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Abstract

We describe novel fast learning curve meth-
ods | methods for scaling inductive methods
to large data sets { and their application to
clustering. We describe the decision theoretic
underpinnings of the approach and demon-
strate signi�cant performance gains on two
real-world data sets.
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1 Introduction

In situations where one has access to massive amounts
of data, the cost of building a statistical model can be
signi�cant if not insurmountable. A common practice
is to build the model on the basis of a sample of the
data. However, the choice of the size of the sample to
use is far from clear. In this paper, we describe the
learning curve method, an approach to choosing the
size of sample to use for training, and its application
to the problem of clustering large data sets. Learn-
ing curve methods rely upon two basic observations;
�rst, the computational cost increases as a function of
the size of the training data and second, the perfor-
mance/accuracy of a model has diminishing improve-
ments as a function of the size of the training data.
The curve describing the performance as a function of
the size of the training data is often called the learning
curve. The typical shape of a learning curve is concave
with performance approaching some limiting behav-
ior. This suggests that one can often signi�cantly re-
duce the cost of training a model without signi�cantly
reducing the performance of the resulting model by
simply reducing the amount of data used to train the
model. The goal of a learning curve method is to bal-
ance the computational cost of training a model from
data with the bene�ts of increases in accuracy.

We describe the learning curve method and its appli-
cation to the problem of learning a clustering model.
Unlike previous applications of this approach to scal-
ing learning methods, our focus is on how one can
adapt the training policy, the method by which the
training algorithm is applied to subsets of the data.
One idea that we investigate is the use of compu-
tationally fast but crude training methods to deter-
mine the size of the sample to use for training. For
an iterative training method such as the Expectation-
Maximization algorithm, one can run the algorithm a
�xed number of iterations or run the algorithm to a
convergence threshold at which the statistical model
is only partially trained. Additionally, we consider
using the results of the training algorithm obtained
on smaller data sets as the initialization of the train-
ing algorithm for larger data sets. Using these basic
ideas, we provide several simple e�cient methods for
choosing the amount of data for training a cluster-
ing model. We demonstrate signi�cant computational
performance gains on two real-world data sets obtain-
ing, roughly, a 5 to 20 fold speedup when using these
methods.

2 The Learning Curve Method

The basic idea of a learning curve method is to itera-
tively apply a training algorithm to larger and larger
subsets of the data until the future expected costs out-
weigh the future expected bene�ts associated with the
training. There are three main components of a learn-
ing curve method. The �rst component is the data

policy; the schedule by which one uses portions of the
data set to train a model. The second component is
the training policy, which de�nes how one applies a
training algorithm to the data. The �nal component
is the convergence criterion, which is how one deter-
mines that the marginal cost associated with training
exceeds the marginal bene�t of improved performance.
Each of these will be discussed in more detail below.



2.1 Data Policy

Two types of �xed data policies have been considered.
John and Langly (1996) consider incrementally adding
a �xed number of data points and Provost, Jensen, and
Oates (1999) consider incrementally adding a geomet-
rically increasing number of data points. As argued
by Provost et al., when one does not have an accurate
guess as to the \correct" number of data points to
achieve the proper cost/bene�t tradeo�, the method
of incrementally adding a �xed number of data points
can require an unreasonable number of iterations when
a large number of data points is needed. In contrast,
when using a geometric schedule, one can quickly reach
an appropriate number of data points. For instance, if
the cost of training is roughly linear in the number of
data points, then using a geometric schedule to train
on data sets of size k � 20; k � 21; : : : ; k � 2i until we
reach some data set of size k � 2i (N < k � 2i < 2N)
will require only a constant factor more computation
than simply applying the training method to the data
set of N data points.

An alternative approach is to adaptively choose the
number of data points for consideration by modeling
the shape of the learning curve.

In this work we evaluate a geometric data policy. We
label the successive data sets D1; : : : ; Dn where Di �
Dj if i < j.

2.2 Training Policy

The training policy is the method used when evaluat-
ing the subsets of training data, D1; : : : ; Dn. By care-
fully choosing this method it is possible to gain signif-
icant increases in performance, that is, one can signif-
icantly reduce the amount of time it takes to identify
the number of data points Nlc needed to adequately
train the model and, thus, reduce the amount of time
needed to train the model. Note that the training pol-
icy used while determining Nlc might not correspond
to the training policy used to obtain the �nal model
using the Nlc data points. If alternative training poli-
cies yield similar learning curves then one can choose a
computationally e�cient policy to select a number of
data points for training which would be similar to the
number chosen by a computationally more expensive
policy.

For the application of the learning curve methods to
clustering we consider two aspects of the training pol-
icy. First, we consider alternative convergence thresh-
olds and alternative �xed numbers of iterations of an
iterative learning algorithm. In this paper, we use the
Expectation-Maximization (EM) algorithm. Second,
we consider the reuse of parameter estimates from pre-

vious stages of processing. We denote the parameters
obtained from training a model on subset Di by �(Di).

2.3 Convergence Policy

The convergence policy is the method by which we de-
cide that we have identi�ed the number of data points
needed to adequately train the statistical model. It is
natural to view this component from a decision theo-
retic perspective. Given a �xed training and data pol-
icy, how does one balance the tradeo� between the cost
of training and the bene�t of improved performance.

In the case of clustering, it is natural to measure the
expected cost of training in terms of the expected time
it will take to train on the next data set. Alternatively,
when using the EM algorithm, the time is roughly lin-
ear in the size of the data set and, thus, one can mea-
sure cost in terms of the size of the next data set. We
assume that the cost is linear in the size of the data
set (i.e. roughly linear in time). Thus, after evaluat-
ing data set Dn the cost to evaluate/train on the next
data set would be jDn+1j.

Again, in the case of clustering, it is natural to evalu-
ate the bene�t in terms of the performance on holdout
data. We use the log-likelihood of the model on hold-
out data, l(Dhoj�(Di)). There are a variety of natural
measures of expected bene�t. For our analysis, we as-
sume that the expected bene�t is linear in the relative
improvement in holdout score between two most re-
cent data sets and the improvement in holdout score
between the most recent data set and a baseline model,
�base(D1).

Thus, under these assumptions, we choose to termi-
nate the learning curve method after evaluating data
set Dn when the learning curve convergence measure,
the ratio of bene�t over cost, drops below the (learning
curve) convergence threshold, �, that is,

l(Dhoj�(Dn))� l(Dhoj�(Dn�1))

l(Dhoj�(Dn))� l(Dhoj�base(D1))

1

jDn+1j
< �: (1)

When the ratio of the bene�t over cost drops below
this convergence threshold we say that the (learning
curve) convergence criterion is satis�ed.

In our experiments we choose the baseline model to be
a model in which all of the features are mutually inde-
pendent. Alternative policies have been described by
John and Langley (1996) and Provost et al. (1999).
Our policy is simple but potentially sensitive to lo-
cal variations in the learning curve. Fortunately, our
experiments, described below, suggest that learning
curves for clustering models are usually smooth. In
situations where the learning curves are not smooth,
the alternative policies suggested by John and Langly
and Provost et al. may be useful.



MSNBC

Sample size

method 40000 80000 160000 320000 497971

�xed-1 0.002363 0.000472 0.000099 0.000017 0.000003

�xed-3 0.001281 0.000299 0.000065 0.000016 0.000003

�xed-5 0.001060 0.000244 0.000051 0.000017 0.000002

�xed-10 0.001134 0.000289 0.000056 0.000010 0.000005

thres-0.1 0.001577 0.000350 0.000078 0.000018 0.000005

thres-0.01 0.000372 0.000241 0.000046 0.000015 0.000003

thres-0.001 0.001855 0.000210 0.000070 0.000022 0.000002

thres-0.0001 0.002332 0.000399 0.000085 0.000027 0.000003

naive 0.002342 0.000425 0.000131 0.000019 0.000000

MS.COM

Sample size

method 40000 80000 160000 320000 640000 1280000 1838877

�xed-1 0.026042 0.003178 0.000371 0.000141 0.000036 0.000007 0.000003

�xed-3 0.006356 0.001501 0.000347 0.000081 0.000024 0.000003 0.000002

�xed-5 0.003913 0.001363 0.000336 0.000067 0.000021 0.000003 0.000001

�xed-10 0.002515 0.000998 0.000319 0.000073 0.000020 0.000004 0.000001

thres-0.1 0.006356 0.001501 0.000347 0.000081 0.000024 0.000003 0.000002

thres-0.01 0.002628 0.000576 0.000237 0.000099 0.000020 0.000005 0.000001

thres-0.001 0.001421 0.001017 0.000351 0.000061 0.000016 0.000004 0.000001

thres-0.0001 0.001449 0.000910 0.000373 0.000081 0.000026 0.000002 0.000001

naive 0.002307 0.000857 0.000393 0.000094 0.000029 0.000004 0.000001

Table 1: Values for the learning curve convergence measure at sample sizes given by the data policy.

3 Methods, Models, and

Experimental Results

In this section, we evaluate several di�erent learning
curve methods for the problem of clustering large data
sets. As described above, each of the methods utilizes
the geometric �xed data policy and continues to eval-
uate larger data sets until the learning curve conver-
gence criterion is satis�ed. Each of the learning curve
methods is distinguished only on the basis of the train-
ing policy and not the convergence or data policies.

We investigate a simple but widely used class of mod-
els for clustering, namely �nite mixture models, where
each component is de�ned by a log-linear model with
only main e�ects for all variables in the data set.
These models can alternatively be viewed as naive-
Bayes models with a hidden class variable, also known
as AutoClass models (Cheeseman and Stutz, 1995).

We use the EM algorithm to train the mixture models.
We initialize the algorithm by estimating the param-
eters for the baseline model and then randomly per-
turb parameter values by a small amount to obtain
a parameterization for each mixture component. See
Thiesson, Meek, Chickering, and Heckerman (1999)
for further details. The convergence criterion that
we use to terminate the EM algorithm is the follow-
ing. We converge when the relative improvement in
log-likelihood of the training data between successive
EM iterations relative to the total improvement in log-
likelihood over the initial model is less than the EM
convergence threshold 
. Typically when running the
EM algorithm, one runs the algorithm to a conver-

gence threshold that is quite low. In our experiments
we use 
final = 10�5 when we train the mixture model
after having used a learning curve method to deter-
mine the adequate number of data points Nlc to be
used in the �nal training of the model.

Our benchmark learning curve method is the LCnaive

method which runs the EM algorithm to EM conver-
gence threshold 
final on each data set using the same
initial parameterization until the (learning curve) con-
vergence criterion � is satis�ed. The LCfixed meth-
ods runs the EM algorithm for a �xed number of it-
erations using the same initial parameterization. The
LCthres methods runs the EM algorithm to a EM con-
vergence threshold 
lc > 
final on each of the data sets
Di using the same initial parameterization for each
data set. The LCnaive method corresponds to LCthres

with threshold 10�5. Our �nal types of method are
the LCreuse

fixed and LC
reuse
thres methods which are similar to

the LCfixed and LCthresh methods. They di�er in the
following two ways. First, parameter values �(Dn�1)
(except those parameter values associated with com-
ponent mixture weights which are set to be uniform)
obtained from the previous iteration in the learning
curve method are used to initialize the EM algorithm
for data set Dn. Second, when reusing parameter val-
ues, some cluster components loose all of their support
due to the size of the initial data sets. To alleviate
this premature component starvation we identify com-
ponents that have little or no support (less than one
case) and reset the component parameterization to its
initial parameterization.
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Figure 1: LCfixed and LCthres learning curves for the
MSNBC and MS.COM data sets.

3.1 Data Sets

We evaluated the learning curve methods on two real-
world data sets. TheMSNBC data set, is derived from
web logs for one day in 1998 for the MSNBC website.
It records which of the 303 most popular stories on
that day each of the visitors read. The MS.COM data
set is derived from the web logs for one day in 2000 for
the microsoft.com web site. It records which areas or
\vroots" of the site each of the user visited among the
775 most popular sites. In each of the data sets, users
correspond to cases and items possible viewed corre-
spond to variables. Both data sets are sparse in the
sense that on average a user only views a few items.
The MSNBC data set contains 597,971 users and the
MS.COM data set contains 1,938,877 users. The data
sets were partitioned into training and holdout sets at
random. In both cases, we used 100,000 users for the
holdout set and the remaining users for the training

set. The holdout set is used during both the evalu-
ation of the learning curve convergence criterion and
the evaluation the �nal holdout score after the EM al-
gorithm is run to EM convergence threshold of 
final
for the selected number of cases Nlc.

We have investigated mixture models with 25, 50, and
100 components. All experiments were qualitatively
similar and demonstrated the same trends. Hence, in
this paper, we only report results for the 25 component
mixture model.

3.2 Results

We �rst concentrate on the LCfixed and LCthres meth-
ods. Figure 1 shows learning curves for these methods
on the MSNBC and MS.COM experiments. The num-
ber of iterations used for the LCfixed and the thresh-
old used for the LCthres are indicated to the right of
'�xed' and 'thres' in the legend for the �gure. For
the MS.COM data set, the thres-0.1 curve is identical
to the �xed-3 curve and can therefore not be distin-
guished in the �gure.

We see that all LCfixed methods display same behav-
ior as the LCnaive method. In particular, we notice
that the one-step LCfixed method shows this behav-
ior, which implies that the learning curve convergence
can be detected e�ciently for clustering models. Be-
ing able to quickly evaluate the adequacy of alterna-
tive subsets of training data allows one to more easily
use other convergence policies such as the LRLS policy
suggested in Provost, Jensen, and Oates (1999).

From Figure 1 we also notice that the learning curves
for LCthres methods and the LCnaive method are sim-
ilar in shape. In our experience, the LCthres curves
are noisier and do not track the LCnaive curve as well
as the LCfixed methods. The explanation for this is
that EM convergence is only evaluated after a com-
plete pass through the data and successive steps of the
LCthres may run the EM algorithm a di�erent number
of iterations. This di�erence can have a dramatic e�ect
on the resulting parameterization (especially when the
EM convergence level 
lc is high) and, hence, a dra-
matic e�ect on the log-likelihood score for the holdout
set. Since our convergence policy is based on local
tests, this behavior may occasionally force the algo-
rithm to terminate early and choose a sample size that
is too low. Alternative convergence policies might al-
leviate this di�culty with the LCthres methods.

It is useful to compare the learning curve convergence
measures for the alternative learning curve methods.
If the convergence measures for the alternative meth-
ods follow the convergence measures of the LCnaive

method for di�erent sample sizes, then the methods
will likely choose identical sample sizes to be adequate



for training, that is, theNlc chosen by the methods will
be similar. Table 1 demonstrates that the convergence
policy in Equation (1) has this property. For our two
data sets, there are many values of the convergence
threshold for which all of the LCthres and LCfixed

learning curve methods will select the same sample
size, and some thresholds for which the adequate sam-
ple size varies by only one step in the data policy. For
instance, for LC convergence level � = 0:0005, all but
one method agree on 80,000 cases for MSNBC, and for
all MS.COM experiments the adequate sample size is
160,000 cases.

To present performance results for the learning curve
methods we introduce the following additional nota-
tion. Let EM-full denote the method which runs EM
to EM convergence level 
final on the full data set.
The elapsed time to run a learning curve method to
convergence is the time needed to choose the number
of data points Nlc plus the time needed to run EM to
convergence level 
final on those Nlc data points. On
the �nal run of EM we use the parameters obtained
during the last step of the learning curve method as
the initial values for the EM algorithm. We compute
the speedup factor as the runtime for EM-full to reach
convergence divided by the elapsed time for a learn-
ing curve method to reach convergence. To compare
the quality of the learned models we also compute the
holdout score: log p(Dhoj�̂lc), where �̂lc denote the es-
timate obtained by the particular method. Methods
that choose identical sample sizes Nlc will yield iden-
tical holdout scores. Finally, to measure the cost of
using the learning curve method we compute the over-
head ratio as the elapsed time to run the method to
convergence divided by the runtime for the standard
EM algorithm when run on the adequate sample size
Nlc to an EM convergence level of 
final.

Table 2 shows the adequate sample sizes, test scores,
speedup ratios, and overhead ratios that we obtain
for MSNBC and MS.COM when training the 25 com-
ponent mixture models. Results shown are for the
learning curve convergence threshold � = 0:0005.
Of course, a higher convergence threshold will tend
to select a smaller Nlc and provide more signi�cant
speedups; the choice of � is our cost/bene�t tradeo�.
As suggested by Table 1 all methods (approximately)
agree on the adequate sample size Nlc.

The speedup factor for a learning curve method de-
pends on both the size and other features of the data
set. By choosing larger data sets one can arbitrarily
improve the speedup factor for the full EM algorithm
comparison for a �xed �. Hence, the speedup numbers
in the table do not express the obtainable computa-
tional bene�t from using learning curves methods, but
provide us with a way to compare the di�erent meth-

MSNBC

Nlc holdout speedup overhead

method score factor ratio

�xed-1 80000 -956531 4.9 1.03

�xed-3 80000 -956531 4.8 1.05

�xed-5 80000 -956531 4.8 1.06

�xed-10 80000 -956531 4.6 1.10

thres-0.1 80000 -956531 4.9 1.04

thres-0.01 40000 -965492 10.4 1.08

thres-0.001 80000 -956531 4.0 1.28

thres-0.0001 80000 -956531 3.3 1.52

naive 80000 -956531 3.0 1.66

EM-full 497971 -949953 1.0 1.00

MS.COM

Nlc holdout speedup overhead

method score factor ratio

�xed-1 160000 -563194 19.7 1.02

�xed-3 160000 -563194 19.5 1.04

�xed-5 160000 -563194 19.2 1.05

�xed-10 160000 -563194 18.6 1.09

thres-0.1 160000 -563194 19.5 1.04

thres-0.01 160000 -563194 18.4 1.10

thres-0.001 160000 -563194 15.9 1.27

thres-0.0001 160000 -563194 13.9 1.45

naive 160000 -563194 10.6 1.90

EM-full 497971 -550914 1.0 1.00

Table 2: Adequate sample sizes, holdout scores,
speedups, and overheads for the LCfixed and LCthres

learning curve methods.

ods. Aside from di�erence in the selected size of Nlc,
the one-step method is the most e�cient of the LCfixed

and LCthres methods. Each of the methods provides
a signi�cant speedup.

The overhead ratios in Table 2 provides us with a guide
to the overhead of applying the learning curve method
to clustering. The ratios show that several of the LC
methods evaluated in this paper have very little over-
head. The overhead ratio is sensitive to the choice of

final. By choosing 
final to be larger, the �nal run
of EM would likely run fewer iterations and the rel-
ative amount of time that is spent determining Nlc

would increase making the overhead ratio larger. For

final = 10�5, the LCfixed method using a single EM
iteration has a overhead ratio close to one. Despite the
sensitivity to 
final, the impressive overhead ratios are
due, in part, to the e�ective use of a training policies to
identify the adequate number of data points. This can
be seen in the large di�erence between the overhead ra-
tios of the LCnaive method and the other LCfixed and
LCthres methods. The relative importance of alterna-
tive training policies can also be seen in the large dif-
ference between speedup factors between the LCnaive

and the other LCfixed and LCthres methods.

Now we consider the LCreuse
fixed and LCreuse

thres methods.
The results for these methods are not as regular as
compared to the other methods. In particular, both
LCreuse

fixed and LCreuse
thres methods skew the selection of



the adequate sample size towards larger sample sizes
| sometimes signi�cantly larger | than the one we
obtain from the LCnaive method. For the same con-
vergence threshold � = 0:0005, as used for the exper-
iments reported above, all but one of the reuse LC
methods selects an adequate sample size of 320,000
for MSNBC and all methods select a sample size of
640,000 as adequate for MS.COM. This indicates that
the learning curves for the reuse methods have a sig-
ni�cantly di�erent shape than the LCnaive learning
curve.

We have found that with learning curve convergence
level � = 0:005, all LCreuse

fixed and LCreuse
thres methods (ap-

proximately) select the same sample size as LCnaive.
We currently do not have any insight about how the
LC convergence threshold for the reuse LC methods
scale with the convergence threshold for the naive
method.

Table 3 shows the adequate sample sizes, test scores,
speedups, and overheads that we obtain for MSNBC
and MS.COM where we have used LCreuse

fixed and
LCreuse

thres methods with learning curve convergence
threshold � = 0:005 to train models with 25 clusters.

MSNBC

method Nlc holdout speedup overhead

with reuse score factor ratio

�xed-1 160000 -951241 1.5 1.13

�xed-3 80000 -954587 3.2 1.57

�xed-5 80000 -955439 4.8 1.06

�xed-10 80000 -957846 5.0 1.00

thres-0.1 160000 -950591 1.5 1.14

thres-0.01 80000 -955539 4.5 1.13

thres-0.001 80000 -960141 4.7 1.07

thres-0.0001 80000 -958500 4.2 1.21

thres-0000001 80000 -958252 3.7 1.38

EM-full 497971 -949953 1.0 1.00

MS.COM

method Nlc holdout speedup overhead

with reuse score factor ratio

�xed-1 160000 -561997 20.9 0.96

�xed-3 160000 -565041 17.8 1.13

�xed-5 160000 -566180 14.5 1.39

�xed-10 160000 -566909 25.3 0.80

thres-0.1 160000 -564072 14.3 1.41

thres-0.01 80000 -580073 45.7 0.71

thres-0.001 160000 -568619 28.1 0.72

thres-0.0001 160000 -568656 18.2 1.11

thres-0.00001 160000 -568699 24.3 0.83

EM-full 497971 -550914 1.0 1.00

Table 3: Adequate sample sizes, holdout scores,
speedups, and overheads for the LCreuse

fixed and LCreuse
thres

learning curve methods.

Results for the reuse methods show improved speedup
for most of the methods (aside from di�erences in the
selected size of Nlc), and surprisingly, even compared
to the one-step LCfixed method. In most cases, the im-
proved e�ciency has, however, the cost of additional

reduced log-likelihood scores on the holdout set, even
for the same Nlc. This suggests that reusing the previ-
ous parameterizations can drive the algorithm towards
convergence more quickly resulting in fewer iterations
being needed for the �nal run of the EM on the Nlc

data points. However, this gain comes at the cost of a
�nal parameterization with lower overall holdout score
| even when being smart about the initialization, as
described in Section 3.

4 Related and Future Work

Learning curve methods are a natural way to improve
the scalability of a learning algorithm. In this paper,
we have described the application of learning curve
methods to the problem of identifying good clusters
of data for a �xed number of mixture components.
There are many areas for future investigation. One in-
teresting area for future work is to adapt these learn-
ing curve methods to simultaneously select the number
of clusters in the model and the size of the data set.
However, one might expect that, by increasing the size
of the data set, one increases the need for additional
clusters; with more data you might need more compo-
nents.

In this paper, we have limited the application of de-
cision theory to the convergence policy. It might be
useful to consider decision theoretic approaches of con-
trolling the data and training policies. In addition, al-
ternative adaptive data and training policies should be
investigated. Additional investigation of the connec-
tion between the learning curve convergence measures
for the LCnaive and reuse LC methods are needed.
Finally, our approach of using crude computationally
e�cient training methods for determining the appro-
priate number of data points to use for training should
be evaluated for alternative iterative training methods
(e.g. stochastic gradient descent, Newton-Raphson)
and for alternative statistical models (e.g. classi�ca-
tion and regression models).
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