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ABSTRACT

This paper introduced a new speech production model aim-
ing at synthesizing natural speech in real-time by modeling
the key dynamic properties of the articulators in a nonlinear
state-space framework. The goal-oriented movement of the
tongue tip, tongue dorsum, upper lip, lower lip and jaw are
described in a linear state equation. The so produced artic-
ulatory trajectories combined with the effects of velum and
larynx are mapped into acoustic features in the nonlinear
observation equation. The input and output of the model are
time-aligned phone sequence and speech waveform respec-
tively. This speech production model can also be directly
applied to speech recognition to better account for coartic-
ulation and phonetic reduction phenomenon with consider-
ably less parameters than the traditional HMM based ap-
proaches.

1. INTRODUCTION

The development of this model is motivated by many pre-
vious studies about human speech production in speech sci-
ence. Although increasingly detailed and sophisticated mod-
els about how speech is generated in human speech pro-
duction system has been developed in the past thirty years
[1], they have made little impact on the progress of com-
puter synthesized human speech. From a practical point of
view, these models are either too complicated to implement,
or lack the comprehensiveness in covering all classes of
sounds, or both. On the other hand, the current cut and paste
approach used in commercial speech synthesizers cannot
provide the natural transitions between phonemes as the hu-
man articulatory system does.

In this paper, our modeling effort is concentrated on de-
scribing the key dynamic features of the articulators that are
crucial to natural speech. We did not describe the under-
lying physiological mechanism that governs the movement
of the articulators in our model, but rather choose a target-
oriented linear state equation with its parameters learned
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Fig. 1. A block diagram of the speech production model.

from real speech data (thus the name functional in the ti-
tle). Obviously this results in a fairly simple implementa-
tion. Such simplicity also provides the convenience of ap-
plying it directly to speech recognition, which will be dis-
cussed at the end.

Since our model is still at an early stage of development,
the focus of this paper is to present the new ideas we have.
The remaining of the paper is organized as follows: The
model is described in some detail in Section2. In Section 3,
methods for learning parameters in the model are discussed.
Section 4 points out some possible further improvements
of our model. And finally the potential application of the
model in speech recognition are discussed in Section 5.

2. MODEL DESCRIPTION

A block diagram of our speech production model is shown
in figure 1. Both the underlying articulatory dynamics and
the generated acoustic features are described by the follow-
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Fig. 2. Articulators described in the state equation: 1. Jaw;
2. Upper Lip; 3. Lower Lip; 4. Tongue Tip; 5. Tongue
Dorsum.

ing state-space model:

z(k + 1) = �z(k) + 	T+w(k); (1)

o(k) = h [z(k)] + v(k): (2)

Here the state variable z(k) is the position of the key
articulators at time k, and these articulators are shown in
figure 2. o(k) is the acoustic feature generated at the same
time. The acoustic feature used in our model is the Mel-
frequency cepstral coefficients (MFCCs). � is a matrix de-
scribing articulatory dynamics. Examples of how to in-
corporate our prior knowledge about speech into this ma-
trix will be seen shortly. T is the target position of the
articulators, and 	 describes the control effect of the tar-
gets on the articulatory movement. These three parame-
ters are all phone-dependent, i.e., they switch values at each
phone boundary (� and 	 may be tied for broader classes
of phones in the actual implementation). Due to the well-
known forward-anticipation property of the articulators, the
boundaries for these parameters (especially T) should hap-
pen earlier than the actual acoustic boundaries. Exactly
how early it should be will be learned from real articulatory
data. The nonlinear function h in the observation equation
represents the articulatory-to-acoustic mapping. Both w(k)
and v(k) are discrete-time white Gaussian noise, with time-
invariant covariance matrixQ and R respectively.

The state equation (1) must satisfy the asymptotic, target-
oriented property, i.e., when k ! 1; z(k) ! T. This re-
quires some special relationship between � and 	. An easy
and convenient choice is to let 	 = I��, and this is used in
our current implementation. For later reference, we rewrite
the state-space model for this special choice as follows:

z(k + 1) = �z(k) + (I��)T +w(k); (3)

o(k) = h [z(k)] + v(k): (4)

As shown in figure 2, the state variable z is chosen to be
the positions of the jaw, upper lip, lower lip, tongue tip and

tongue dorsum (each with x and y positions), i.e.,

z = [Jx; Jy; ULx; ULy; LLx; LLy;

TTx; TTy; TDx; TDy]T : (5)

The function of matrix � is mainly to describe the rela-
tionship between z(k) and z(k + 1). We can preset some
elements to zero by noticing the approximate conditional
independence among articulators. For example, the move-
ment of the upper lip is related to that of the lower lip, but
is largely independent of the jaw position given the position
of the lower lip. The resulting � matrix after exploring all
the conditional independent relations is shown as follows:

� =

2
666666666666664

�00 �01 0 0 0 0 0 0 0 0
�10 �11 0 0 0 0 0 0 0 0
0 0 �22 �23 �24 �25 0 0 0 0
0 0 �32 �33 �34 �35 0 0 0 0
�40 �41 �42 �43 �44 �45 0 0 0 0
�50 �51 �52 �53 �54 �55 0 0 0 0
�60 �61 0 0 0 0 �66 �67 �68 �69
�70 �71 0 0 0 0 �76 �77 �78 �79
�80 �81 0 0 0 0 �86 �87 �88 �89
�90 �91 0 0 0 0 �96 �97 �98 �99

3
777777777777775

:

(6)
Doing so not only reduces the number of parameters but

also make the parameter estimation more robust. It will be
even more desirable to have � as a block diagonal matrix.
We approximately achieve this by choosing a slightly dif-
ferent state variable:

z = [Jx; Jy; ULx; ULy; LLx� Jx; LLy � Jy;

TTx� Jx; TTy� Jx; TDx� Jx; TDy � Jy]T ;

(7)

and the resulting new � matrix is:

� =

2
666666666666664

�00 �01 0 0 0 0 0 0 0 0
�10 �11 0 0 0 0 0 0 0 0
0 0 �22 �23 �24 �25 0 0 0 0
0 0 �32 �33 �34 �35 0 0 0 0
0 0 �42 �43 �44 �45 0 0 0 0
0 0 �52 �53 �54 �55 0 0 0 0
0 0 0 0 0 0 �66 �67 �68 �69
0 0 0 0 0 0 �76 �77 �78 �79
0 0 0 0 0 0 �86 �87 �88 �89
0 0 0 0 0 0 �96 �97 �98 �99

3
777777777777775

:

(8)
Currently the dynamics of the velum and larynx are not

considered. They are treated as binary variables and in-
cluded when doing the articulatory-to-acoustic mapping via
nonlinear function h. The exact form of h is not decided
at the moment, and it will be chosen to be whatever non-
linear function approximator that works the best. We have



previous experience of using a mixture linear model [2] to
map from the vocal-tract-resonance (VTR) to MFCCs with
good results. More recently, a similar mapping was suc-
cessfully carried out by Gao et al [3] using a MLP with one
hidden layer and 100 neurons in the layer. The output of the
nonlinear mapping are also MFCCs in our model, while the
conversion from MFCCs to speech waveform is carried out
independently.

3. MODEL PARAMETER LEARNING

The recent availability of the University of Wisconsin X-
ray microbeam speech production database (UW-XRMB)
allows us to train our model on articulatory and acoustic
data recorded at the same time. When this kind of complete
data is not adequate, e.g., when the model has to be adjusted
to meet some specific requirements, model training can also
be supplemented by acoustic data alone under the generic
EM framework.

3.1. Parameter learning in the state equation

We assume that phone boundaries are available in the fol-
lowing derivation. Methods for determining phone bound-
aries under various conditions are discussed in 3.3. Assume
in (3) the state variable Z = fz(0); z(1); : : : ; z(K)g be-
longing to the same phone are fully observable, the maxi-
mum likelihood (ML) estimates (or equivalently the MSE
estimates in the case of Gaussian noise) of � and T under
some reasonable matrix nonsingular assumptions can be ob-
tained as follows:

�̂ = BA�1; (9)

T̂ = (�� I)
�1
�(

�

"
1

K

K�1X
k=0

z(k)

#
�

1

K

K�1X
k=0

z(k + 1)

)
: (10)

where
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�
; (11)
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1
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1
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�
: (12)

The above result is for general unconstrained � matrix
case. When we have more than one training token corre-
sponding to the same phone, a double summation has to be

used in calculating matrix A and B. Roughly speaking, A
will be nonsingular as long as we have a reasonable amount
of training data.

3.2. Parameter learning in the observation equation

The relationship between articulatory positions and acoustic
features is treated to be a nonlinear static mapping. The pa-
rameter estimation problem is the same as training the non-
linear function approximator of the choice. For example, if
we choose to use a MLP, then we just train the parameters
of the MLP at this stage. The only requirement is that the
Jacobian of the function approximator must be computable
so that EM algorithm can be used to train the model param-
eters with acoustic data alone.

3.3. Determination of the phone boundaries

When training the parameters in the state equation, we re-
quire the knowledge of articulatory boundaries, i.e., where
the articulatory targets switch their values. Usually this is
not available, but sometimes the acoustic phone boundaries
are available, such as in the well-known TIMIT database.
For the UW-XRMB database, we also hand-labeled some
phone boundaries. Since the articulatory boundary must lie
within two acoustic boundaries, and the number of frames
within a phone is relatively small, the articulatory bound-
ary can be determined by exhaustive search, i.e., we search
through all the possible boundaries and pick up the one with
maximum likelihood, or equivalently the minimum MSE.
When the acoustic boundaries are not available, this be-
comes a very difficult problem and we have to use some
approximations to search for suboptimal solutions, such as
the algorithms used in our previous study of a VTR dynamic
model for speech recognition [4].

3.4. Model training with acoustic data alone

It is a real luxury to have simultaneously recorded articu-
latory and acoustic data available and inevitably we have to
adjust/adapt our model based on acoustic data alone in prac-
tice. The solution is the general EM algorithm that has been
used extensively especially in speech recognition. The steps
are outlined as follows for our model:

� Initialize the parameters with those trained previously
when both articulatory and acoustic data are avail-
able, estimate z(k) based on o(k) using (extended)
Kalman smoother.

� Reestimate all the parameters based on o(k) and the
estimated z(k).

� Do iteration until convergence occurs (measured by
the likelihood of the parameters) or maximum num-
ber of iterations are reached.



4. FURTHER IMPROVEMENTS

The model we presented here is still fairly crude from vari-
ous points of view, and some possible further improvements
are as follows:

1. The continuity of the articulatory trajectories are en-
sured in our model, but in order to have smooth tra-
jectories, we have to impose continuity on the first
order derivative. This can be done by including the
difference of successive articulatory positions in the
state variable and force them to change smoothly.

2. Different articulators are not moving synchronously
during speech production, while we have forced them
to do so in the current control strategy. A better one is
to use time aligned overlapping articulatory features
[5, 6] as the input to our model. Since the relative
timing information about the articulators can also be
learned from the UW-XRMB database, a mechanism
to convert phone sequence to overlapping articulatory
features automatically is possible in the future.

3. We have fixed the target position of the articulators to
a single value corresponding to each phone. To better
account for phenomena such as compensatory artic-
ulation, modeling the target position as a probability
distribution is more desirable.

The key thing to keep in mind is that we have to keep a
balance between model accuracy and model complexity so
that this model can be of practical significance.

5. APPLICATIONS IN SPEECH RECOGNITION

As people all start to realize the limitations of HMM-based
approach for speech recognition, new models incorporating
some dynamic properties of speech has been proposed in
recent years [2, 3, 7] to better account for coarticulation and
phonetic deduction phenomenon in spontaneous and casual
speech. The speech production model described here fits
this purpose perfectly. It not only overcomes many inher-
ent inaccuracies of the HMM in modeling human speech,
which is reflected by its ability to generate natural speech,
but also provides a parsimonious set of parameters compar-
ing to those of HMM (expected to be one to two orders of
magnitude less).

It is not hard to see that the training process for both
speech production and speech recognition is exactly the same.
Of course we don’t have articulatory data available for speech
databases that are designed for speech recognition purpose,
but we can use the values trained from the UW-XRMB speech
production database as the initial values. Since we have
good initial values with much less parameters than HMM,

the performance of the speech recognizer is expected to de-
pend much less on the quality and quantity of the training
data, which makes it appealing for many practical applica-
tions.

However, the recognition phase of speech recognition is
much harder than the voice generation phase of speech pro-
duction. This problem can be simplified if N-best evaluation
is used, which is based on the recognition result of a HMM
recognizer. In generally, we have to solve the problem of
searching for optimal phone boundaries for a test utterance.
Some approximate methods of doing so has been developed
in our previous work [4].
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