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Abstract. Speaker-independent speech recognition systems are being
used with increasing frequency for command and control applications.
To date, users of such systems must contend with their fragility to sub-
tle changes in language usage and environmental acoustics. We describe
work on coupling speech recognition systems with temporal probabilis-
tic user models that provide inferences about the intentions associated
with utterances. The methods can be employed to enhance the robust-
ness of speech recognition by endowing systems with an ability to reason
about the costs and benefits of action in a setting and to make decisions
about the best action to take given uncertainty about the meaning be-
hind acoustic signals. The methods have been implemented in the form
of a dialog clarification module that can be integrated with legacy spoken
language systems. We describe representation and inference procedures
and present details on the operation of an implemented spoken command
and control development environment called DeepListener.
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1 Introduction

Science-fiction writers have long assumed that computer systems will one day
have the ability to understand spoken input and to interact with people in a fluid,
natural manner via conversational dialog. To date, most automatic speech recog-
nition (ASR) research has centered on the refinement of acoustic and language
models for identifying words from acoustic signals. Progress has been steady but
incremental with this approach, with recognition error rates dropping on average
by a small percentage each year.
We have pursued opportunities for making a qualitative leap forward in the

robustness of ASR through the coupling of traditional low-level speech models
with higher-level models of a user’s intentions. The user models take into con-
sideration the costs and benefits of taking different actions based on utterances,
and the expected utility of seeking clarification about a user’s intentions before
taking action.
We focus in this paper on work to enhance the robustness of speech recog-

nition for command-and-control systems. Spoken command-and-control systems
have been growing in popularity as a means for allowing people to control a
variety of telephony and software services in a handsfree manner. A number of
applications attempt to use speech recognition for guiding services in challeng-
ing acoustical contexts, such as interaction via a telephone or standard built-in
laptop microphones. The perceived quality of such systems is limited by the



error rate in interpreting spoken commands. We believe that advances in the
robustness, flexibility, and naturalness of spoken command and control systems
could make such applications of ASR more valuable and ubiquitous.
We have pursued endowing speech recognition systems with the ability to

refine their understanding of acoustical signals through the process of engaging
in human-oriented clarification dialog with the user. Clarification dialog centers
on gathering evidence about the meaning of an utterance or to discriminate
utterances from other sources of signal, such as ambient noise or overheard con-
versation. We harness, at the heart of the approach, a dynamic Bayesian network
to perform inference about a user’s intentions, and to integrate, in a cohesive
manner, evidence from multiple acoustical signals over time gathered via clarifi-
cation dialog. As we shall see, the Bayesian fusion of evidence over time, coupled
with utility-directed dialog, allows an ASR system to refine the probability of a
user’s intention, by overlaying the information from adjacent responses.
We shall present a model for representing key probabilistic relationships

among intentions and utterances, describe utility-directed procedures for mak-
ing dialog and domain-level actions, and present details on the operation of an
implemented spoken command and control development environment that has
been packaged as a module that can be integrated with legacy spoken command
and control systems.

2 Intentions, Context, and Uncertainty
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Fig. 1. A dynamic Bayesian network for reasoning about a user’s goals given a sequence
of utterances over time.

We shall focus on representations and inferential machinery for enhancing
the robustness of speech recognition for controlling automated services. As an
example service, the Lookout system [4] developed at Microsoft Research pro-
vides an automated calendaring and scheduling service. Lookout learns a user
model that is used to guide if, when, and how the service will be executed, and
uses these models to drive a mixed-initiative interaction with users. In one of
the chief modes of operation, users interact with Lookout in a handsfree manner,



using voice commands to accept or reject offers of automated assistance, and to
guide the calendaring activity.
We built our system on top of the command and control speech system

provided with the Microsoft Agent (MS Agent) package. The MS Agent package
is a freely available social agent development kit that provides a text-to-speech
(TTS) generator and command and control ASR. MS Agent has been employed
as the front end in a variety of software applications relying on speech recognition
and TTS.
Our approach centers on taking the action with highest expected utility for

the typical case where there is uncertainty about the intentions of the user. We
include in the set of decisions under consideration, several dialog actions that
seek clarification from the user by sharing the state of the system’s confusion
with the user in a natural manner.
We employ dynamic Bayesian networks to model the uncertainty in a user’s

goals and utterances over time. Dynamic Bayesian networks are probabilistic
dependency models that include temporal dependencies among random variables
at different times [8, 3, 10, 9]. Figure 1 displays two time slices of a larger
iterative decision problem for inferring actions in response to output from a
speech recognizer. Random variables are represented graphically as ovals with
dependencies between variables as arcs. The dashed arcs indicate key temporal
dependencies among variables in adjacent time slices.
Beyond reasoning about beliefs over time, we consider a decision problem

at each time slice to identify dialog and domain-level actions in response to the
user. As shown in the structure of the decision variable (square node) in Figure
1, the action associated with the largest expected utility is computed for each
period, based on the inferred probability distribution over a user’s goals.
To highlight the operation of the dynamic Bayesian network for increasing the

robustness of speech recognition, let us consider the typical use of the ASR sys-
tem for command and control. A listening session is initiated by a prompt from
the TTS system inquiring if the user wants to activate a service in the current
context. Following the initiation of a session, each recognition cycle, capturing
the user’s next turn in a dialog, is progressively represented by each time slice of
a dynamic Bayesian network. At the end of each turn, the ASR system processes
the acoustical signal and provides a set of recognized candidates.
At each step, a probability distribution over the goals of a user is inferred,

based on observations about the user’s activity, e.g., events from the shell of a
computer operating system or from a software application. Such computation
of a user’s goals based on activity and content has been a focus of work on
probabilistic user modeling (e.g., [5, 7, 1, 2, 6]).
In addition to considering evidence about a user’s activity, we analyze a set

of variables representing the output from a speaker-independent ASR system for
command and control. For the case of the Lookout system—the first application
domain of our work on clarification dialog—speech commands are used for a
variety of tasks including accepting or rejecting offers of service. We shall focus
on the simple case of clarification dialog for interpreting such acceptances and
rejections of a service. We defined a set of candidate utterances, including a
large set of responses capturing a range of ways people respond with to an
offer of assistance with an acknowledgment (e.g., “yes,” “okay,” “sure,” “yeah,”
“go ahead,” “right,” “alright,”“uh huh,” etc.) or a rejection (e.g., “no,” “go
away,” “not now,” “later,” “no way,” “get out of here,” “nah,” “nope,” etc.).
We also included candidates that represent utterances associated with a user’s
potential deliberation about the desirability of initiating a service (e.g., “um,”
“hmmm,” “let’s see,” “uh,” etc.). Finally, we considered the cases where the



ASR system detects an unrecognized sound, or where nothing is heard. The
set of variables represented in the model were abstracted as classes of response,
including affirmation, negation, reflection, no signal, and unrecognized signal.
Additional variables summarizing the status of a cycle of speech recognition

can provide context-sensitive information about the overall proficiency of speech
recognition. The variable labeled ASR reliability indicator in Figure 1 represents
such a variable. We found it useful to consider the special case where the speech
recognition analysis identifies a concatenation of two or more commands in a
single turn (e.g., “yes..uh..no, no”). In such cases, we analyze the last term rec-
ognized by the system. As indicated in the Bayesian network model, we condition
the user’s spoken intention on the status of such a reliability indicator.
In response to a user’s utterances, the speech recognition system provides

a list of recognized candidates and a measure of confidence for each candidate.
This measure of confidence is based on a common measure of uncertainty that is
computed in many low-level speech models, referred to as perplexity. As repre-
sented in Figure 1, the user’s spoken intention influences the classes of response
and their confidences. We allow dialog designers to assess in the development
environment prior conditional probabilities representing the likelihood of hearing
different classes of response with specific values of confidence, given the user’s
actual utterance, referred to as the user’s spoken intention.

3 Utility-Directed Decisions about Dialog and Action

At run-time, the low-level speech recognition system is called, the utterance is
evaluated, the reliability variable is set, and a list of candidates and confidences
for the current time slice are communicated to the dynamic Bayesian network.
A probability distribution is inferred over the classes of response represented
by the processed acoustic signal and the local decision with maximum expected
utility is identified. In the current system, base-level actions include:

– Execute the service being offered

– Ask the user to repeat the spoken intention

– Note the hearing of a noise and inquire

– Try to acquire the user’s attention

– Confirm the user’s intention to bypass the offer of service

We constructed a utility model by assessing a space of outcomes defined as
the cross product of the situations under consideration and these actions. In
our prototype for Lookout, we assessed utilities, u(Ai, Sj), for the twenty-five
outcomes, constructed from the five actions A and five situations S.

4 Global Analysis of Conversational Progress

Beyond considering the best next action at each time slice, we worked to over-
lay a more global consideration of conversational progress. Such consideration
involves monitoring the overall nature of the efficiency of conversation by con-
sidering the number of turns and the convergence versus nonconvergence of the
dialog system on a user’s intentions over time. The function of this service is



to notice when things are not going well, and to consider the utility of trou-
bleshooting the overall conversation. Conversational troubleshooting makes use
of representations of the growing frustration of users with increasing numbers of
steps of clarification dialog. Just as a person who is hard of hearing might stop
and mention that things are just not going well in the conversation and sug-
gest an alternate strategy, the system considers stepping outside of the stepwise
dialog to engage in troubleshooting, including such behaviors as describing the
problem, reflecting about what was heard so far, and then trying again.
We explored several representations for integrating such capabilities into

DeepListener, including the embedding of distinctions about progress into each
time slice and the overlaying of a monitoring system at a higher conversational
level of analysis. The current implemented version of DeepListener bases its de-
cisions to troubleshoot on a model of frustration that grows with the number
of explicit steps of interaction. Explicit turns include all interactions except for
steps where the user is likely pausing to reflect about an intention or where the
user is likely not attending to the dialog. The development environment allows
users or system developers to encode preferences about the value of engaging
in troubleshooting at each step as a function of the number of steps and the
dynamics of beliefs.

5 DeepListener Implementation

We built and tested several implementations of DeepListener. At the heart
of DeepListener is a dynamic Bayesian model constructed with the MSBNX
Bayesian modeling tool developed at Microsoft Research. Run-time components
for dynamic Bayesian inference and decision making and MS Agent components
were meshed to create a run-time system and a set of development tools. The
tools include controls that enable developers or users to assess utilities of out-
comes. The development environment also provides a programmatic interface
and methods for defining the relationship between an external user model used
by the application being extended with a spoken dialog system. The interface
includes a graphical representation of the dialog system’s belief about the user’s
goals as a function of beliefs inferred in an external user model.
To complement the dialog decision making machinery, a set of appropriate

utterances and gestures for the animated agent were designed for each DeepLis-
tener action. To enhance the naturalness of interaction, gestures and utterances
are drawn randomly at runtime from a pool of candidate gestures for each action.
Figure 2 shows the user interface provided by DeepListener to developers

for coupling the system with legacy applications, viewing inferences, and test-
ing interactive behaviors. The sequence of utterances and their confidences are
displayed in an utterance-trace window at the upper left of the display. In this
case, the system heard a “yeah,” followed by a “yes,” followed by the name of
the user, all heard with low confidence. The best action here is for DeepListener
to share it’s belief that it is overhearing sounds that were not intended for the
system. This action involves relaying the system’s reflection via a thought cloud
over the animated agent. At the lower right-hand corner of the interface, feed-
back on the system’s listening and reasoning is provided in the form of a colored
lens. A green glow indicates that the system is listening for a user response,
yellow indicates that the system is confused, and red indicates that the system
is peforming recognition or inference and, thus, is temporarily unavailable for
listening. Such feedback on listening and reasoning status provides information
analogous to the communication backchannel of expressions and gestures about
understanding that listeners may relay to speakers in natural conversations.



Fig. 2. Main screen of DeepListener system. The system provides tools for assessing
utilities, displaying inferences over time, and interfaces for coupling DeepListener’s
beliefs to the beliefs of an external user modeling system.

Figure 3 shows DeepListener’s preference assessment tools. The utility as-
sessment tool on the right allows users to order their preferences about basic
outcomes and to assess utilities using relative distance by moving sliders between
the best and worst utilities. The figure displays outcomes for the case in which
a user desires a service offered by the agent. The tool on the right demonstrates
the facility for assessing a function that yields the utility of troubleshooting as
a function of the number steps in a conversation without convergence on under-
standing.

6 Real-Time Interaction with DeepListener

At run time, DeepListener executes dialog and real-world actions at each turn
in a manner consistent with its current uncertainty about the observed sequence
of utterances and the expected consequences of alternative actions.
In many situations, DeepListener hears well enough to simply perform the

intended action within a single step. In such scenarios, the system performs
just as a simple speech recognition would in response to an accurate recognition.
However, the system’s understanding of an intention may not be good enough to
invoke an action in the world. The top portion of Figure 4 displays traces of the
beliefs about a user’s intentions, and the expected utility of alternate actions
over time, for an interactive session where the user was in a relatively noisy
environment (background noise was generated by HVAC and equipment fans)
and sat approximately four feet from a standard built-in microphone embedded
in a laptop computer. An automated service was offered per an inference about
user goals, yielding prior probabilities on alternate intentions. The user uttered
“ummm...” in the process of reflecting about the desire for the service, following
by “okay.” The system heard this response with a low confidence and requested a
clarification, at which point the user said, “yes.” Although this response was also
heard with low confidence, the update to beliefs about the user’s desire for the



Fig. 3. Views of DeepListener’s preference assessment tools. Left: Interface for assess-
ing stepwise outcomes, showing outcomes for the case where the user desires a service.
Right: Tool for assessing a troubleshooting function representing the utility of trou-
bleshooting with increasing numbers of steps in the dialog.

service led to an invocation of the service, given a consideration of the expected
utilities of all actions. This example highlights how utility-directed clarification
dialog can fuse evidence across time to converge on an intended action. The
lower portion of Figure 4 shows the behavior of DeepListener at steps 2 and 3
of this case.
Overall, the experience of communicating with a DeepListener-enabled ap-

plication differs qualitatively from interacting with traditional speech command
systems. In distinction to traditional ASR, DeepListener understands when it
should gather additional information before taking (potentially erroneous) ac-
tions or simply expressing a failure to understand. For example, interacting with
the system in noisy environments—or at a relatively long distance away from a
microphone—invokes the impression of attempting to communicate with a per-
son who is having difficulty hearing but desires to work with the speaker to
clarify the utterance. Also, users can assume, as they do with people they are
interacting with, that there is a shared memory of the recent communication
experience. Thus, during a cycle of clarification, a user can utter different words
to describe an intention and expect the system to have considered the history of
interaction, rather than assuming that each clarification is starting anew.
Figures 5 and 6 display inference over sample sessions that led to trou-

bleshooting. For the case presented in Figure 5, the utility of troubleshooting
eventually dominated other actions, following a sequence of poor recognitions
and detection of background noise. The system shared a summary of its analysis
and recommended that the user adjust the microphone and speak with greater
articulation. For the session presented in Figure 6, the system heard low con-
fidence utterances (e.g., a muffled “yeah”) signaling an intention to go ahead
with a service, interspersed with signs of reflection (e.g., “hmmm, let’s see,”).
After three steps of clarification dialog, the system initiated conversational trou-
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Fig. 4. Top Left: Beliefs about a user’s intentions over a three-step interaction in a noisy
environment. Top Right: Expected utilities inferred over the interaction, converging on
an invocation of service. Bottom: Behavior of DeepListener at steps 2 and 3 of this
session.

bleshooting, relaying to the user its sequence of beliefs about the user’s intentions
over time, and giving the user a tip about how to best communicate the most
likely intention.
We are currently pursuing methodical tests of DeepListener in different kinds

of environments to see how much better the system performs over a naive, spoken
command and control system. We are also investigating the use of machine
learning to learn key probabilistic dependencies from data and the extension
of the system to consider additional sensory information about a user’s context
and attention. Some of this work is being pursued in the related Quartet project,
focused on developing a multilevel conversational architecture [11].

7 Summary

We presented methods for extending traditional speech recognition systems with
representations and inference machinery that consider the intentions associated
with one or more utterances, and that continue to weigh the costs and benefits
of alternate behaviors. The approach centers on the use of temporal proba-
bilistic inference and expected utility to guide clarification dialog and domain-
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Fig. 5. Troubleshooting of the overall conversation following a sequence of poor recog-
nitions and detection of background noise.

level actions. We described DeepListener, a clarification-dialog development en-
vironment that can be used to construct run-time spoken command and control
systems. DeepListener employs utility-directed clarification dialog to acquire a
growing sequence of utterances that is subjected to Bayesian analysis at each
turn in a dialog. We reviewed the use of DeepListener to extend the robust-
ness of spoken command and control for guiding the provision of automated
services. We believe that the methods embodied in DeepListener show promise
for enhancing the performance of spoken language systems in a variety of real-
world situations and environments. We believe that the use of utility-directed
clarification dialog transforms in a qualitative manner the overall experience of
interacting with a spoken language system. Our ongoing work on DeepListener
centers on quantitatively assessing the value of the approach in real-world set-
tings, and on extensions to both the overall architecture and the methodology
for constructing user models for clarification dialog.
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