Microsoft Cambridge at TREC-9: Filtering track

S E Robertson*

1 Summary

Apart from a short description of our Query Track contri-
bution, this report is concerned with the Adaptive Filter-
ing track only. There is a separate report in this volume
[1] on the Microsoft Research Cambridge participation in
QA track.

A number of runs were submitted for the Adaptive Fil-
tering track, on all tasks (adaptive filtering, batch filter-
ing and routing; three separate query sets; two evalua-
tion measures). The filtering system is somewhat more
advanced than the one used for TREC-8, and includes
query modification and a more highly developed scheme
for threshold adaptation. A number of diagnostic runs
are also reported here.

2 OQOkapi at TRECs 1-8

A summary of the contributions to TRECs 1-7 by the
Okapi team, first at City University London and then at
Microsoft, is presented in [7]. Here we discuss only the
routing and filtering task submissions.

Over the course of TRECs 1-6, we developed itera-
tive methods of optimising the routing queries which were
very successful, though computationally heavy. In succes-
sive TRECs our methods were enabled to explore more of
the potentially huge space of possible queries. In TRECs
5 and 6 we used the same methods for batch filtering,
again successfully.

However, we put these iterative methods aside for the
adaptive filtering task in TREC-7. Here and in TREC-8
we concentrated on developing thresholding techniques,
and did not in fact modify initial queries at all. This
approach was relatively successful in TREC-7, but by
TREC-8 many participants had better methods which
additionally expanded or modified the queries adaptively,
and we were somewhat left behind.

3 The system

At the Microsoft Research laboratory in Cambridge, we
are developing an evaluation environment for a wide range

*Microsoft Research Ltd, 1 Guildhall Street,
CB2 3NH, UK, and City University, London,
ser@microsoft.com

fMicrosoft Research Ltd, 1 Guildhall Street, Cambridge CB2
3NH, UK. email sw@microsoft.com

Cambridge
UK. email

S Walkerf

of information retrieval experiments. This environment is
called Keenbow. The Okapi BSS is seen as a component
of Keenbow.

Many aspects of the system, including the weighting
scheme and the query expansion methods used, reflect the
various components of the probabilistic model of retrieval
discussed at length in [8].

3.1 The
(BSS)

The BSS, which has been used in all Okapi and
Okapi/Keenbow TREC experiments, is a set-
oriented ranked output system designed primarily
for probabilistic—type retrieval of textual material using
inverted indexes. There is a family of built-in weighting
functions collectively known as BM25, as described in [6,
Section 3] and subsequent TREC papers. In addition to
weighting and ranking facilities it has the usual boolean
and quasi-boolean (positional) operations and a number
of non-standard set operations. Indexes are of a fairly
conventional inverted type. There have been no major
changes to the BSS during TREC-9.

Okapi Basic Search System

3.2 Query expansion/modification

Given some known relevant documents, the query may
be modified (primarily by adding new terms, but weights
may be adjusted and an ineffective query term might also
be dropped).

The initial step is to choose terms. Prior to TREC-8
the method used was that proposed in [9] by which terms
are ranked in decreasing order of a term selection value
or offer weight:

TSV = raw® (1)

(where w() is the Robertson/Sparck Jones weight [5], a
component of BM25, and r is the number of (known) rel-
evant documents in which the term occurs). The top
t ranked terms are then chosen. For TREC-8 a new
method was developed. This is based on a significance
argument, and thus allows an absolute threshold on the
offer weight, which may select different numbers of terms
under different conditions. The formula is discussed in
[7], and is as follows:

N
NTSV =rlog— —log(f) —logV (2)
n

where r is as above; R is the total number of (known)
relevant documents; n is the number of documents in the
collection which contain the term; N is the size of the
collection; V is the size of the vocabulary (number of dis-
tinct terms). We may use an absolute threshold criterion
with this new offer weight:

NTSV > ¢ (3)

An argument was presented last year that zero would be
a suitable value for c.!
The basic approach to query reformulation may now be
described as follows:
1. extract all terms from all documents judged or assumed
to be relevant
2. rank all terms, including original query terms, in order
of offer weight
3. select those terms above a threshold or cut-off, defined
as a threshold on the offer weight and/or a cut-off on the
number of terms

4. weight the terms according to the usual relevance weight-
ing formula (not the same as the offer weight)

Either or both the offer weight and the relevance weight
may include some bias towards query terms; thus original
query terms may remain in the query even if they occur
in no or few relevant documents so far. However, the bias
is not normally absolute: a query term which continues
not to appear in relevant documents will eventually be
dropped.

The above methods might be termed “model-based”,
and do not cover the iterative optimisation methods used
in the routing task in earlier TREC:s.

3.3 Filtering system

The filtering system used from TREC-7 on consists
mainly of scripts built on top of the BSS.

The incoming “stream” of documents is divided fairly
arbitrarily into batches (smaller batches initially to al-
low fast learning; larger later for efficiency reasons). For
each topic a current state is maintained, including query
formulation, threshold etc., what happened at the last
batch, and some history, including docids for any doc-
uments judged relevant up to now. As a new batch of
documents is processed, the current query formulation of
each topic is searched against it; cumulative databases
are created, and each topic goes through the adaptation
process in preparation for the next batch. Adaptation
includes query modification (term selection and weight-
ing) and threshold adaptation; the various components
are described below.

I The scale of this offer weight is (—o0, 4+00); a threshold of zero
implies that we would expect about 1 noise term to be selected. We
have discovered a bug in last year’s programs, which means that
last year’s offer weights were offset by a certain amount; a correct
zero threshold today is equivalent to a small negative threshold last
year.

3.4 Hardware

All the TREC-9 processing was done at Microsoft Re-
search, Cambridge. Most of the work was done on a
550MHz Xeon (512KB Cache) with 2Gb RAM and a
Dell with two 400 MHz Pentium processors and 512 Mb.
Both machines were running Solaris 7. The network was
100Mbps ethernet.

Table 1: Query track runs on Okapi

Query set | AveP | P@5 | RPrec | Recall
acsla 0.261 | 0.544 | 0.305 | 0.529
Sablc 0.261 | 0.528 | 0.306 | 0.544
Titles 0.259 | 0.500 | 0.298 | 0.516
Sablb 0.255 | 0.560 | 0.296 | 0.530
UoM2 0.254 | 0.564 | 0.305 0.573
pirla 0.252 | 0.584 | 0.302 0.541
Sabld 0.252 | 0.568 | 0.296 | 0.514
INQ1f 0.246 | 0.488 | 0.289 0.503
Sabla 0.242 | 0.572 | 0.291 0.514
Sab2a 0.242 | 0.548 | 0.293 | 0.535
INQlc 0.240 | 0.516 | 0.290 | 0.518
UoMla 0.232 | 0.516 | 0.284 0.484
INQ2e 0.224 | 0.508 | 0.276 0.475
INQle 0.224 | 0.436 | 0.259 0.446
INQ2c 0.223 | 0.516 | 0.278 0.493
Sab3a 0.221 | 0.536 | 0.276 | 0.504
INQ1i 0.219 | 0.464 | 0.257 0.496
INQ1b 0.217 | 0.488 | 0.269 | 0.498
INQ1j 0.216 | 0.500 | 0.264 0.470
UoM1b 0.215 | 0.516 | 0.263 0.478
INQlg 0.213 | 0.520 | 0.268 0.475
INQ1h 0.199 | 0.460 | 0.246 0.498
INQ1d 0.197 | 0.452 | 0.245 0.490
INQ2f 0.196 | 0.460 | 0.256 | 0.485
INQ2d 0.185 | 0.444 | 0.243 | 0.474
INQla 0.185 | 0.420 | 0.228 0.449
APLla 0.182 | 0.432 | 0.233 0.433
INQ2g 0.180 | 0.428 | 0.242 0.423
INQ3e 0.175 | 0.432 | 0.214 0.440
APL2a 0.171 | 0.344 | 0.231 0.436
INQ2i 0.166 | 0.436 | 0.223 0.456
INQ2b 0.165 | 0.392 | 0.227 0.413
INQ2h 0.165 | 0.380 | 0.217 | 0.428
INQ2j 0.149 | 0.340 | 0.196 0.415
INQ3d 0.147 | 0.372 | 0.204 0.381
INQ3j 0.144 | 0.340 | 0.206 | 0.383
INQ3f 0.135 | 0.348 | 0.190 | 0.384
INQ2a 0.132 | 0.348 | 0.192 0.365
INQ3i 0.120 | 0.316 | 0.179 | 0.370
INQ3c 0.116 | 0.300 | 0.170 | 0.333
INQ3g 0.116 | 0.292 | 0.171 | 0.328
INQ3b 0.107 | 0.312 | 0.152 | 0.304
INQ3a 0.106 | 0.264 | 0.162 0.310
INQ3h 0.096 | 0.276 | 0.154 | 0.324

4 Query track

We did not take full part in the query track: that is, we
did not generate queries. We did however run the queries
that other participants had generated.

The system used to run these queries was an absolutely
standard Okapi system, parsing the queries as provided
in a standard manner and using BM25 weighting with
k1 = 0.8, b = 0.4, and k3 = 0. No expansion was used.
Some results for different query sets are shown in table
1, together with a corresponding run on topic titles only,
sorted by average precision. Only two of the query sets
outperformed topic titles on average precision, although
several of them do better on other measures, particularly
precision at 5 documents.

5 Filtering and routing

5.1 System design

For the last two years, the Keenbow/Okapi team has
concentrated on the setting of thresholds for the adap-
tive filtering task. This year’s effort is a much more
rounded one, bringing together the thresholding meth-
ods and previously developed methods of query expan-
sion and reweighting. At the same time, the introduction
of the new target and measure into the adaptive filtering
task has stimulated a significant expansion of the thresh-
olding ideas, in a way which complements the previous
approaches.

5.2 T9P thresholding: basic ideas

In the precision-oriented task, we have to attempt to re-
trieve the best 50 documents over the simulated life of
the profile. The primary requirement is to set the thresh-
old so as to retrieve close to that number of documents
over the period (adjusting it as we go as necessary), while
relying on the query to get us as close as possible to the
best 50 documents.

Given a profile, some history of the stream of docu-
ments, and an expected rate of incoming new documents,
we can relate the threshold to the number of documents in
a model-free fashion, thus: we run the query against the
accumulated collection so far, and rank the documents
in the usual way; then the future number of documents
whose score will reach a given threshold may be estimated
from the number retrieved in the past at that threshold,
adjusted pro-rata.

Such an estimate may not be very good, and will need
adapting. So the principle is that after every batch of doc-
uments, we do a new retrospective search of the accumu-
lated collection so far, and choose the threshold which is
estimated to give us the right number of documents in the
future, given what we have retrieved in the past. Since the

evaluation measure penalizes under-retrieval more than
over-retrieval, we aim a little higher than the nominal
target of 50; in the current experiments, the margin is
25%, that is we aim for 62.5 documents. What happens
if we hit the target before the end of the period is dis-
cussed below.

5.3 T9U thresholding: basic ideas

For the utility-oriented task, however, we go back to our
work of TRECs 7 and 8. The basic requirement is to
retrieve if the probability of relevance exceeds a certain
figure; so we need a model to calibrate the score into a
probability value. In TREC-7 we used quite a simple for-
mula; in TREC-8 we tried something a little more com-
plex, which gave us no performance improvement. This
year we reverted to the TREC—7model.
The basic model for calibration is:

%d (4)

Pa
— ﬁ+7ast1

log =
Pd

1

where pg is the probability of relevance of document d, sq
is its score, and astl is the average score of the top 1% of
retrieved documents (actually, astl is in itself an exam-
ple of model-free quantitative prediction). Initial values
of # and v were originally estimated from a logistic regres-
sion on old TREC data. For TREC-9, we simply re-used
the TREC-T initial values. Adaptation of 3 follows the
method used at TRECs 7 and 8, summarized in the next
section, and takes place after any new documents have
been retrieved and/or the query has been reformulated.
Given a document score and an estimated ast!, equa-
tion 4 can be used to estimate the log-odds of relevance
of any specific document. The calibrated score ¢4 is on a
log-odds scale, but can be converted back to a probability
Pd:
Sd . o €XDP Cq
astl’ pbd = 1+ expcey

ca=p+7 (5)
for some estimated (3, v and ast1.

As we obtain feedback, as well as re-estimating ast?,
we adjust the calibration by correcting 8 (v is left un-
changed). We assume a set F of feedback documents
whose relevance is known, of which r are relevant. A
Bayesian prior is also assumed, represented by m mythical
documents (in addition to those in F), whose estimated
probabilities of relevance are assumed to be correct at
0.5. We suppose an iterative sequence of estimates 5(™)
and corresponding values cgl") and pﬁl") for each document.
Then the gradient descent formula is:

(n) 1—exp(8™) (")
T = derPa 2(11exp (B0 _B(0)))

(n) (n) xp(B) (%)
LaerPd (1=pg") + m oo Gm 5oy
6

+m

Ig(n+1) — 6(”) +

5 is the estimate of 3 taken from TREC-7.
In the last two TRECs, we ran this correction only
once each time. Because the query may have changed

substantially since the last adjustment of 3, we now (on
each occasion we want to modify [3) iterate the correction
until the change is less than some small constant €. Some-
times (after a substantial change in the query) the old g
is badly out, and the gradient descent process becomes
unstable. This can be resolved by setting a maximum
correction to (3 in one iteration. In the experiments re-
ported below, m is set at 3 (T9U runs) or 6 (TP runs);
€ is 0.01, and the maximum correction in one iteration is
1.0.

5.4 The cross-over: T9P task

A somewhat deeper analysis reveals an interesting cross-
over between these two approaches of quantitative and
qualitative prediction.

In the T9P task, we may reach the target before the
end of the period. After this point the aim is to estimate
the threshold score that will maximise the accumulated
precision achieved at the end of the period. This requires
both qualitative and quantitative prediction. The algo-
rithm is essentially as follows:

1. perform a search with the current query on the accumu-
lated collection so far, and rank the output

2. for the next document in this ranking, predict the num-
ber of documents achieving the same score in the future

3. predict the probability of relevance of these documents
(from the score calibration)

4. estimate the overall precision that would be achieved if
the threshold were set at this score

5. return to step 2

6. when the documents are exhausted, choose the score that
gave the highest predicted overall precision as the thresh-
old.

In the experiments reported below, this procedure is
initiated when the total retrieved reaches 75% of the tar-
get. While the total remains less than the target, the rule
is to aim for the target unless this procedure suggests try-
ing for more documents. When the target is reached, then
this procedure takes over. 2

5.5 The cross-over: T9U task

In TRECs 7 and 8, we wanted to ensure that some docu-
ments were retrieved early on, even if their scores did not
warrant it, in order to get some feedback to improve the
query. The mechanism was a ladder of calibrated score
values; a particular point on the ladder corresponded to
the required utility, but we started lower down the ladder
in order to get these initial documents. Both the ladder

2We have discovered a bug in this part of the program, which
may cause the threshold to be set incorrectly if no relevant doc-
uments have been retrieved by the time we apply this procedure.
The effect has not yet been investigated, but will be limited to a
small number of topics.

and the initial starting point were essentially arbitrary:
we had no theory or mechanism to determine good val-
ues.

The quantitative approach now provides us with at
least a way of thinking about the starting point. We
would like to start in a position which would give us a
small (non-zero) number of documents over the simulated
period. The algorithm is essentially as follows:

1. calibrate the scores
2. determine the steps of the ladder
3. initially, or if we have not yet retrieved any documents,

(a) estimate the threshold required to retrieve a certain
target number of documents over the period

(b) locate the ladder step closest to this threshold

4. if we have retrieved some relevant documents, then take
a step up the ladder for every relevant document found
so far (stopping at the top).

This procedure may be repeated at intervals. As soon
as some documents have been retrieved, we stop being
concerned about the target estimation, but remain on the
ladder until we accumulate enough relevant documents to
climb to the utility point. Because the ladder is defined
in terms of the calibrated score, any intermediate stage
that requires recalibration of the score (for example query
reformulation) will be taken into account automatically.

The ladder currently in use is given in table 2.

Table 2: The Ladder

P(R|D) | log O(R|D)
0.33 -0.7 T9U
0.23 -1.2
0.15 -1.7
0.10 -2.2

The setting of an appropriate target number of docu-
ments is the subject of some of the experiments discussed
below. It may also be noted that although there are
still several arbitrary elements, this procedure should be
a considerable improvement on our methods for TRECs
7 and 8, because the threshold will be set separately for
each profile, in a way that relates to the particular query.

5.6 The accumulated collection

As in previous years, we assume that we accumulate the
documents as they come into the system, so that we al-
ways have a cumulated collection of everything received
up to now. Such a collection is needed for some of
the forms of adaptation discussed; in the context of the
TREC-9 filtering task, we actually need two such collec-
tions, respectively including and excluding the training
set (Ohsumed 87).

5.7 Query reformulation

In the present filtering system, queries are reformulated
as relevance information becomes available, as part of the
adaptation process.

The method used is essentially that described in section
3.2. The new offer weight (equation 2) was used, with an
absolute threshold. We also have a numerical term cut-
off, which comes into effect when we have many relevant
documents. We use this method right at the beginning,
as our way of using the learning examples provided for
the TREC-9 task. We repeat it at intervals determined
by the retrieval of new relevant documents, frequently
initially, and then only occasionally.

We set a limit on the number of relevant documents
to be processed; if we have accumulated more than this
number, we take only the most recent ones. This was
implemented partly as an efficiency measure; however, it
could be taken as a response to the possibility that either
the user’s interests, or the characteristics of the document
stream, or both, may drift. In the present experiments,
however, we have set this limit fairly high, so that it sel-
dom comes into effect.

The principle tunable parameters of the query expan-
sion method are (a) the maximum number of documents
used (set to 100 here), (b) the term cut-off (maximum
number of terms in the resulting query, 25 here), and (c)
the absolute threshold on the offer weight (zero for these
experiments). However, there are several other parame-
ters or controls, e.g. the exact source and method of term
extraction, and the form and degree of bias towards query
terms.

5.8 Overview of the filtering procedure

At a particular iteration of the process, any query modi-
fication needs to take place before any threshold setting.
It may also be necessary, after query reformulation but
before threshold setting, to recalculate the scores of the
previously-retrieved documents, for the adaptation of /3.

As indicated in the system description, the incoming
stream is batched somewhat arbitrarily, but with smaller
batches initially on the grounds that the system needs to
learn faster initially; later in the simulated period, profiles
can be expected to have stabilized somewhat. In these
experiments the test set (OHSUMED 88-91) is divided
into 59 batches, initially 1000 documents per batch; the
training set (OHSUMED 87) counts as batch 0.

For similar reasons, query modification is done after
any batch in which a new checkpoint is reached for the
particular topic. In these experiments, the checkpoints
are defined in terms of the number of relevant documents
retrieved so far, and are set at 1,2,4,8,16. .. relevant doc-
uments.

So the basic procedure is as follows: for each batch i of
incoming documents

1. Run current profiles against batch @

2. Update both cumulative databases (batches 0 ¢ and
batches 1-4)

3. For each topic:

(a) if checkpoint has been reached,

e reformulate query

e recalculate astl and scores of previously re-
trieved documents

e re-estimate (3 using equation 6

(b) set threshold (using methods described above)

6 Filtering and routing results

6.1 Topic sets

OHSU: 63 queries from the original OHSUMED queries, with
relevance judgements from the requesters (no distinction was
made between the two “relevant” categories)

MeSH: 4903 MeSH headings, treated as topics. The text of the
topic is taken from the scope notes in MeSH; relevance judge-
ments are the assignments of these headings to documents by
the NLM indexers

MeSH-Sample: a sample of 500 of the MeSH topic set

6.2 Measures

T9U: linear utility, with relevant document credit set at 2 and
non-relevant document debit set at 1, and a minimum utility
of -100 for the OHSU topics and -400 for the MeSH topics.
MeanT9U: mean of T9U across topics, no normalisation
MeanSU: mean scaled utility across topics, where scaled utility
is T9U divided by the maximum possible value for the topic,
namely 2*(Total relevant)

T9P: precision, but with a minimum denominator of the target
total number of documents retrieved, namely 50.

MeanT9P: mean of TP values for each topic

MacR: macro average recall, that is the mean of recall values
for each topic

MacP: macro average precision

and for routing runs, AveP (mean average precision) and
P@50 (precision at 50 documents retrieved).

6.3 Submitted runs

See table 3. The rules for Batch and Routing allow the use
of all the relevant documents in the training set for train-
ing, while for Adaptive Filtering 2 (OHSU) or 4 (MeSH)
positive examples are provided. Those runs coded bfr or
rfr did not make use of all the relevant documents, but
only of all those retrieved in the top 100 documents in
an initial search on the training set. (See next section for
settings of some other parameters, which will explain the
differences between some of these runs.)

Table 3: Submitted run results

Run Type Topics Measure | MeanT9U | MeanT9P | AveP
ok9flpo Adaptive OHSU T9P 0.294
ok9f2po Adaptive OHSU T9P 0.288
ok9f2pm Adaptive MeSH T9P 0.419
ok9fluo Adaptive OHSU TIU 9.70

ok9f3uo Adaptive OHSU T9U 10.75

ok9flus Adaptive MeSH-Sample | T9U 46.53

ok9f3us Adaptive MeSH-Sample | T9U 40.10

ok9bf2po | Batch-adaptive | OHSU T9P 0.305
ok9bfr2po | Batch-adaptive | OHSU T9P 0.305
ok9bfr2ps | Batch-adaptive | MeSH-Sample | T9P 0.433
ok9rf2po | Routing OHSU 0.326
ok9rfr2po | Routing OHSU 0.317
ok9rfr2ps | Routing MeSH-Sample 0.245

6.4 Optimization runs

The system as described above contains a large number of
settable parameters (tuning constants). Most of the pa-
rameters were set on the basis of guesswork, but some ad-
justments were made following some tests on some “pre-
test” topics which had been provided. These pre-test top-
ics are not actually supposed to be representative — indeed
they consist of MeSH headings and OHSUMED queries
which had been rejected from the main test for one reason
or another, and exhibited some very different characteris-
tics. Therefore this tuning process had to be a judicious
mixture of experiment and guesswork. A very few of the
parameters have been subjected to further testing, after
the submission of the official runs, with the main test sets.
These are reported here (table 4 and 5).

Note from Table 4 that there appears to be an optimum
initial target for utility optimization, but that it depends
on both the query set and the evaluation measure. It is
higher for MeSH than for OHSU and higher for MeanT9U
than for MeanSU. These results would be consistent with
the hypothesis that the optimum depends on the number
of relevant documents for the topic. The average number
of relevant documents for MeSH topics is higher than for
OHSU, and the MeanT9U measure is much more affected
by topics with more relevant documents, while MeanSU
weights all topics equally. But it seems that this differ-
ence cannot explain the full extent of the variation: the
average number of relevant documents is approximately
50 (OHSU) and 250 (MeSH), but the difference in the op-
timum initial target is much greater. Another possibility
is that the quality of the initial query is also important:
a good initial query does not need much priming with
relevant documents whereas a poor one does.

The possible effect of the total number of relevant doc-
uments raises the question of whether one might be able
to make any useful kind of prediction of the optimum for
a given topic. A plausible scenario for a real system would

Table 4: Initial target for utility optimization

Target | MeanT9U | MeanSU | Notes
OHSU topics
500 -2.37 -.410
200 6.81 -.144
150 8.86 -.082
100 9.69 -.045 | ok9fluo
60 10.22 -.009
30 10.75 .008 | ok9f3uo
15 11.41 .029
8 11.49 .032
4 11.22 .033
2 11.15 .033
1 11.18 .034 | One “zero return”
MeSH-Sample topics
500 49.55 .076
200 49.31 .099
150 48.17 102
100 46.53 102 | ok9flus
60 42.56 101
30 40.10 .098 | ok9f3us
15 39.53 .097

be to obtain an estimate from the user (which might or
might not be good enough to help).

The “zero return” noted in Table 4 is a topic for which
no documents were retrieved in the entire period. We
regard this as a failure, but that run was the only one of
the runs reported here that produced any zeros at all.

The data set is rather peculiar in terms of document
length: about two-thirds of the documents have abstracts,
while the other one-third do not; in the latter case, in ef-
fect the only text available is the title. There is therefore a
huge discrepancy in document length between the two. b
is the parameter in BM25 which controls the effect of doc-

Table 5: Document length

b | MacR | MacP | MeanT9P | Notes
OHSU topics
0.8 .383 .288 .288 | ok9f2po
0.4 .388 .294 .294 | ok9flpo
MeSH-Sample topics
0.8 .189 430 430 | ok9f2ps
0.4 181 412 412

ument length. It was hypothesized that a high-precision
task might benefit from concentrating on the documents
with abstracts; reducing b would have that effect. There-
fore in addition to the b = 0.8 value which is a good
default, we tried a b = 0.4 run. This appeared to have
some slight benefit with the OHSU topics, but the oppo-
site effect in the MeSH topics (probably not significant).

Note also that the MacP and MeanT9P values are the
same for each run. This reflects the success of the target
setting and adaptation: either all topics retrieved over 50
documents, or the few which did not quite do so did not
show up in the average. This is the case for all adaptive
and batch-adaptive runs reported here, though not for
non-adaptive batch runs.

6.5 Some comparisons

The new TYP measure provides an interesting opportu-
nity to compare the results of filtering runs with tra-
ditional ranked-retrieval runs. The evaluation program
trec_eval for ranked retrieval calculates P@n values — pre-
cision at n documents retrieved — for various values of n.
TIP is a sort of P@503. However, the comparison needs
to be qualified, as discussed in the overview paper [12].
This analysis concentrates on the effect of using differ-
ent, amounts of relevance information at different stages.
For the routing results, we have pure P@Q50 on the test
set (we include AveP in the table also); no threshold is
involved. For batch filtering (non-adaptive), we use ex-
actly the same queries as for routing, but set a once-only
threshold intended to retrieve 50 documents. For batch-
adaptive or adaptive filtering, we may either adapt only
the threshold, or we may adapt both the threshold and
the query. All of these may be done starting with all rel-
evant documents in the training set, or with only those
which would have been found in an initial search, or with
the 2 or 4 positive examples provided for adaptive filter-
ing, or with none. All these conditions are represented
in table 6. In the last two columns, MacP figures are in
all cases the same as the corresponding MeanT9P figures
given. The adaptive filtering rules allowed 4 training rel-
evants for MeSH topics; we have included a ‘2 relevants’

3trec_eval does not by default include n = 50; however, a simple
modification of a header file allows it

row for comparison with the OHSU topics. The two were
chosen as the first two of the four provided.

Within each topic set, PQ50 reflects AveP quite closely.

Comparing MacP and MeanT9P figures for the ‘No
adaptation’ column, we see that MacP is consistently
higher than MeanT9P. This reflects two factors: first,
there is a lot of variation in the number of documents
retrieved, so that many topics failed to retrieve 50 doc-
uments. Second, the initial threshold is often too high.
Some further experiments suggest that query adaptation
to the relevant documents in the training set tends to
interfere with the initial threshold setting to cause this
effect.

Comparing the last two columns for the ‘All relevant’
training, we notice a small decline in performance. The
‘all relevant’ set may be seen as an unbiased sample of rel-
evant documents; the extra relevants used to modify the
query during adaptation are to some extent biased to-
wards the query. However, modifying the query becomes
progressively more useful as we start from less relevance
information, and adapting the threshold appears always
to be beneficial.

There seem to be some differences between the two
topic sets as to how useful each level of relevance informa-
tion is. This may perhaps reflect two things: differences
in the quality of the initial queries and differences in the
total number of relevant documents per topic.

Comparing PQ50 with final MeanT9P in the ‘2/4 rel-
evants’ case, we see that full adaptation just about com-
pensates for the inherent difficulty of MeanT9P.

A different kind of analysis may be made by considering
the utility measure. We regard T9P as a high-precision
task; however, in order to score above zero on T9U we
have to obtain a precision of at least 33%. The difficulty
of this task is reinforced by looking at the precision values
obtained for T9P runs. For example, in the case of OHSU,
these seldom reach 33%. Linear utility (with the sort of
parameter values used for the last 3 years) is indeed a
hard, high-precision task, and it is not so surprising that
we had such difficulty in doing even reasonably well at it.

6.6 Computational load

Running the 60 batches and 4900 MeSH topics is a heavy
computational task. Although each batch is quite small,
it involves both the 4900 basic searches and all the addi-
tional work (including possibly more than one search on
the accumulated collection) required for adaptation of a
topic, again 4900 times. The scripts used for this task
take approximately one week to run on the 550 MHz,
2Gb machine. They could no doubt be made consider-
ably more efficient; nevertheless, the adaptive filtering
task must be regarded as computationally heavy — con-
siderably more so than, say, the 100Gb VLC or Web track.

Table 6: Relevance information and adaptation

Threshold Threshold and

No threshold No adaptation adaptation query adaptation

Training AveP | P@50 | MacP | MeanT9P | MeanT9P | MeanT9P |
OHSU topics
All training set relevants .326 .336 | ok9rf2po 357 .274 .309 .305 | ok9bf2po
Relevants in top 100 317 .324 | ok9rfr2po 342 .266 .296 .305 | ok9bfr2po
2 training relevants 277 .294 .281 .251 .268 .288 | ok9f2po
No relevants 228 .260 .240 221 .236 .280
MeSH-Sample topics
All training set relevants 283 490 .506 412 A72 461
Relevants in top 100 .253 455 | ok9rfr2ps 458 .366 429 433 | ok9bfr2ps
4 training relevants .245 A37 428 375 413 430
2 training relevants 201 397 .385 344 373 415
No relevants 135 | 301 290 262 285 -390 |
7 Conclusions [8] Sparck Jones, K., Walker, S. and Robertson, S.E.

The adaptive filtering task continues to be an interest-
ing and fruitful one to investigate. The new T9P opti-
mization measure has been very successful, both in en-
couraging the development of the thresholding methods
(which are now much stronger for both measures), and in
allowing some comparison of traditional ranked-retrieval
performance with threshold-based filtering.

References

[1]

2]

3]

[5]

[6]

7]

Elworthy, D. Question answering using a large NLP
system. In these proceedings. 2001.

Mitev, N.N., Venner, G.M. and Walker, S. Designing
an online public access catalogue: Okapi, a catalogue
on a local area network. British Library, 1985. (Li-
brary and Information Research Report 39.)

Walker, S. and Jones, R.M. Improving subject re-
trieval in online catalogues: 1. Stemming, automatic
spelling correction and cross-reference tables. British
Library, 1987. (British Library Research Paper 24.)

Walker, S. and De Vere, R. Improving subject re-
trieval in online catalogues: 2. Relevance feedback
and query expansion. British Library, 1990. (British
Library Research Paper 72.) ISBN 0-7123-3219-7

Robertson, S.E. and Sparck Jones K. Relevance
weighting of search terms. Journal of the American
Society for Information Science 27, 1976, p129-146.

Robertson, S.E. et al. Okapi at TREC-3. In: [10],
p109-126.

Robertson, S.E. and Walker, S. Okapi/Keenbow at
TREC-8. In: [11], p151-162.

[10]

[11]

[12]

A probabilistic model of information retrieval: de-
velopment and comparative experiments. Informa-
tion Processing and Management, 36, 2000, p779-808
(Part 1) and 809-840 (Part 2).

Robertson, S.E. On term selection for query expan-
sion. Journal of Documentation 46, 1990, p359-364.

Overview of the Third Text REtrieval Conference
(TREC-3). Edited by D.K. Harman. Gaithersburg,
MD: NIST, 1995 (NIST Special Publication 500-
225).

The FEighth Text RFEtrieval Conference (TREC-
8). Edited by E.M. Voorhees and D.K. Harman.
Gaithersburg, MD: NIST, 2000 (NIST Special Pub-
lication 500-246).

Robertson, S.E. and Hull, D.A., The TREC-9 Fil-
tering Track final report. In these proceedings. 2001.

