen hxi �= fxgThe labelled transition system P ��! P 0 is de�ned here.Transitions: P ��! P 0out xh~xi j inp x(~y);P ��! Pf~y ~xg (Trans Comm)if x = x then P else Q ��! P (Trans Mat
h)if x = y then P else Q ��! Q (Trans Mismat
h) (if x 6= y)begin L;P begin L����! P (Trans Begin)end L;P end L���! P (Trans End)new(x:T);P gen hxi����! P (Trans Gen)P ��! P 0) P j Q ��! P 0 j Q (Trans Par) (if gn(�) \ fn(Q) = ?)P ��! P 0) new(x:T);P ��! new(x:T);P 0 (Trans Res) (if x =2 fn(�))P � P 0; P 0 ��! Q0; Q0 � Q) P ��! Q (Trans �)From this operational semanti
s, we
an de�ne the tra
es of a pro
ess, withredu
tions P s�! P 0 where s is a sequen
e of a
tions.Tra
es:s; t ::= �1; : : : ; �n tra
eFree names, fn(s), and generated names, gn(s), of a tra
e s:fn(�1; : : : ; �n) �= fn(�1) [� � � [fn(�n)gn(�1; : : : ; �n) �= gn(�1) [� � � [gn(�n)Tra
ed transitions: P s�! P 0P � P 0) P "�! P 0 (Tra
e �)P ��! P 00; P 00 s�! P 0) P �;s��! P 0 (Tra
e A
tion) (where fn(�) \ gn(s) = ?)We require a side-
ondition on (Tra
e A
tion) to ensure that generatednames are unique, otherwise we
ould observe tra
es su
h as(new(x); new(y); stop) gen hxi;gen hxi���������! (stop)16

Having formally de�ned the tra
e semanti
s of our �-
al
ulus, we
an de�newhen a tra
e is a
orresponden
e: this is when every end L has a distin
t,mat
hing begin L. For example:begin L; endL is a
orresponden
ebegin L; end L; endL is not a
orresponden
ebegin L; beginL; end L; endL is a
orresponden
eWe formalize this by
ounting the number of begin L and end L a
tions thereare in a tra
e.Beginnings, begins (�), and endings, ends (�), of an a
tion �:begins (begin L) �= [L℄ ends (begin L) �= [℄begins (end L) �= [℄ ends (end L) �= [L℄begins (gen hxi) �= [℄ ends (gen hxi) �= [℄begins (�) �= [℄ ends (�) �= [℄Beginnings, begins (s), and endings, ends (s), of a tra
e s:begins (�1; : : : ; �n) �= begins (�1) + � � �+ begins (�n)ends (�1; : : : ; �n) �= ends (�1) + � � �+ ends (�n)Corresponden
e:A tra
e s is a
orresponden
e if and only if ends (s) � begins (s).A pro
ess is safe if every tra
e is a
orresponden
e.Safety:A pro
ess P is safe if and only if for all tra
es s and pro
esses P 0if P s�! P 0 then s is a
orresponden
e.A subtlety of this de�nition of safety is that although we want ea
h end-eventof a safe pro
ess to be pre
eded by a distin
t, mat
hing begin-event, a tra
e stmay be a
orresponden
e by virtue of a later begin-event in t mat
hing an earlierend-event in s. For example, a tra
e like end L; beginL is a
orresponden
e.To see why our de�nition implies that a mat
hing begin-event must pre
edeea
h end-event in ea
h tra
e of a safe pro
ess, suppose a safe pro
ess has a tra
es; endL; t. By de�nition of tra
es, the pro
ess also has the shorter tra
e s; endL,whi
h must be a
orresponden
e, sin
e it is a tra
e of a safe pro
ess. Therefore,the end-event end L is pre
eded by a mat
hing begin-event in s.We
an now state the formal result of the paper, Theorem 2, that everye�e
t-free pro
ess is safe. This gives us a
ompositional te
hnique for verifyingthe safety of
ommuni
ations proto
ols. It follows from a subje
t redu
tion17

result, Theorem 1. The most diÆ
ult parts of the formal development to
he
kin detail are the parts asso
iated with the (Pro
 Cond) rule, be
ause of its useof a substitution applied to an environment.Theorem 1 (Subje
t Redu
tion) Suppose E ` P : e.(1) If P ��! P 0 then E ` P 0 : e.(2) If P begin L����! P 0 then E ` P 0 : e+ [L℄.(3) If P end L���! P 0 then E ` P 0 : e� [L℄, and L 2 e.(4) If P gen hxi����! P 0 and x =2 dom(E) then E; x:T ` P 0 : e for some type T .Theorem 2 (Safety) If E ` P : [℄ then P is safe.6 Related WorkCorresponden
e assertions are not new; we have already dis
ussed prior workon
orresponden
e assertions for
ryptographi
 proto
ols [WL93, MCJ97℄. A
ontribution of our work is the idea of dire
tly expressing
orresponden
e asser-tions by adding annotations to a general
on
urrent language, in our
ase the�-
al
ulus.Gi�ord and Lu
assen introdu
ed type and e�e
t systems [GL86, Lu
87℄ tomanage side-e�e
ts in fun
tional programming. There is a substantial liter-ature; re
ent appli
ations in
lude memory management for high-level [TT97℄and low-level [CWM99℄ languages, ra
e-
ondition avoidan
e [FA99℄, and a

ess
ontrol [SS00℄.Early type systems for the �-
al
ulus [Mil99, PS96℄ fo
us on regulating thedata sent on
hannels. Subsequent type systems also regulate pro
ess behaviour;for example, session types [THK94, HVK98℄ regulate pairwise intera
tions andlinear types [Kob98℄ help avoid deadlo
ks. A re
ent paper [DG00℄ expli
itlyproposes a type and e�e
t system for the �-
al
ulus, and the idea of latente�e
ts on
hannel types. This idea
an also be represented in a re
ent generalframework for
on
urrent type systems [IK01℄. Still, the types of our systemare dependent in the sense that they may in
lude the names of
hannels; to thebest of our knowledge, this is the �rst dependent type system for the �-
al
ulus.Another system of dependent types for a
on
urrent language is Flanagan andAbadi's system [FA99℄ for avoiding ra
e
onditions in the
on
urrent obje
t
al
ulus of Gordon and Hankin [GH98℄.The rule (Pro
 Cond) for typing name equality if x = y then P else Q
he
ksP under the assumption that the names x and y are the same; we formalizethis by substituting y for x in the type environment and the pro
ess P . Giventhat names are the only kind of value, this te
hnique is simpler than the stan-dard te
hnique from dependent type theory [NPS90, Bar92℄ of de�ning typing18

judgments with respe
t to an equivalen
e relation on values. Honda, Vas
on-
elos, and Yoshida [HVY00℄ also use the te
hnique of applying substitutions toenvironments while type-
he
king.7 Con
lusionsThe long term obje
tive of this work is to
he
k se
re
y and authenti
ity prop-erties of se
urity proto
ols by typing. This paper introdu
es several key ideasin the minimal yet general setting of the �-
al
ulus: the idea of expressing
or-responden
es by begin- and end-annotations, the idea of a dependent type ande�e
t system for proving
orresponden
es, and the idea of using latent e�e
tsto type
orresponden
es begun by one pro
ess and ended by another. Severalexamples demonstrate the promise of this system. Unlike a previous approa
hbased on model-
he
king, type-
he
king
orresponden
e assertions is not limitedto �nite-state systems.A
ompanion paper [GJ01℄ begins the work of applying these ideas to
ryp-tographi
 proto
ols as formalized in Abadi and Gordon's spi-
al
ulus [AG99℄,and has already proved useful in identifying known issues in published proto-
ols. Our �rst type system for spi is spe
i�
 to
ryptographi
 proto
ols basedon symmetri
 key
ryptography. Instead of atta
hing latent e�e
ts to
hanneltypes, as in this paper, we atta
h them to a new type for non
es, to formalizea spe
i�
 idiom for preventing replay atta
ks. Another avenue for future workis type inferen
e algorithms.The type system of the present paper has independent interest. It intro-du
es the ideas in a more general setting than the spi-
al
ulus, and shows inprin
iple that
orresponden
e assertions
an be type-
he
ked in any of the manyprogramming languages that may be redu
ed to the �-
al
ulus.A
knowledgements We had useful dis
ussions with Andrew Kennedy andNaoki Kobayashi. Tony Hoare
ommented on a draft of this paper. Alan Je�reywas supported in part by Mi
rosoft Resear
h during some of the time we workedon this paper.

19

A ProofsThis appendix develops proofs of the two theorems stated in the main body ofthe paper. We begin in Se
tion A.1 with some basi
 fa
ts about the type system.Se
tion A.2 proves properties of the unusual operation|found in the rule (Pro
Cond) for typing
onditionals|of applying a substitution to an environment.Se
tion A.3 proves standard weakening, ex
hange, and substitution lemmas forthe type system. Finally, Se
tion A.4 proves Theorems 1 and 2.A.1 Basi
 Fa
tsFree names, fn(J) of a judgment J :fn(�) �= ?fn(x:T) �= fxg [fn(T)fn(h~xi : h~y:~T i) �= f~xg [fn(h~y:~T i)fn(P : e) �= fn(P) [fn(e)Lemma 1 (Free Names) If E ` J then fn(J) � dom(E).Proof An indu
tion on the proof of E ` J . 2Lemma 2 (Implied Judgment) If E;E0 ` J then E ` �.Proof An indu
tion on the proof of E;E0 ` J . 2Lemma 3 (Unique Types) If E ` x : T and E ` x : T 0 then T = T 0.Proof An indu
tion on the proof of E ` x : T . 2A.2 Applying Substitutions to EnvironmentsRe
all the de�nition from Se
tion 3.4 of the auxiliary notation E;x:T used inthe de�nition of applying a substitution to an environment. It adds a singletonlist x:T to E provided x is not already de
lared in E. As a
onvenien
e, weextend this notation to arbitrary lists.Environment addition: E;E0E;E0 �= E; (E0 � dom(E))This de�nition makes use of an operator to delete entries from an environment.Deletion of Names Y from Environment E: E � Y?� Y �= ?(E; x:T)� Y �= � E � Y if x 2 Y(E � Y); x:T otherwise20

Lemma 4 Environment addition is asso
iative, that isE; (E0;E00) = (E;E0);E00.Proof First show the following equivalen
es:dom(E � Y) = dom(E)� Y dom(E;E0) = dom(E) [dom(E0)(E;E0)� Y = (E � Y); (E0 � Y) E � (Y [Y 0) = (E � Y)� Y 0The result then follows dire
tly. 2We re
all the de�nition of applying a substitution to an environment.Fusing x with x0 in E: Efx x0g(x1:T1; : : : ; xn:Tn)fx x0g �=(x1fx x0g):(T1fx x0g); : : : ; (xnfx x0g):(Tnfx x0g)For example, (x:T; x0:T)fx x0g = x0:T . Noti
e that applying a substitution toan environment that
ontains multiple de
larations of the same variable deletesdupli
ate entries: (x:T; x:T)fx x0g = x0:T .The following equation is useful for analysing the out
ome of applying asubstitution to the well-formed
on
atenation of two environments.Lemma 5 (E;E0)fy y0g = (Efy y0g); (E0fy y0g).Proof An indu
tion on E0. The base
ase, when E0 = ?, is trivial. For theindu
tive step, suppose that E0 = (E00; x:T). Then, by indu
tion and Lemma 4:(E;E0)fy y0g = (E;E00; x:T)fy y0g= (E;E00)fy y0g; (xfy y0g:Tfy y0g)= (Efy y0g); (E00fy y0g); (xfy y0g:Tfy y0g)= (Efy y0g); ((E00; x:T)fy y0g)= (Efy y0g); (E0fy y0g)as required. 2We end this se
tion by showing that all judgments of the type system arepreserved by substituting one variable for another, provided the types of thevariables are
ompatible.Variable
ompatibility:Let x and y be E-
ompatible if and only if fx; yg � dom(E) impliesthere is T su
h that both E ` x : T and E ` y : T .Lemma 6 (Fusion) If y and y0 are E-
ompatible and E ` Jthen Efy y0g ` J fy y0g. 21

Proof By indu
tion on the proof of E ` J .(Env ?) ? ` �Trivial.(Env x) E ` T x =2 dom(E)E; x:T ` �By de�nition, sin
e y and y0 are (E; x:T)-
ompatible, they are also E-
ompatible. By indu
tion hypothesis, this and E ` T imply Efy y0g `Tfy y0g.Case xfy y0g 2 dom(Efy y0g) By Lemma 2 Efy y0g ` �. By de�ni-tion, (E; x:T)fy y0g = Efy y0g, and so we have (E; x:T)fy y0g `�.Case xfy y0g 62 dom(Efy y0g) Sin
e we have Efy y0g ` Tfy y0gand xfy y0g 62 dom(Efy y0g) we
an apply Rule (Env x) to getthe required result: (E; x:T)fy y0g ` �.(Type Name)E ` �E ` NameBy indu
tion hypothesis, Efy y0g ` �. By (Type Name), we have thatEfy y0g ` Name.(Type Chan)E; x1:T1; : : : ; xn:Tn ` � fn(e) � dom(E) [f~xgE ` Ch(x1:T1; : : : ; xn:Tn)eSin
e the names x1, . . . , xn are bound, we may assume that fy; y0g \fx1; : : : ; xng = ?. By de�nition, sin
e y and y0 are E-
ompatible andfy; y0g\fx1; : : : ; xng = ? it follows that y and y0 are (E; x1:T1; : : : ; xn:Tn)-
ompatible. By indu
tion hypothesis, this and E; x1:T1; : : : ; xn:Tn ` �imply (E; x1:T1; : : : ; xn:Tn)fy y0g ` �. From fn(e) � dom(E) [f~xg it22

follows that fn(efy y0g) � dom(Efy y0g) [f~xg. By (Type Chan), thisand Efy y0g; x1:T1fy y0g; : : : ; xn:Tnfy y0g ` � implyEfy y0g ` Ch(x1:T1fy y0g; : : : ; xn:Tnfy y0g)(efy y0g);that is, Efy y0g ` (Ch(x1:T1; : : : ; xn:Tn)e)fy y0g.The arguments for the other rules are similar. 2A.3 Weakening, Ex
hange, SubstitutionWe prove three standard properties of the type system.Lemma 7 (Weakening) If E;E0 ` J , E ` T and x =2 dom(E;E0) thenE; x:T;E0 ` J .Proof An indu
tion on the proof of E;E0 ` J .(Pro
 Cond)E;E0 ` y : U E;E0 ` y0 : U(E;E0)fy y0g ` Pfy y0g : eP fy y0g E;E0 ` Q : eQE;E0 ` if y = y0 then P else Q : eP _ eQDe�ne:D = Efy y0g D0 = E0fy y0g � dom(D) S = Tfy y0gThen sin
e x 62 dom(E;E0) we
an use Lemma 5 to get that:(E;E0)fy y0g = (D;D0) (E; x:T;E0)fy y0g = (D; x:S;D0)By Lemma 6 we have that D ` S, so we
an use indu
tion to get:E; x:T;E0 ` y : UE; x:T;E0 ` y0 : UE; x:T;E0 ` Q : eQD; x:S;D0 ` Pfy y0g : eP fy y0gand so by Rule (Pro
 Cond) we have:E; x:T;E0 ` if y = y0 then P else Q : eP _ eQas required.The arguments for the other rules are standard. 2Lemma 8 (Ex
hange) If E; x:T; x0:T 0; E0 ` J and E ` T 0then E; x0:T 0; x:T;E0 ` J . 23

Proof By indu
tion on the proof of E; x:T; x0:T 0; E0 ` J .(Pro
 Cond)E; x:T; x0:T 0; E0 ` y : U E; x:T; x0:T 0; E0 ` y0 : U(E; x:T; x0:T 0; E0)fy y0g ` Pfy y0g : eP fy y0gE; x:T; x0:T 0; E0 ` Q : eQE; x:T; x0:T 0; E0 ` if y = y0 then P else Q : eP _ eQDe�ne:D = Efy y0g D0 = E0fy y0g � dom(D; z:S; z0:S0)z = xfy y0g z0 = x0fy y0gS = Tfy y0g S0 = T 0fy y0gThen we
an use Lemma 5 to get that:(E; x:T; x0:T 0; E0)fy y0g = (D; z:S; z0:S0); D0(E; x0:T 0; x:T;E0)fy y0g = (D; z0:S0; z:S); D0and we
an use indu
tion to get:E; x0:T 0; x:T;E0 ` y : UE; x0:T 0; x:T;E0 ` y0 : UE; x0:T 0; x:T;E0 ` Q : eQand Lemma 6 to get: D ` S0We have that: (D; z:S; z0:S0); D0 ` Pfy y0g : eP fy y0gIf we
an show that:(D; z0:S0; z:S); D0 ` Pfy y0g : eP fy y0gthen we
an use Rule (Pro
 Cond) to
omplete. We
onsider three
ases:(1) z 2 dom(D) or z0 2 dom(D): In this
ase, we have thatD; z:S; z0:S0 =D; z0:S0; z:S, so the result is immediate.(2) z = z0 =2 dom(D): This
an only happen when x = y and x0 =y0, or when x = y0 and x0 = y. In either
ase, by the hypoth-esis of Rule (Pro
 Cond), and the fa
t that z; z0 =2 dom(D), sox; x0 =2 dom(E), we have that T = T 0 = U , and so S = S0. Thus,D; z:S; z0:S0 = D; z0:S0; z:S, so the result is immediate.24

(3) z; z0 =2 dom(D) and z 6= z0: So (D; z:S; z0:S0) = (D; z:S; z0:S0) and(D; z0:S0; z:S) = (D; z0:S0; z:S), so we
an use indu
tion to get therequired result.The arguments for the other rules are standard. 2Lemma 9 (Substitution) If E; ~y:~T ;E0 ` J and E ` h~xi : h~y:~T i then we haveE; (E0f~y ~xg) ` (J f~y ~xg).Proof First show the result in the
ase where ~x and ~y are of length 1, byappeal to Lemma 6 (Fusion). The result then follows by indu
tion on the lengthof ~x and ~y. 2A.4 Proofs of Theorems 1 and 2This �nal appendix
ontains proofs of the two theorems stated in the main bodyof the paper: subje
t redu
tion, Theorem 1, and safety, Theorem 2.We begin the development with two te
hni
al lemmas.Lemma 10 (Subsumption Elimination) If E ` P : e then for some e0 � e,E ` P : e0 is derivable without using the rule (Pro
 Subsum).Proof An indu
tion on the proof of E ` P : e. 2Lemma 11 (� Elimination) If P ��! P 0 then for some Q � P and Q0 � P 0,Q ��! Q0 is derivable without using the rule (Trans �).Proof An indu
tion on the derivation of P ��! P 0. 2Next, we show that stru
tural
ongruen
e preserves typings.Proposition 1 (Subje
t Congruen
e) If E ` P : e and P � Q then E `Q : e.Proof Prove by indu
tion on the derivation of � that if P � Q then:(1) If E ` P : e then E ` Q : e.(2) If E ` Q : e then E ` P : e.This indu
tion uses Lemmas 7 (Weakening), 1 (Free Names), 9 (Substitution),and 10 (Subsumption Elimination). 2We
an now prove subje
t redu
tion.Proof of Theorem 1 Suppose E ` P : e.(1) If P ��! P 0 then E ` P 0 : e.(2) If P begin h~xi�����! P 0 then E ` P 0 : e+ [h~xi℄.25

(3) If P end h~xi����! P 0 then E ` P 0 : e� [h~xi℄, and h~xi 2 e.(4) If P gen hxi����! P 0 and x =2 dom(E) then E; x:T ` P 0 : e for some type T .Proof(1) If P ��! P 0 then by Lemma 11 (� Elimination):P � out xh~xi j inp x(~y:~T);Q j R P 0 � Qf~y ~xg j Rso by Proposition 1 (Subje
t Congruen
e), Lemma 10 (Subsumption Elim-ination) and the type rules (Pro
 Par), (Pro
 Input) and (Pro
 Output),we have: E ` x : Ch(~y:~T)eC E ` h~xi : h~y:~T iE; ~y:~T ` Q : eQ E ` R : eR(eCf~y ~xg+ (eQ � eC) + eR) � e fn(eQ � eC) � dom(E)then by Lemma 9 (Substitution) and type rule (Pro
 Par) we have:E ` (Qf~y ~xg j R) : (eQf~y ~xg+ eR)so some multiset algebra and the
ondition that fn(eQ � eC) � dom(E)gives: (eQf~y ~xg+ eR) � ((eC + (eQ � eC))f~y ~xg+ eR)= (eCf~y ~xg+ ((eQ � eC)f~y ~xg) + eR)= (eCf~y ~xg+ (eQ � eC) + eR)� eso by type rule (Pro
 Subsum) and Proposition 1 (Subje
t Congruen
e):E ` P 0 : eas required.(2) If P begin h~xi�����! P 0 then by Lemma 11 (� Elimination):P � begin h~xi;Q j R P 0 � Q j Rso by Proposition 1 (Subje
t Congruen
e), Lemma 10 (Subsumption Elim-ination) and the type rules (Pro
 Par) and (Pro
 Begin), we have:E ` Q : eQ E ` R : eRf~xg � dom(E) ((eQ � [h~xi℄) + eR) � eso by (Pro
 Par) we have:E ` (Q j R) : (eQ + eR)26

and some multiset algebra gives (eQ+eR) � (e+[h~xi℄) so by (Pro
 Subsum)and Proposition 1 (Subje
t Congruen
e):E ` P 0 : e+ [h~xi℄as required.(3) If P end h~xi����! P 0 then by Lemma 11 (� Elimination):P � end h~xiQ j R P 0 � Q j Rso by Proposition 1 (Subje
t Congruen
e), Lemma 10 (Subsumption Elim-ination) and the type rules (Pro
 Par) and (Pro
 End), we have:E ` Q : eQ E ` R : eRf~xg � dom(E) (eQ + [h~xi℄ + eR) � eby (Pro
 Par) we have: E ` (Q j R) : (eQ + eR)and some multiset algebra gives (eQ+eR) � (e�[h~xi℄) so by (Pro
 Subsum)and Proposition 1 (Subje
t Congruen
e):E ` P 0 : e� [h~xi℄and h~xi 2 e as required.(4) If P gen hxi����! P 0 and x =2 dom(E) then by Lemma 11 (� Elimination):P � new(x:T);Q P 0 � Qso by Proposition 1 (Subje
t Congruen
e), Lemma 10 (Subsumption Elim-ination) and the type rule (Pro
 Res), we have:E; x:T ` Q : eQ eQ � eso by (Pro
 Subsum) and Proposition 1 (Subje
t Congruen
e):E; x:T ` P 0 : eas required. 2The next lemma is the
entral fa
t needed in the proof of safety.Lemma 12 If E ` P : e and P s�! P 0 and gn(s) \ dom(E) = ? then ends (s) �begins (s) + e.Proof By indu
tion on the derivation of P s�! P 0.27

(1) If P ��! P 00 t�! P 0 then by Theorem 1 (Subje
t Redu
tion), E ` P 00 : e, soby indu
tion: ends (t) � begins (t) + eas required.(2) If P begin h~xi�����! P 00 t�! P 0 and f~xg \ gn(t) = ? then by Theorem 1 (Subje
tRedu
tion), E ` P 00 : e+ [h~xi℄, so by indu
tion:ends (t) � begins (t) + e+ [h~xi℄so: ends (s) = ends (t)� begins (t) + e+ [h~xi℄= begins (s) + eas required.(3) If P end h~xi����! P 00 t�! P 0 and f~xg \ gn(t) = ? then by Theorem 1 (Subje
tRedu
tion), E ` P 00 : e� [h~xi℄ and h~xi 2 e, so by indu
tion:ends (t) � begins (t) + e� [h~xi℄so: ends (s) = ends (t) + [h~xi℄� begins (t) + e� [h~xi℄ + [h~xi℄= begins (t) + e= begins (s) + eas required.(4) If P gen hxi����! P 00 t�! P 0 and fxg \ gn(t) = ? then by Theorem 1 (Subje
tRedu
tion), we have that E; x:T ` P 00 : e for some type T , so by indu
tion:ends (t) � begins (t) + eso: ends (s) � begins (s) + eas required.(5) If P � P 0 then s = ", and so ends (s) = [℄ � e = begins (s) + e. 2Proof of Theorem 2 If E ` P : [℄ then P is safe.Proof For a
ontradi
tion, suppose P is not safe, that is, there is a tra
es and pro
ess P 0 su
h that P s�! P 0 but not ends (s) � begins (s). Withoutloss of generality, we may assume that gn(s) \ dom(E) = ? (we
an alwayssuitably rename the freshly generated names). By Lemma 12, we have ends(s) �begins(s)+[℄, that is, ends(s) � begins(s),
ontradi
ting the supposition. Hen
e,P is safe. 228

Referen
es[AG99℄ M. Abadi and A.D. Gordon. A
al
ulus for
ryptographi
 proto
ols:The spi
al
ulus. Information and Computation, 148:1{70, 1999.[Bar92℄ H. Barendregt. Lambda
al
uli with types. In S. Abramsky, D.M.Gabbay, and T.S.E. Maibaum, editors, Handbook of Logi
 in Com-puter S
ien
e, Volume II. Oxford University Press, 1992.[BB92℄ G. Berry and G. Boudol. The
hemi
al abstra
t ma
hine. Theoreti
alComputer S
ien
e, 96(1):217{248, April 1992.[CM00℄ E. Clarke and W. Marrero. Using formal methods for analyzing se-
urity. Available at http://www.
s.
mu.edu/�marrero/abstra
t.html,2000.[CWM99℄ K. Crary, D. Walker, and G. Morrisett. Typed memory managementin a
al
ulus of
apabilities. In 26th ACM Symposium on Prin
iplesof Programming Languages, pages 262{275, 1999.[DG00℄ S. Dal Zilio and A.D. Gordon. Region analysis and a �-
al
uluswith groups. InMathemati
al Foundations of Computer S
ien
e 2000(MFCS2000), volume 1893 of Le
tures Notes in Computer S
ien
e,pages 1{21. Springer, 2000.[FA99℄ C. Flanagan and M. Abadi. Obje
t types against ra
es. In J.C.M.Baeten and S. Mauw, editors, CONCUR'99: Con
urren
y Theory,volume 1664 of Le
tures Notes in Computer S
ien
e, pages 288{303.Springer, 1999.[GH98℄ A.D. Gordon and P.D. Hankin. A
on
urrent obje
t
al
ulus: Redu
-tion and typing. In Pro
eedings HLCL'98, ENTCS. Elsevier, 1998.[GJ01℄ A.D. Gordon and A. Je�rey. Authenti
ity by typing for se
urityproto
ols. In 14th IEEE Computer Se
urity Foundations Workshop.IEEE Computer So
iety Press, 2001. To appear.[GL86℄ D.K. Gi�ord and J.M. Lu
assen. Integrating fun
tional and imper-ative programming. In ACM Conferen
e on Lisp and Fun
tionalProgramming, pages 28{38, 1986.[HVK98℄ K. Honda, V. Vas
on
elos, and M. Kubo. Language primitives andtype dis
ipline for stru
tured
ommuni
ation-based programming.In European Symposium on Programming, volume 1381 of Le
turesNotes in Computer S
ien
e, pages 122{128. Springer, 1998.[HVY00℄ K. Honda, V. Vas
on
elos, and N. Yoshida. Se
ure information
owas typed pro
ess behaviour. In European Symposium on Program-ming, Le
tures Notes in Computer S
ien
e. Springer, 2000.29

[IK01℄ A. Igarashi and N. Kobayashi. A generi
 type system for the pi
al
ulus. In 28th ACM Symposium on Prin
iples of ProgrammingLanguages, pages 128{141, 2001.[Kob98℄ N. Kobayashi. A partially deadlo
k-free typed pro
ess
al
ulus. ACMTransa
tions on Programming Languages and Systems, 20:436{482,1998.[Lu
87℄ J.M. Lu
assen. Types and e�e
ts, towards the integration of fun
-tional and imperative programming. PhD thesis, MIT, 1987. Avail-able as Te
hni
al Report MIT/LCS/TR{408, MIT Laboratory forComputer S
ien
e.[MCJ97℄ W. Marrero, E.M. Clarke, and S. Jha. Model
he
king for se
urityproto
ols. In DIMACS Workshop on Design and Formal Veri�
ationof Se
urity Proto
ols, 1997. Preliminary version appears as Te
hni-
al Report TR{CMU{CS{97{139, Carnegie Mellon University, May1997.[Mil99℄ R. Milner. Communi
ating and Mobile Systems: the �-Cal
ulus.Cambridge University Press, 1999.[NPS90℄ B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of 's Type Theory: An Introdu
tion. Oxford University Press, 1990.[PS96℄ B. Pier
e and D. Sangiorgi. Typing and subtyping for mobile pro-
esses. Mathemati
al Stru
tures in Computer S
ien
e, 6(5):409{454,1996.[SS00℄ C. Skalka and S. Smith. Stati
 enfor
ement of se
urity with types. InP. Wadler, editor, 2000 ACM International Conferen
e on Fun
tionalProgramming, pages 34{45, 2000.[THK94℄ K. Takeu
hi, K. Honda, and M. Kubo. An intera
tion-based languageand its typing system. In Pro
eedings 6th European Conferen
e onParallel Languages and Ar
hite
ture, volume 817 of Le
tures Notesin Computer S
ien
e, pages 398{413. Springer, 1994.[TT97℄ M. Tofte and J.-P. Talpin. Region-based memory management. In-formation and Computation, 132(2):109{176, 1997.[WL93℄ T.Y.C. Woo and S.S. Lam. A semanti
 model for authenti
ationproto
ols. In IEEE Symposium on Se
urity and Priva
y, pages 178{194, 1993.
30

