
Key Compression and its Application to Digital

Fingerprinting

Josh Benaloh

Microsoft Research

Abstract. Digital fingerprinting technologies are becoming an increas-
ingly important tool to protect valuable content and other intellectual
property. This paper describes an efficient method whereby any water-
marking technology can be utilized to construct digital fingerprints that
can distinguish individual instantiations of protected data without re-
quiring replication of the data. This technology enables large amounts of
data to be selectively distributed to large numbers of people over a lim-
ited medium such as a broadcast channel or CD-ROM. An application of
this technology – protection of motion pictures for in-flight entertainment
systems – will be specifically discussed.

Note: This is a reprint of an article that was originally submit-

ted for publication in April 2001.

1 Introduction

There are many instances in which one has a large database or other
information set to which different entities are to be granted access to dif-
ferent subsets of the data. While databases are a natural example, another
example might be pay-per-view broadcasts in which each customer has
purchased viewing rights to a different set of programs. A third example
is seen in fingerprinting methodologies wherein multiple copies of each
“clip” of content are produced and each recipient is to be given access to
exactly one of the copies of each clip.

It is natural in all of these scenarios to encrypt each datum separately
and make the encrypted data set available to all subscribers. Each indi-
vidual subscriber can then be given exactly those keys that protect the
data to which that individual is entitled. Thus, the problem of distribut-
ing different data sets is reduced to the problem of distributing different
key sets.

A problem, however, is that if the universe of keys is large, the subsets
of keys which must be customized and separately sent to each individual
may be large. This may impose substantial burdens — even if the number
of subscribers is smaller than the number of keys.

This paper describes a mechanism whereby each key set can effectively
be compressed into a single key whose size is, for all intents and purposes,
dependent only on a security parameter. As an example, the number
of distinct keys that can be compressed into a 1024-bit value is limited
only by the number of distinct primes less than 21024. While recovery of
an individual key requires time proportional to the security parameter
and the number of keys compressed for that subscriber, the additional
time to compute more than one key is small and independent of the
number of keys compressed. Specifically, if n keys are compressed for a
subscriber, any set of m of these compressed keys can be recovered in
time O((n + m log m)s), where s is a security parameter.

A primary application of this mechanism is in the domain of digital
fingerprinting for content protection. Many small portions of a film, song,
or other data stream can be selected by its owner. Two (or more) copies of
each of these small “clips” can be created with minor differences in each
copy. Each copy of each such clip can then be encrypted with a separate
key. By giving distinct sets of keys to distinct users, one can fingerprint
each instance of the content so that, if an instance is later detected being
mis-used, the instance may be able to be traced back to its source.

Of course, cryptographic keys are generally incompressible and dis-
tinct keys should normally be chosen independently. However, in many
circumstances, computational — rather than information theoretic — in-
dependence can suffice. A pseudo-random number-generator can certainly
be used to expand a single seed (or key) into a virtually unlimited num-
ber of computationally independent keys. The challenge here, however, is
to give different seeds to different subscribers so as to enable subscribers
to recover exactly those keys to which they are entitled without allowing
them to compute any of the remaining keys.

2 Related Work

The methods used for key compression in this paper are similar to tech-
niques for key management developed in [ChTa89] and later used in
[HaPe95]. However, some of the details are different and the application
to digital fingerprinting is entirely new.

The approach of segmenting digital content and separately marking
and encrypting multiple copies of each segment is discussed in [BoSh98].
The techniques described herein expand upon this work by enabling more
efficient use of constrained distribution media.

2

The application to content distribution can, from a certain perspec-
tive, be seen as a dual to broadcast encryption ([FiNa93]). The methods
of broadcast encryption can solve the basic problem described in the in-
troduction by broadcasting each key to the set of subscribers eligible to
receive that key.

The bandwidth required by broadcast encryption is proportional to
the number of keys but (after initialization) independent of the number of
subscribers while the computation required by each subscriber to recover
each key is proportional to the number of subscribers. The methods that
will be described herein require bandwidth that is proportional to the
number of subscribers and independent (after initialization) of the number
of keys while the computation required by each subscriber to recover each
key is proportional to the number of keys (although amortization can
reduce the cost of each additional key to the log of the number of keys
recovered).

Thus, in an environment of constrained bandwidth, broadcast encryp-
tion works well if the number of subscribers is large relative to the number
of keys while the methods herein are better when the number of keys is
large in relation to the number of subscribers. The reverse is true if com-
putation rather than bandwidth is the limiting factor. Both methods work
equally well when the numbers of keys and subscribers are comparable.

Another advantage of the methods of this paper offer over broadcast
encryption is that collusion is not a concern. Any set of colluding parties
can obtain precisely the union of the sets of keys to which they are indi-
vidually entitled. No advantage is obtained towards discovering any key
to which none of the parties is entitled.

3 Preliminaries

We begin by giving a generic definition of a key generation system.

Definition 1. Let m be a positive integer and let T1, T2, . . . , Tn be a col-
lection of index sets with each Tj ⊆ {1, 2, . . . ,m} . We say that a collection
of polynomial-time algorithms A,A1,A2, . . . ,An is a key generation
system if A(T1, T2, . . . , Tn) = (K = 〈k1, k2, . . . , km〉, V = 〈v1, v2, . . . , vn〉)
and for each j such that 1 ≤ j ≤ n, Aj(vj) = {ki : i ∈ Tj}.

Thus, the output of the key generation function A is a set of keys (one
for each datum in a data set of size m) and a set of values each of which
enables the derivation of a pre-defined subset of the keys.

3

The intent here is that the key generation function is given a set of
mappings describing the data to which each subscriber is to be given
access. Its output is a set of keys to be used to encrypt the data and a
set of compressed key sets which can be distributed — one per subscriber
— such that each subscriber can obtain those keys, and only those keys,
used to encrypt data to which the subscriber is to be given access.

Note that this definition is trivially satisfied by the generation function
that generates a random (or pseudo-random) set of keys K = {k1, k2, . . . , km}
and individually doles out to each subscriber the entire set of keys vj =
{ki : i ∈ Tj} to which the subscriber is entitled. However the goal of this
work is to develop a compression technique which allows the vj to be
much smaller than that which can be achieved by simple enumeration.

It should also be noted that the above definition can be trivially satis-
fied by broadcasting the entire key set K to all participants (vj = K, for
all j). Since our goal is to develop a key generation system in which each
participant gets those keys and only those keys to which it is entitled, we
must next define what it means for a key generation system to be secure.

Definition 2. Let m be a positive integer and let T1, T2, . . . , Tn be a col-
lection of index sets with each Tj ⊆ {1, 2, . . . ,m}. Let A,A1,A2, . . . ,An

be a key generation system. The system is said to be ε-secure if there
exists no (probabilistic) polynomial-time algorithm that when given a par-
tial list, vj1, vj2 , . . . , vjℓ

where {j1, j2, . . . , jℓ} ⊆ {1, 2, . . . , n}, of the com-
pressed key sets output by A, outputs, with probability greater than ε, any
ki ∈ K such that i /∈ ∪(Tj1, Tj2 , . . . , Tjℓ

).

In short, a key generation system is ε-secure if no polynomial-time
algorithm can construct, with probability greater than ε, any key in a
key set which is not derived from at least one of its inputs. Thus, no
collusion of participants can gain access to any key to which none of the
individual colluders have access. Note that in practice, the ε here is likely
to be a function of a security parameter.

4 Key Compression Method

We assume that we begin with a large data set. We associate a small
odd prime integer with each individual datum to be protected. No prime
is associated with more than one datum, and the set of these primes
U = {p1, p2, . . . , pm} (and their association) is completely public. For
each subscriber Sj, let Uj ⊆ U be the set of primes associated with data
to which Sj is entitled. That is, Uj = {pi : i ∈ Tj}.

4

The owner (dealer) of the data selects two large prime integers Q1

and Q2 and forms their product N = Q1Q2. Although it is not strictly
required, it is preferred that Q1 and Q2 each be safe primes (one greater
than twice a prime). What is specifically required is that no pi ∈ U divide
either Q1 − 1 or Q2 − 1.

The owner of the data also selects a random value x ∈ Z∗
N — the

multiplicative subgroup of the integers modulo N . Of these values, only
N is made public. For convenience, we also define the value y = xE mod N
where E =

∏
i pi and this product is taken over all primes pi ∈ U . There

is no harm in making y public.

Next, we define ri = xE/pi mod N . Thus, ri is the (modulo N) pith
root of y. The construction of N ensures that pi does not divide ϕ(N)
and therefore that there is a unique pith root of every y ∈ Z∗

n. The datum
associated with the prime pi is encrypted (using a symmetric encryption
algorithm) with the key ki derived from ri by a standard function such
as ki = SHA-1(ri) to remove the algebraic structure.

For each subscriber Sj, we define Ej =
∏

pi where this product is
now taken over all primes in U/Uj . In other words, Ej is the product of
all primes associated with data to which subscriber Sj is not entitled.
The owner of the data computes, for each subscriber Sj, the value vj =
xEj mod N . Each compressed key set vj is then sent to subscriber Sj over
a private channel (or encrypted for Sj and sent over a public channel).

It is now a simple matter for subscriber Sj to compute any key ki

for which it is entitled to the associated data. It is also clear (the formal
proof will be given later) that subscriber Sj cannot compute any key ki to
which it is not entitled unless Sj has the ability to extract roots modulo
N . A simple corollary is that there is no threat posed by collusion: if no
members of a colluding set have access to a particular datum, then the
collective information held by all of the members does not permit the
computation of the associated key!

The computational independence of the keys is a direct consequence
of Shamir’s root independence lemma ([Sham83]) which shows that a set
of (modulo N) pith roots of y is of no use in computing a (modulo N)
rth root of y unless r divides

∏
pi. Thus, no collusion of subscribers that

does not have access to a particular datum (say one associated with the
prime pi) will be able to jointly obtain access to that datum since they
together have a set of roots of which none of their defining exponents are
divisible by pi.

5

5 Amortized Key Recovery

To recover any single key ki, it is apparent that a subscriber needs to
take its compressed key set vj and raise it (modulo N) to the power of
all primes, other than pi, in the set Uj . Thus, the computational cost of
obtaining any single key grows linearly with the number of data to which
a subscriber is granted access.

However, if a subscriber wants to recover more than one key at a
time, the amortized costs shrink rapidly. For example, a subscriber can
compute two separate keys with only one small-prime modular exponen-
tiation more than is required to compute a single key. This can easily
be accomplished by raising the compressed key set vj to the power of all
primes in the set Uj other than the two distinguished primes that are
associated with the two desired keys. This intermediate value can then
be separately raised to the power of each of the two remaining primes to
form the pre-image of each of the two desired keys.

In general, if m keys are to be recovered, a tree can be formed with
a value at the root equal to the compressed key set vj raised to the
(modulo N) power of all primes in the set Uj other than those to be
recovered. A balanced binary tree is now constructed by associating each
of the remaining primes of Uj with a leaf. Each node of the tree will now
contain the compressed key set vj raised to the power of all primes in
the set Uj other than those associated with the leaves of its sub-tree. In
can readily be seen that m small-prime modular exponentiations must be
done at each of the log m levels of the tree in order to complete the tree.
The values at the leaves correspond to the m newly recovered keys.

6 Proofs of Properties

It is actually relatively easy to build upon past work to show that this
scheme satisfies the desired properties.

Theorem 1. The system of section 4 is a key generation system (accord-
ing to the definition of section 3).

Proof. Section 4 describes the procedures for reconstituting keys. Thus,
it only remains to be shown that the key generation function and each of
the key reconstruction functions operate in polynomial time.

The key generation function requires the time to generate and multi-
ply two primes (quartic in the length of the primes) plus O(m + n) small
prime modular exponentiations — where m is the number of keys and n is

6

the number of subsets. Since a modular exponentiation can be performed
in cubic time, the key generation function is linear in the number of keys
and subsets and quartic in the security parameter.

Each of the n key reconstruction functions requires O(m log m) small
prime modular exponentiations by the methods of section 5.

Thus, the system is polynomial-time as required. ⊓⊔
To show the security of the system, we must begin with a standard

assumption.

Assumption 1 (RSA) There is no polynomial Q and probabilistic polynomial-
time algorithm A which takes parameters n, e, and x, (where n is a prod-
uct of two equal length primes and e is relatively prime to ϕ(n)) and
produces, with probability 1

Q(|n|) , a y such that x = ye mod n.

Theorem 2. If the RSA assumption is true, then for any polynomial ρ,
the key generation system of section 4 is 1

ρ(s) -secure — where s is the
security parameter of the system.

Proof. (sketch)
Let K = {k1, k2, . . . , km} be a collection of keys and let T1, T2, . . . , Tn

with each Tj ⊆ {1, 2, . . . ,m} be a collection of indices. Let p1, p2, . . . , pn

be a set of distinct odd primes of length at most s (the security param-
eter). We assume that m and n are bounded by a polynomial in s. Let
A(K,T1, T2, . . . , Tn) be the randomized key generation function defined
as in section 4 which operates as follows:

1. select two “master” primes uniformly of length s
2 such that neither

master prime is one greater than a multiple of any of the primes
p1, p2, . . . , pn,

2. form the product N of the two master primes of the previous step,
3. uniformly select an integer x in the multiplicative group Z∗

N ,
4. output N together with the vectors K = 〈k1, k2, . . . , km〉 where each

ki = xE/pi mod N and E =
∏

pi and V = 〈v1, v2, . . . , vn〉, where each
vj = xEj mod N and Ej =

∏
{i:ki /∈Tj} pi.

Suppose further that J = {j1, j2, . . . , jℓ} ⊆ {1, 2, . . . , n} and B is a
polynomial-time algorithm which takes as input N and vj for all j ∈ J
and outputs, with probability at least 1

ρ(s) (for some polynomial ρ), some

ki ∈ K/ ∪j∈J Tj .
Shamir’s Root Independence Lemma ([Sham83]) asserts that this im-

plies there must be a polynomial-time algorithm B′ which takes as input
only N and outputs, with probability at least 1

ρ′(s) (for some polynomial

ρ′), some ki ∈ K/ ∪j∈J Tj .

7

Since m and n must be polynomial in s, and since for any fixed set
of primes p1, p2, . . . , pn, the special form master primes, as described in
step 1 above, constitute a polynomial sized fraction of all the primes, this
algorithm violates the RSA assumption. ⊓⊔

7 Digital Fingerprinting

An application of this form of key compression is to support a particular
paradigm for fingerprinting of digital content. Fingerprinting is effected
by providing, on a limited communication medium (such as a digital video
disk or broadcast channel), two slightly different versions of several sepa-
rate portions of the digital content. Each version of each portion is sepa-
rately encrypted, and each content playback device is given the decryption
keys for exactly one version of each portion. In this manner, any content
which is leaked will contain a distinct pattern of versions showing which
keys (and presumably which content player) this content originated on.
Of course, in this context collusion presents a serious threat, since even
when no set of players can obtain even a single key to which they are not
entitled, they may be able to defeat the fingerprinting by mixing different
content portions to which they are entitled. However, techniques such as
those found in [BoSh98] can be introduced for collusion-detection.

The problem with employing this fingerprinting technique is that each
content player must now receive essentially half of all of the decryption
keys. The keys may actually be distributed (encrypted for each and every
active player) on identical digital video disks together with the encrypted
content. While there may be enough space on these disks to comfortably
encrypt one key for each content player, if the number of keys each content
player must receive grows large, space becomes a problem. Broadcast
encryption offers a possible solution here, but the time to unpack each
key is proportional to the number of active content players – which can
be prohibitive. Instead, the method introduced in this paper can be used
to effectively compress keys. This can reduce the space requirements to
acceptable levels without requiring excessive time to unpack keys.

This precise fingerprinting and key compression paradigm is being in-
corporated into an in-flight entertainment standard currently being writ-
ten by the World Airline Entertainment Association.

8 Alternate Formulations and Open Problems

It is possible to generalize somewhat the requirements for effective key set
compression by utilizing any associative one-way hash function or one-

8

way accumulator ([BeMa93]). To do this, one begins by choosing a secret
starting value x and associating a public value ri with each datum Di to
be encrypted. The key to encrypt a given datum Di is derived from the
(associative) hash whose inputs are the secret starting value x and all of
the public values rj with j 6= i.

Each subscriber is given the (associative) hash whose inputs are the
secret starting value x and all of the public values rj for which the sub-
scriber is not entitled to the corresponding datum Dj . It is now an easy
matter for the subscriber to compute the key for any datum Dj to which
to which the subscriber is entitled. Furthermore, the amortization tree
method of section 5 works equally well here.

When a one-way accumulator is substituted for the associative hash
function and the accumulator operation is exponentiation modulo a com-
posite, then this is equivalent to the method of section 4.

Unfortunately, modular exponentiation is the only known method for
constructing an associative one-way hash or accumulator. It would be
useful to find other instantiations of these primitives. It would also be
desirable to find weaker primitives which might suffice to achieve the
results of this paper.

9 Conclusions

This paper describes a paradigm for effective compression of keys and its
application to digital fingerprinting. Data and keys can be transmitted
via a severely contrained channel so as to allow many subscribers to each
obtain access to individually customized data sets. A primary applica-
tion of this technique yields an extremely efficient mechanism for digital
fingerprinting that offers substantive advantages over previous methods.

References

[BeMa93] Benaloh, J. and de Mare, M. “One-Way Accumulators: A Decen-
tralized Alternative to Digital Signatures”. Advances in Cryptology —

EuroCrypt 93, ed. by T. Helleseth in Lecture Notes in Computer Sci-
ence, vol. 765, ed. by G. Goos and J. Hartmanis. Springer-Verlag, New
York (1994), 274–285.

[BoSh98] Boneh, D. and Shaw, J. “Collusion secure fingerprinting for digital
data”. IEEE Transactions on Information Theory, vol 44, no. 5 (1998),
1897–1905.

[ChTa89] Chick, G. and Tavares, S. “Flexible Access Control with Master
Keys”. Advances in Cryptology — Crypto 89, ed. by G. Brassard in
Lecture Notes in Computer Science, vol. 435, ed. by G. Goos and J.
Hartmanis. Springer-Verlag, New York (1990), 316–322.

9

[FiNa93] Fiat, A. and Naor, M. “Broadcast Encryption”. Advances in Cryp-

tology — Crypto 93, ed. by D. Stinson in Lecture Notes in Computer
Science, vol. 773, ed. by G. Goos and J. Hartmanis. Springer-Verlag,
New York (1994), 480–491.

[HaPe95] Halevi, S. and Petrank, E. “Storing Classified Files”. Unpublished

manuscript.
[Sham83] Shamir, A. “On the Generation of Cryptographically Strong Pseudo-

random Sequences”. ACM Transactions on Computer Systems, vol. 1,
no. 1, ACM, New York (1983), 38–44.

10

