
Competitive Hill-Climbing Strategies for Replica

Placement in a Distributed File System

John R. Douceur and Roger P. Wattenhofer

Microsoft Research, Redmond WA 98052, USA
fjohndo,rogerwag@microsoft.com
http://research.microsoft.com

Abstract. The Farsite distributed �le system stores multiple replicas
of �les on multiple machines, to provide �le access even when some ma-
chines are unavailable. Farsite assigns �le replicas to machines so as to
maximally exploit the di�erent degrees of availability of di�erent ma-
chines, given an allowable replication factor R. We use competitive anal-
ysis and simulation to study the performance of three candidate hill-
climbing replica placement strategies, MinMax, MinRand, and RandRand,
each of which successively exchanges the locations of two �le replicas. We
show that the MinRand and RandRand strategies are perfectly competi-
tive for R = 2 and 2/3-competitive for R = 3. For general R, MinRand
is at least 1/2-competitive and RandRand is at least 10/17-competitive.
The MinMax strategy is not competitive. Simulation results show better
performance than the theoretic worst-case bounds.

1 Introduction

This paper analyzes algorithms for automated placement of �le replicas in the
Farsite [3] system, using both theory and simulation. In the Farsite distributed
�le system, multiple replicas of �les are stored on multiple machines, so that
�les can be accessed even if some of the machines are down or inaccessible. The
purpose of the placement algorithm is to determine an assignment of �le replicas
to machines that maximally exploits the availability provided by machines.

The �le placement algorithm is given a �xed value, R, for the number of
replicas of each �le. For systems reasons, we are most interested in a value of
R = 3 [9]. However, to ensure that our results are not excessively sensitive to the
�le replication factor, we also provide tight bounds for R = 2 and lower bounds
for all R (tight at di�erent values of R).

Our theoretic investigations cover an arbitrary distribution of machine avail-
abilities and show worst-case behavior for a slightly abstracted model of the
problem. For these studies, we assume an adversary that can establish { and con-
tinuously change { the availability characteristics for all machines, and we assess
the ability of our algorithms to maximize the minimum �le availability relative
to the optimally achievable minimum �le availability, for any given assignment
of machine availability values. We do not attempt to classify the computational
complexity of the problem, because it is not a classic input-output algorithm.



Our simulations are driven by actual measurements of machine availability
[9] and show average-case behavior for a speci�c set of real-world measurements.
For these studies, we consider not only the minimum �le availability but also the
distribution of �le availability values. In all cases, we use a logarithmic measure
for machine and �le availability values, in part because of its standard usage [15]
and computational convenience, but also because a linear measure understates
the di�erences between results, since for all algorithms the minimum-availability
�le is available for a fraction of time that is very close to unity.

The next section describes the Farsite system and provides some motivation
for why �le replica placement is an important problem. Section 3 describes the
algorithms, followed by a summary of results in Section 4. Section 5 presents a
simpli�ed theoretic model of the Farsite system environment, which is used in
Section 6 to analyze the performance of the algorithms. Section 7 describes the
environment for our simulations, the results of which are detailed in Section 8.
Related work is discussed in Section 9.

2 Background

Farsite [3] is a secure, highly scalable, serverless, distributed �le system that
logically functions as a centralized �le server without requiring any physical cen-
tralization whatsoever. The system's computation, communication, and storage
are distributed among all of the client computers that participate in the system.
Farsite runs on a networked collection of ordinary desktop computers in a large
corporation or university, without interfering with users' local tasks, and without
requiring users to modify their behavior in any way. As such, it needs to pro-
vide a high degree of security and fault tolerance without bene�t of the physical
protection and continuous support enjoyed by centralized server machines.

There are four properties that Farsite provides for the �les that it stores: pri-
vacy, integrity, reliability, and availability. Data privacy is a�orded by symmetric-
key and public-key encryption, and data integrity is a�orded by one-way hash
functions and digital signatures. Reliability, in the sense of data persistence, is
provided by making multiple replicas of each �le and storing the replicas on
di�erent machines. The topic of the present paper is �le availability, in the sense
of a user's being able to access a �le at the time it is requested.

Like reliability, �le availability is provided by storing multiple replicas of
each �le on di�erent machines. However, whereas the probability of permanent
data-loss failure is assumed to be identical for all machines, the probability of
transitory unavailability (such as a machine's being powered o� temporarily) is
demonstrably not identical for all machines. A �ve-week series of hourly mea-
surements of more than 50,000 desktop machines at Microsoft [9] has shown
that (1) machine availabilities vary dramatically from machine to machine, (2)
the measured availability of each machine is reasonably consistent from week
to week, and (3) the times at which di�erent machines are unavailable are not
signi�cantly correlated with each other.



A �le is not available if all the machines that store the replicas of the �le
are temporarily down. Given uncorrelated machine downtimes, the fraction of
time that a �le is unavailable is equal to the product of the fractional downtimes
of the machines that store replicas of that �le. We express availability as the
negative logarithm of fractional downtime, and then the availability of a �le is
equal to the sum of the availabilities of the machines that store the �le's replicas.
The goal of a �le placement algorithm is to produce an assignment of �le replicas
to machines that maximizes the minimum �le availability over all �les without
exceeding the available space on any machine.

Measurements of over 10,000 �le systems on desktop computers at Microsoft
[3] indicate that machines experience permanent data-loss failures (e.g. disk head
crashes) in a temporally uncorrelated fashion. We do not allow the algorithm
to vary the number of replicas on a per-�le basis, because this would introduce
variance into the distribution of �le reliability. The measurements show that a
value of R = 3 is achievable in a real-world setting [9].

3 Algorithms

To be suitable for a distributed �le system, a replica placement algorithm must
satisfy two essential requirements: It must be incremental and distributable.
Because the system environment is constantly changing, the algorithm must
be able to improve an existing placement iteratively, rather than requiring a
complete re-allocation of storage resources when a �le is created or deleted,
when a machine arrives or departs, or when a machine's availability changes.
Because the �le system is distributed, the algorithm must scale with the size of
the system and must operate by making small changes of strictly local scope.
To satisfy these requirements, we concentrate on hill-climbing algorithms, in
particular those that perform an ordered succession of swap operations, in which
the machine locations of two �le replicas are exchanged.

Speci�cally, we investigate the properties of three algorithms: (1) MinMax,
in which the only allowed replica-location swaps are between the �le with the
minimum availability and the �le with the maximum availability, (2) MinRand,
in which swaps are allowed only between the �le with the minimum availability
and any other �le, and (3) RandRand, in which swaps are allowed between any
pair of �les. In general, �le replicas are swapped between machines only if the
swap reduces the absolute di�erence between the availabilities of the �les and
only if there is suÆcient free space on each machine to accept the replicas that
are being relocated. If there is more than one successful swap for two given �les,
our algorithm chooses one with minimum absolute di�erence between the �le
availabilities after the swap. However, for our theoretical worst-case analysis,
this does not matter.

The intuition behind these algorithms is as follows: RandRand is the most
general swap-based strategy, in that it allows swaps between any pair of �les,
so it represents a baseline against which to compare and contrast the other
algorithms. We are most concerned with improving the minimum �le availability,



and since a replica exchange only a�ects the two �les whose replica locations
are swapped, it makes sense for one of these �les to be the one with minimum
availability, hence MinRand. The motivation behind MinMax is that the maximum
availability �le seems likely to a�ord the most opportunity for improving the
minimum availability �le without excessively decreasing its own availability.

In actual practice, the �le placement algorithm executes in a distributed
fashion, wherein the �les are partitioned into disjoint sets, and each set is man-
aged by an autonomous group of a few machines. At each iterative step, one
of the groups contacts another group (possibly itself), each of the two groups
selects one of the �les it manages, and the groups jointly determine whether
to exchange machine locations of one of the replicas of each �le. Therefore, the
MinMax and MinRand algorithms are not guaranteed to select �les with globally
extremal availability values. For our theoretic analyses, we concentrate on the
more restrictive case in which only extremal �les are selected. For our simulation
studies, we model this extremal discrepancy by selecting from a range of �les
with the highest or lowest availability rank.

4 Summary of Results

In this paper we perform a worst-case analysis and a simulation to determine
the eÆcacy of three hill-climbing algorithms, where the eÆcacy of an algorithm
is speci�ed by the availability of a �le with minimum availability. We denote
the eÆcacy of an algorithm by its competitive ratio � = m=m�, where m is the
eÆcacy of the hill-climbing algorithm, and m� is the eÆcacy of an optimal algo-
rithm. We show { for both theory and simulation { that the MinRand algorithm
performs (almost) as well as the RandRand algorithm. The MinMax algorithm
performs poorly throughout. Here is a detailed summary of our results:

Algorithm MinMax MinRand RandRand

Worst-case R = 3 � = 0 (Thm. 3) � = 2=3 (Thm. 1) � = 2=3 (Thm. 1)
Simulated R = 3 � � 0:74 (Fig. 2) � � 0:93 (Fig. 2) � � 0:91 (Fig. 2)
Worst-case R = 2 � = 0 (Thm. 3) � = 1 (Thm. 2) � = 1 (Thm. 2)
Lower bounds any R � = 0 (Thm. 3) � > 1=2 (Thm. 4) � � 10=17 (Thm. 5)

5 Theoretic Model

We are given a set of N unit-size �les, each of which has R replicas. We are also
given a set of M = N � R machines, each of which has the capacity to store a
single �le replica. Machines have availabilities ai � 0, i = 1; : : : ;M , given as
negative logarithms of machines' downtimes.

Let the R replicas of �le f be stored on machines with availabilities af1 ; : : : ; a
f
R.

To avoid notational clutter, we overload a variable to name a �le and to give the
availability value of the �le. Thus, the availability of �le f is f = af1 + � � �+ afR.

Let m be a �le with minimum availability when the algorithm has exhausted
all possible improvements. Let m� be a �le with minimum availability given



an optimal placement for the same values of N , R, and ai (i = 1; : : : ;M). We
compute the ratio � = minm=m� over all allowable ai as N !1. We say that
the algorithm is �-competitive.

In the practical algorithms, the particle \Rand" stands for a random choice,
i.e. the MinRand algorithm tries to exchange machines between minimum-avail-
ability �le m and a randomly chosen �le f . In the theoretical analysis however,
\Rand" is treated as \Any", i.e. the MinRand algorithm tries to exchange ma-
chines between the minimum-availability �le m and any other �le f . The algo-
rithm stops (\freezes") only after all legal pairs of �les have been tested. We use
the particle \Rand" rather than \Any" to have a consistent terminology to the
simulation part of this work.

If two or more �les have minimum availability, or if two or more �les have
maximum availability, we allow an adversary to choose which of the �les can be
swapped.

The number of possible machine exchanges between two given �les grows
exponentially with the number of replicas R. In this paper we do not study this
problem. We are predominantly interested in systems where R is small; for large
R we will give an recipe linear in R that �nds machines to be exchanged (see
Lemma 4).

Note that the set of legal pairs of �les for the MinRand algorithm is a subset of
the set of legal pairs of �les for the RandRand algorithm. That is, if the MinRand
algorithm freezes, it is possible that the RandRand algorithm would still �nd a
successful exchange. A freeze of the RandRand algorithm however also implies
that the MinRand algorithm would not �nd a successful exchange. Similarly, the
singleton set of legal pairs for MinMax is a subset of the legal pairs for MinRand.
Thus, the eÆcacy of the RandRand (MinRand) algorithm is at least as high as the
eÆcacy of the MinRand (MinMax) algorithm. Formally,

Lemma 1. �MinMax � �MinRand � �RandRand:

With Lemma 1 we are in the position to �nd the competitive ratio of di�erent
algorithms by simply giving a worst-case example for the stronger algorithm (e.g.
RandRand), and a qualitative argument on the weaker algorithm (e.g. MinRand).
When discussing the competitive ratio of an algorithm with a speci�c replica-
tion factor, we append the replication factor R to the algorithm name, i.e. the
competitive ratio of the MinRand algorithm for replication factor 3 is �MinRand3.

If possible we simplify the arguments by linearly scaling the machine avail-
abilities such that m = 1 throughout this paper. Note that this does not change
the competitive ratio �.

6 Competitive Analysis

We start with R = 3, the case we are most interested in.

Lemma 2. �MinRand3 � 2=3.



Proof. The intuition of the proof is as follows: We de�ne a non-decreasing func-
tion g, the argument of g is a non-negative real (a machine availability), and g
returns a real. We de�ne G :=

P
a2A g(a), where the set A is the availabilities

of all machines.

In the �rst part of the proof we show that the MinRand algorithm freezes
with G < N . In the second part of the proof we consider an optimal assignment
of machines to �les. If all �les in the optimal assigment have availability strictly
greater than 3=2, we show that G � N . Since N � G < N is a contradiction, the
minimum �le of the optimal assignment has availability m� � 3=2. With m = 1
the proof will follow.

Here are the details: Let m = a1 + a2 + a3 be the �le with minimum avail-
ability, with a1 � a2 � a3. Of particular interest is a3, the minimum-availability
machine of minimum �le m. Let g(a) be a function applied on the availability a
of a machine, with

g(a) =

8>><
>>:

1 if a > 1� a3
1=2 if 1=2 < a � 1� a3
1=4 if a3 < a � 1=2
0 if a � a3

The function g(f) applied to �le f is simply g(f) = g(b1) + g(b2) + g(b3), if
�le f = b1 + b2 + b3.

Let f = b1 + b2 + b3 be another �le with availability f > 1, and with b1 �
b2 � b3. We assume that there is no successful machine exchange between the
�les f and m. We denote the �le f (m) after an exchange with f 0 (m0). Note that
m0 > 1 and f 0 > 1 would contradict the assumption that the MinRand algorithm
freezed, since f � m = 1.

We distinguish several cases.

Case 1: Let b1 > 1� a3. If b2 > a3 we can exchange the machines b2 and a3,
such that f 0 � b1+ a3 > (1� a3)+ a3 = 1, and m0 = m+ b2� a3 > 1. Therefore
b2 � a3. Thus g(f) = g(b1) + g(b2) + g(b3) = 1 + 0 + 0 = 1.

In all other cases we therefore have b1 � 1� a3.

Case 2: If b3 � a3, then g(f) � 1=2 + 1=2 + 0 = 1.

In all other cases we have b3 > a3.

Case 3: Let b2 > 1=2. Since b3 > a3 we can exchange the machines b3 and a3,
such that f 0 � b1 + b2 > 1, and m0 = m+ b3 � a3 > 1, which is a contradiction
to the assumption that there was no successful exchange. Therefore we have
b2 � 1=2, and thus g(f) � 1=2 + 1=4 + 1=4 = 1.

So far we have shown that g(f) � 1 for each �le. A simple case study reveals
that the minimum �le m itself has g(m) � 3=4. Since each machine is part of
exactly one �le we have G =

P
f2F g(f), where F is the set of all �les. Since

jF j = N we can conclude

G =
X
f2F

g(f) � (N � 1) � 1 + 3=4 < N:



In the second part of the proof we will show that if a �le f has a suÆciently
high availability, then g(f) will be at least 1. Speci�ally, we will show that for
any �le f = b1 + b2 + b3 (with b1 � b2 � b3) we have

f > 3=2) g(f) � 1:

We distinguish two cases:
Case 1: If b1 > 1 � a3 or b2 > 1=2 then g(f) � 1, because g(b1) � 1 or

g(b1) + g(b2) � 1.
Case 2: We have b1 � 1�a3 and b2 � 1=2. If b1 � 1=2, then f = b1+b2+b3 �

3=2 (not satisfying the precondition that f > 3=2). Thus 1=2 < b1 � 1� a3 and
b2 � 1=2. We have 3=2 < f = b1+ b2+ b3 � (1�a3)+1=2+ b3 ) b3 > a3: Then
g(f) = 1=2 + 1=4 + 1=4 = 1:

In the second part of the proof we have shown that �les f with availability
f > 3=2 necessarily have g(f) � 1.

The optimal algorithm assigns �les to machines such that the �le with min-
imum availability is m�. Suppose, for the sake of contradiction, that an optimal
algorithm manages to raise the availability of each �le f such that f � m� > 3=2.
With the second part of the proof we know that in this case g(f) � 1 for all N
�les. Since the function g of a �le is de�ned as a sum of the function g of the
machines of the �le, we know that G � N . With the conclusion of the �rst part
of the proof we get N � G < N which is a contradiction. Therefore m� � 3=2,
and � = m=m� � 2=3.

Lemma 3. �RandRand3 � 2=3.

Proof. We give a constructive proof for a worst-case example with the three �les
m; f1; and f2: The RandRand algorithm freezes with m = 1+0+0 (the minimum-
availability �le), f1 = 1 + 1 + 0, and f2 = 1=2 + 1=2 + 1=2, that is, no machine
exchange between any two �les decreases the di�erence of the availabilities of
the two �les. We have nine machines with availabilities 3� 1, 3� 1=2, and 3� 0.
An optimal algorithm generates three �les 1 + 1=2 + 0 = 3=2, thus m� = 3=2.
Therefore �RandRand3 = m=m� � 2=3.

Theorem 1. �MinRand3 = �RandRand3 = 2=3.

Proof. The Theorem follows directly with the Lemmas 2, 3, and Lemma 1.

For replication factor 2 the MinRand algorithm is optimal:

Theorem 2. �MinRand2 = �RandRand2 = 1.

Proof. The proof is a \light" version of the proof of Lemma 2, and the details
are omitted in this extended abstract. The function g is de�ned as

g(a) =

8<
:
1 if a > 1� a2
1=2 if a2 < a � 1� a2
0 if a � a2



The MinMax algorithm performs poorly in general, as the following example
shows.

Theorem 3. �MinMax = 0.

Proof. We give a constructive proof for a worst-case example with (at least)
three �les: Let m = 0+0+0+ � � �+0 be the �le with minimum availability (note
that m = 0), and f = 3 + 0+ 0 + � � �+ 0 be the �le with maximum availability,
and all other �les (at least one) have the machines 1 + 1 + 0 + � � � + 0. The
MinMax algorithm freezes since there is no exchange between the �les m and f .
For N � 3 we have 2(N � 2) + 1 � N machines with availability at least 1, and
it is possible to reassign the machines to �les such that each �le has at least one
machine with availability at least 1, that is m� � 1. Thus � � 0=1 = 0.

We want to be con�dent that our algorithms do not fail with larger replication
factors. In the following we give bounds on the performance for arbitrary R. All
our bounds are tight for some R: As seen above, the MinMax algorithm is non-
competitive for any R. The MinRand algorithm is worst when R ! 1, and the
RandRand algorithm is worst when R is 7.

Lemma 4. Let m = a1+: : :+aR be a �le with availability m = 1, and a1 � : : : �
aR � 0. Let f = b1 + : : :+ bR > 1 be another �le, with 1 � b1 � : : : � bR � 0.
Let �f be f , but all the machines with availability less than aR are replaced with

machines with availability aR, that is, �f = max(b1; aR) + max(b2; aR) + : : : +
max(bR; aR). If �f > 2 we can successfully exchange machines between m and f .

Proof. Let l be the highest index such that bl > aR, that is, either bl+1 � aR or
l = R. First we exchange the machines bl and aR, that is m

0 = m+ bl � aR > 1
and f 0 = f +aR� bl. If f

0 > 1 we are done, because we found a way to exchange
machines and both availabilities are strictly greater than one. In the remainder
of the proof we need to consider the case where f 0 � 1 only.

As long as m0 > 1 and f 0 � 1 we repeatedly exchange the machines ai+1 and
bR�i, for i = 0; 1; : : :. We denote m0 (f 0) after the ith exchange with mi (f i).
More formally:

mi = m0 +

iX
j=0

bR�j �

iX
j=0

aj+1 and f i = f 0 +

iX
j=0

aj+1 �

iX
j=0

bR�j :

In the remainder of the proof we show that these repeated exchanges will even-
tually be successful, that is, there is a k (with k � R � l � 1) such that after k
exchanges we have mk > m and fk > m.

First, we show that the process of repeated exchanges terminates. In other
words, there is a k � R� l � 1 such that either mk � 1 or fk > 1.



In particular, if i = R� l � 1, then

f i = f + aR � bl +

iX
j=0

ai+1 �

iX
j=0

bR�j =

l�1X
j=0

bj + aR +

R�l�1X
j=0

aj+1

�

l�1X
j=0

max(bj ; aR) + aR +

RX
j=l+1

max(aR; bj) (using bl > aR � aj)

= �f + aR � bl > 2 + aR � bl � 1: (using bl � 1)

We have f i > 1, and therefore the process of repeated exchanges terminates.
Since the process terminates after k exchanges, we have either mk � 1 or

fk > 1.
We distinguish three cases.
Case 1: Let mk > 1 and fk > 1. We have found successful machine exchanges

since mk > m (m = 1) and fk > m. We are done.
Case 2: Let mk � 1 and fk � 1. This contradicts the assumptions that m = 1

and f > 1 because 2 � m0 + f 0 = m+ f > 2.
The only remaining case is the most diÆcult.
Case 3: Let mk � 1 and fk > 1. Note that before the kth exchange it was

decided to do another exchange, that is, mk�1 > 1 and fk�1 � 1.
The precondition of this Lemma is �f = b1 + : : :+ bl�1 + bl + (R� l)aR > 2.

For readibility we split �f at \bl" into two parts: �f = �f1 + �f2.
Then

�f1 = b1 + : : :+ bl�1 = f � bl �

RX
i=l+1

bi = f 0 � aR �

RX
i=l+1

bi

= f 0 � aR �
k�1X
i=0

bR�i �
R�kX
i=l+1

bi � f 0 �
k�1X
i=0

bR�i � aR

= fk�1 �

k�1X
i=0

ai+1 � aR � 1�

k�1X
i=0

ai+1 � aR

Also we have
�f2 = bl + (R � l)aR � m+ bl �

lX
i=1

ai = m0 + aR �

lX
i=1

ai

= mk +

kX
i=0

ai+1 �

kX
i=0

bR�i + aR �

lX
i=1

ai � 1 + aR +

kX
i=0

ai+1 �

lX
i=1

ai

Together we get

�f = �f1 + �f2 � 1�

k�1X
i=0

ai+1 � aR + 1+ aR +

kX
i=0

ai+1 �

lX
i=1

ai

� 2 + ak � a1 � 2:

This contradicts with the precondition �f > 2.
Only case 1 did not contradict with the assumptions and preconditions. The

Lemma follows immediately.



Lemma 5. �MinRand > 1=2.

Proof. Let m = a1+ : : :+aR = 1 be a �le with minimum availability, with a1 �
: : : � aR � 0. Let f = b1 + : : :+ bR > 1 be another �le, with b1 � : : : � bR � 0,
and assume that there is no successful machine exchange.

We distinguish two types of �les f :
Type A: Let b1 > 1. If b2 > aR we can exchange the machines b2 and aR

such that m0 = m+ b2 � aR > 1, f 0 � b1 > 1. Therefore b2 � aR.
Type B: b1 � 1.
Of the N �les, one is the minimum �le m, x �les are of type A, N � 1 � x

�les are of type B. We have exactly x machines with availability strictly greater
than 1, that is, an optimal assignment will end up with at least N � x �les that
can only use machines with availability 1 or less. Since type A �les have b2 � aR
we can at most replace the machines of the type B �les that have availability
less than aR with machines that have availability aR. With Lemma 4 we know
that such an improved �le of type B can at most have availability 2. An optimal
algorithm can redistribute the �les such that the total sum of availabilities is at
most G = 2(N � x � 1) + 1. An optimal redistribution to N � x �les gives the
new minimum �le an availability of at most m� � G=(N � x), thus m� < 2.
Therefore � = m=m� > 1=2.

Theorem 4. limR!1 �MinRandR = 1=2.

Proof. For simplicity let R be a power of 2, that is R = 2r. We construct the
following �les:

{ The minimum �le m = 1=R+ : : :+ 1=R = 1.
{ R=2 �les of type 0 with f = 2 + 1=R+ 1=R+ : : :+ 1=R.
{ For i = 1; : : : ; r � 1: 2r�i�1 �les of type i with f = 2i � 2�i + 0 + : : :+ 0

Note that there is no successful exchange between the minimum �le m and
any other �le. We have used the following machines:

{ R=2 machines with availability 2,
{ For i = 1; : : : ; r � 1: R=2 machines with availability 2�i,
{ R=2 � (R� 1) +R machines with availability 1=R
{ The rest of the machines have availability 0.

With the same machines we can build

{ R=2 �les of type A with f = 2 + rest, that is f � 2, and
{ R=2 �les of type B with f = 1=2 + 1=4 + 1=8 + : : : + 4=R + 2=R + 1=R +
1=R+ : : :+ 1=R, that is f = 1 + (R� r � 1)=R.

Since limR!1 1 + (R � r � 1)=R = 2 we have m� ! 2�, and therefore � =
m=m� ! 1=2+. With Lemma 5, �! 1=2+ is tight and the Theorem follows.

Lemma 6. �RandRand � 10=17.



Proof. We omit this tedious proof in the extended abstract. Apart from some
complications it is similar to the proof of Lemma 2. The function g is de�ned as

g(a) =

8>><
>>:

1 if a > 1
1=2 if 2=3 < a � 1
a=(2� a) if 1=2 < a � 2=3
a=(1 + a) if a � 1=2

Theorem 5. �RandRand = 10=17, when we allow R to be a non-integer. If R
must be an integer then �RandRand � 3=5.

Proof. First we are going to make a relaxation to our normal model by assuming
that R = 6+ �, where � > 0. (Remark: A non-integer R is an ethereal construct
without physical realization; we need � to go towards 0 such that we can prove
a tight bound.)

Let m = 1 + 0 + : : :. Additionally we have a �les of type 1 + 1 + 0 + : : :,
b �les of type 1=2 + 1=2 + 1=2 + 0 + : : :, and c �les with 6 + � machines with
availability 1=(5 + �). Note that (6 + �)=(5 + �) = 1 + 1=(5 + �). The RandRand
algorithm does not �nd any successful exchange between any pair of �les. If we
do the accounting, we �nd 2a+1 machines with availability 1, 3b machines with
availability 1=2, c(6+ �) machines with availability 1=(5+ �), and (5+ �)+a(4+
�) + b(3 + �) machines with availability 0.

An optimal algorithm assigns the machines so that it will get 1 + a + b+ c
�les of type f = 1 + 1=2 + 1=(5 + �) + 0 + : : : will have 1 + a + b + c machines
with availability 1; 1=2, or 1=(5 + �) each, and (1 + a + b + c)(3 + �) machines
with availability 0. This is possible if and only if the following equation system
is solvable:

2a+ 1 = 1 + a+ b+ c (for availibility 1)

3b = 1 + a+ b+ c (for availibility 1=2)

c(6 + �) = 1 + a+ b+ c (for availibility 1=(5 + �))

(5 + �) + a(4 + �) + b(3 + �) = (1 + a+ b+ c)(3 + �) (for availibility 0)

We can solve this equation system with a = 9=� + 1, b = 6=� + 1, c = 3=�.
Thus we have a worst case example that is tight with Lemma 6:

m� = f = lim
�!0+

1 + 1=2 + 1=(5 + �) = 17=10:

If R has to be integer we choose � = 1, and get m� = 1 + 1=2 + 1=6 = 5=3.

7 Simulated environment

We are given a set ofM = 51; 662machines with a measured distribution of avail-
abilities in the range of 0:0 to 3:0 [9], calculated as the negative decimal logarithm
of the machines' downtimes. (The common unit for availability is the \nine"; for
example, a machine with a fractional downtime of 0:01 has � log10 0:01 = 2 nines
of availability, intuitively corresponding to its fraction uptime of 1�0:01 = 0:99.)



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3.5 4 4.5 5 5.5

file availability (nines)

cu
m

u
la

ti
ve

 f
re

q
u

en
cy

MinMax MinRand RandRand

Fig. 1. File availability distributions

We are given a set of �les whose sizes are governed by a binary lognormal dis-
tribution with m(2) = 12:2 and s(2) = 3:43 [7]. We simulate N = 2; 583; 100
�les, averaging 50 �les per machine, which runs at the memory limit of the 512-
MB computer we use for simulation. We maintain excess storage capacity in the
system, without which it would not be possible to swap �le replicas of di�erent
sizes. The mean value of this excess capacity is 10% of each machine's storage
space, and we limit �le sizes to less than this mean value per machine. We �x
the replication factor R = 3 [9].

At each step, a pair of �les is selected randomly (uniform distribution). To
model the fact that in a distributed environment the selection of �les for swap-
ping is done without global knowledge, we set a selection range for minimum
and maximum availability �les 2%, to be consistent with a mean value of 50 �les
per machine. In other words, the \minimum-availability" �le is drawn from the
set of �les with the lowest 2% of availabilities, and the \maximum-availability"
�le is drawn from the set of �les with the highest 2% of availabilities, uniformly
at random.

8 Simulation results

We apply each of the algorithms to an initial random placement and run until the
algorithm reaches a stable point. Fig. 1 shows �le availability distributions for
the three algorithms. The MinMax algorithm shows the widest variance, with an
almost linear �le availability distribution between 4 and 5 nines. The RandRand



MinMax MinRand RandRand

0.6

0.7

0.8

0.9

1

r

Fig. 2. Minimum vs. Mean File Availability

algorithm yields a much tighter distribution, and the MinRand distribution is
almost exactly the same as that for RandRand, except for the upper tail.

To study how the minimum �le availability varies, we apply each of the algo-
rithms to 100 randomly selected subsets of 100 machines from the measured set
of 51,662 machines. Fig. 2 shows a box plot [13] of the ratio of the minimum �le
availability to the mean �le availability for the three algorithms. The \waist" in
each box indicates the median value, the \shoulders" indicate the upper quar-
tile, and the \hips" indicate the lower quartile. The vertical line from the top
of the box extends to a horizontal bar indicating the maximum data value less
than the upper cuto�, which is the upper quartile plus 3/2 the height of the
box. Similarly, the line from the bottom of the box extends to a bar indicating
the minimum data value greater than the lower cuto�, which is the lower quar-
tile minus 3/2 the height of the box. Data outside the cuto�s is represented as
points.

The worst-case ratio that our simulation encountered for the MinMax algo-
rithm is 0.74, which is poor but signi�cantly better than the value of 0 which our
competitive analysis showed is possible. The worst-case ratio found for MinRand
is 0.93, and the worst-case ratio found for RandRand is 0.91. These values are
both better than the theoretic competitive ratio of 2/3 for the two algorithms.
Note that the simulation ratios use mean �le availability as the denominator,
rather than the optimum minimum �le availability, since the latter is not easily
computable. Therefore, the ratios may be arti�cially lowered by the possibly in-
correct assumption that the mean �le availability is an achievable value for the
availability of the minimum �le.



9 Related Work

Other than Farsite, serverless distributed �le systems include xFS [2] and Frangi-
pani [18], both of which provide high availability and reliability through dis-
tributed RAID semantics, rather than through replication. Archival Intermem-
ory [5] and OceanStore [16] both use erasure codes and widespread data distri-
bution to avoid data loss. The Eternity Service [1] uses full replication to prevent
loss even under organized attack, but does not address automated placement of
data replicas. A number of peer-to-peer �le sharing applications have been re-
leased recently: Napster [17] and Gnutella [10] provide services for �nding �les,
but they do not explicitly replicate �les nor determine the locations where �les
will be stored. Freenet [6] performs �le migration to generate or relocate replicas
near their points of usage.

To the best of our knowledge this is the �rst study of the availability of
replicated �les. We know of negative results of hill-climbing algorithms in other
areas, such as clustering [11].

There is a common denominator of our work and the research area of approx-
imation algorithms, especially in the domain of online approximation algorithms
[14, 4] such as scheduling [12]. In online computing, an algorithm must decide
how to act on incoming items without knowledge of the future. This is related
to our work, in the sense that a distributed hill-climbing algorithm also makes
decisions locally (without knowledge of the whole system), and where an adver-
sary continously changes the parameters of the system (e.g. the availabilities of
the machines) in order to damage a good assignment of replicas to machines.

Open Problems

There are a variety of questions we did not tackle in this paper. First, we focused
on giving bounds for the eÆcacy of the three algorithms rather than eÆciency. It
is an interesting open problem how quickly the hill-climbing algorithms converge;
both in a transient case (where we �x the availabilities of the machines and start
with an arbitrary assignment of machines to �les), and also in a steady-state
case (where during an [in�nite] execution of the algorithm an adversary with
limited power can continuously change the availabilities of machines); see [8] for
a simulation of the transient case and [9] for a simulation of the steady-state
case.

It would also be interesting to drop some of the restrictions in this paper, in
particular the simpli�cation that each �le has unit size.

Finally, it is an open problem whether there is another decentralized hill-
climbing algorithm that has better eÆcacy and eÆciency than the algorithms
presented in this paper. For example, does it help if we considered exchanges
between any group of three or four �les? Or does it help to sometimes consider
\downhill" exchanges too? In general, we would like to give lower bounds on the
performance of any incremental and distributable algorithm. We feel that this
area of research has a lot of challenging open problems, comparable with the
depth and elegance of the area of online computation.



References

1. Ross Anderson. The eternity service. Proceedings of Pragocrypt, 1996.
2. Thomas E. Anderson, Michael Dahlin, Jeanna M. Neefe, David A. Patterson,

Drew S. Roselli, and Randolph Wang. Serverless network �le systems. ACM

Transactions on Computer Systems, 14(1):41{79, February 1996.
3. William J. Bolosky, John R. Douceur, David Ely, and Marvin Theimer. Fea-

sibility of a serverless distributed �le system deployed on an existing set of
desktop PCs. In Proceedings of the ACM SIGMETRICS International Con-

ference on Measurement and Modeling of Computing Systems, 2000. Also see
http://research.microsoft.com/sn/farsite/.

4. Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

5. Yuan Chen, Jan Edler, Andrew Goldberg, Allan Gottlieb, Sumeet Sobti, and Peter
Yianilos. A prototype implementation of archival intermemory. In Proceedings of

the Fourth ACM International Conference on Digital Libraries, 1999.
6. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A

distributed anonymous information storage and retrieval system, 2000.
7. John R. Douceur and William Bolosky. A large-scale study of �le-system contents.

In Proceedings of the ACM SIGMETRICS International Conference on Measure-

ment and Modeling of Computing Systems, pages 59{70, New York, May 1{4 1999.
8. John R. Douceur and Roger P. Wattenhofer. Large-scale simulation of replica

placement algorithms for a serverless distributed �le system. In Proceedings of the

9th International Symposium on Modeling, Analysis and Simulation on Computer

and Telecommunication Systems, 2001.
9. John R. Douceur and Roger P. Wattenhofer. Optimizing �le availability in a

serverless distributed �le system. In Proceedings of the 20th Symposium on Reliable

Distributed Systems, 2001.
10. Gnutella. See http://gnutelladev.wego.com.
11. Nili Guttmann-Beck and Refael Hassin. Approximation algorithms for min-sum

p-clustering. In Discrete Applied Mathematics, vol. 89:1{3. Elsevier, 1998.
12. Leslie A. Hall. Approximation algorithms for scheduling. In Dorit S. Hochbaum,

editor, Approximation Algorithms for NP-Hard Problems. PWS Publishing Com-
pany, 1995.

13. David M. Harrison. Mathematica experimental data analyst. Wolfram Research,

Champaign, IL, 1996.
14. Sandy Irani and Anna R. Karlin. Online computation. In Dorit S. Hochbaum, edi-

tor, Approximation Algorithms for NP-Hard Problems. PWS Publishing Company,
1995.

15. Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley &
Sons, Inc., 1991.

16. John Kubiatowicz, David Bindel, Patrick Eaton, Yan Chen, Dennis Geels, Ramakr-
ishna Gummadi, Sean Rhea, Westley Weimer, Chris Wells, Hakim Weatherspoon,
and Ben Zhao. OceanStore: An architecture for global-scale persistent storage.
ACM SIGPLAN Notices, 35(11):190{201, November 2000.

17. Napster. See http://www.napster.com.
18. Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: A

scalable distributed �le system. In Proceedings of the 16th Symposium on Operating

Systems Principles, volume 31,5 of Operating Systems Review, pages 224{237, New
York, October 5{8 1997.


