
ROBUST LANGUAGE UNDERSTANDING IN MIPAD

Ye-Yi Wang

Speech.Net Research Group
Microsoft Research

Redmond, Washington 98052, USA

Abstract
MiPad is an application prototype for the study of
conversational, multi-modal interface in Microsoft Research. It
has a Tap and Talk interface that allows users to effectively
interact with a PDA device. The major Spoken Language
Understanding (SLU) engine component behind MiPad is a
robust chart parser. This paper discusses some novel features of
the parser that enable it to take full advantage of the Tap and
Talk interface and better support semantic based analysis. It also
describes some implementation issues so that these new features
can be accommodated without slowing down the parser. The
new implementation speeds up the parser by a factor of three,
making it more suitable for a SLU server.

1. Introduction

1.1. MiPad

MiPad (Multi-modal Interactive Pad) [1] is an application
prototype of a research project in the Speech Technology Group
of Microsoft Research and Microsoft Speech.Net Group. It
offers a conversational, multi-modal interface to Personal
Information Manager functionality, including calendar, contact
list and e-mail. While our ultimate goal is an interaction model
that spans across a number of different platforms and users, the
initial target device is in the palmtop form factor. We chose this
target device because it is very difficult to enter large amount of
text, to fill a form, and to issue commands with multiple
parameters with the current PDA devices. Multi-modal
interaction with speech and pen can help address these
problems, which can significantly improve the usability with the
Tap and Talk interface. Figure 1 shows a screenshot of the
Appointment card in MiPad. Seven fields appear on the card:
Subject, Location, Attendees, Duration, Start Date, Start
Time, and Body Message. A user interacts with it by tapping
and holding on a field and speaking appropriate content into it.
In the example in Figure 1, the user is tapping on the Start
Time field and talking to the device. The bars in the field
indicate that MiPad is carrying out speech recognition.
Experienced users can also tap on the Command button and
speak a full sentence that contains cross-field information, such
as “Schedule a meeting with Kevin Larson and Derek Jacoby on
Friday for two hours.”
1.2. MiPad Spoken Language Understanding

While dialog management is an important topic in our research
[2], it plays little role in the MiPad, for the Tap and Talk
interface explicitly provides dialog state (tapped field)
information. The major SLU component is a robust chart parser.

Figure 1. MiPad Screenshot. The user is tapping on the Start
Time field and talking to the device.

The speech recognizer can use field-specific language models
and the SLU component can employ field-specific grammars.
This seemingly makes the SR and SLU task easier. However, on
the other hand, in the typical MiPad usage scenario, users may
use the built-in MiPad microphone that is very sensitive to
environment noise. Using the iPaq device from Compaq as one
of our prototypes, the word recognition error rate increased by a
factor of two in comparison to a close-talk microphone (in the
normal office environment), which shows that we need much
better noise robust SR and SLU.

The MiPad SLU is modeled with domain-specific semantic
grammars. Normally, semantic grammars are CFGs with non-
terminals representing semantic concepts instead of syntactic
categories, like the one used for ATIS in [3]. Our grammar
introduces a specific type of non-terminals called semantic
classes to describe the schema of an application [4, 5]. The
semantic classes define the conceptual structures of the
application that are independent to linguistic structures. The
linguistic structures are modeled with context free grammars. In
doing so, it makes the linguistic realization of semantic concepts
transparent to an application; therefore the application logic can
be implemented according to the semantic class structure, in
parallel with the development of linguistic context free
grammar. We introduced the framework of a robust spoken
language parser in [5]. It analyzes input sentences according to
the linguistic grammar and maps the linguistic structure to the
semantic conceptual structure. Recently, we have made

Eurospeech, pp. 1555-1558, ESCA, Aalborg, Denmark, 2001

substantial modifications to the parser to fully take advantage of
the form factor of MiPad and better support the semantic based
analysis. The changes range from some enhanced features to
improved performance.

2. Robust Chart Parser

The robust parsing algorithm is an extension of the bottom-up
chart-parsing algorithm [6]. The robustness to
ungrammaticality and noise can be attributed to its ability of
skipping minimum unparsable segments in the input. The
algorithm uses dotted rules, which are standard BNF CFG
rules plus a dot in front of a right-hand-side symbol. The dot
separates the symbols that already have matched with the input
words from the symbols that are yet to be matched. Each
constituent constructed in the parsing process is associated
with a dotted rule. If the dot appears at the end of a rule like in
A→α•, we call it a complete parse with symbol A. If the dot
appears in the middle of a rule like in A→→→→B••••CD, we call it a
partial parse (or hypothesis) for A that is expecting a complete
parse with root symbol C.

The algorithm maintains two major data structures --- A chart
holds hypotheses that are expecting a complete constituent
parse to finish the application of the CFG rules associated with
those hypotheses; an agenda holds the complete constituent
parses that are yet to be used to expand the hypotheses in the
chart.

Initially the agenda is empty. When the agenda is empty, the
parser takes a word (from left to right) from the input and puts
it into the agenda. It then takes a constituent A[i,j] from the
agenda, where A is the root symbol of the constituent and [i,j]
specifies the span of the constituent. The order by which the
constituents are taken out of the agenda was discussed in [5].
The parser then activates applicable rules and extends
appropriate partial parses in the chart. A rule is applicable with
respect to a symbol A if either A starts the rule or all symbols
before A are marked optional. The activation of an applicable
rule may result in multiple constituents that have the same root
symbol (the left-hand-side of the rule) but different dot
positions, reflecting the skip of different number of optional
rule symbols after A. If the resulting constituent is a complete
parse, namely with the dot positioned at the end of the rule,
the complete constituent is added into the agenda. Otherwise
partial constituents are added into the chart; To extend the
partial parses with the complete parse A[i,j], the parser exams
the chart for incomplete constituent with dotted rule B[l,k] →
α•Aβ for k < i, and constructs new constituents B[l,j] → αAβ
with various dot positions in β, as long as all the symbols
between A and the new dot position are optional. The
complete constituent B[l,j] → αAβ• is added into the agenda.
Other constituents are put into the chart. The parser continues
the above procedure until the agenda is empty and there are no
more words in the input sentence. By then it outputs top
complete constituents according to the heuristic scores
described in [5].

In [5], we distinguished three different types of rule symbols:
optional symbols that can be skipped without penalty; normal
symbols that can be skipped with penalty; and mandatory
symbols that cannot be skipped. We found the skip of normal

symbols is very problematic, mainly due to the following
reasons:

1. Grammar authors are generally very forgetful to
mark a symbol mandatory. On the other hand they
are very good at labeling optional symbols. We
believe that in their mindset the symbols they have
written down are deemed to be mandatory unless it
is marked as optional.

2. The skip of normal rule symbols adversely increases
the constituent space. This dramatically slows down
the parser and results in a great number of bogus
ambiguities.

Therefore the current parser does not skip rule symbols unless
the symbol is explicitly marked as optional.

3. New Features of the Parser
To take advantage of the MiPad form factor and better support
semantic analysis, we have enhanced the parser with the
following novel features:

3.1. Dynamic Grammar Support

Dynamic grammar support provides the parser with the
capability of modifying the grammar it is using on the fly. It is
necessary because:

1. Different users may have different data; therefore the
parser should be able to customize the grammar online.
For example, users may have different and changing
contact list, therefore the parser should dynamically
modify the rule for the contacts of different users.

2. Different dialog states need different grammar too. If
MiPad is showing a New-Email card, then the
PersonByName semantic class should only contain
those names in the user’s contact list, since they are the
only names that the user can specify as recipients ---
otherwise the user has to specify an e-mail address. On
the other hand, if MiPad is showing a New-Contact
card, then we should use a name set with much greater
coverage, or even introduce a spelling grammar.

We have devised an API for application developers to
dynamically and efficiently change the grammar used by the
parser. The change can be made at different granularity, from
the entire grammar to every single rule. This enables the parser
to adapt to different users and dialog states.

3.2. Wildcard Parsing

In a semantic grammar, some semantic concepts are free form
text and can hardly be modeled with semantic rules. For
instance, meeting subjects can hardly be predicated and
modeled with semantic grammar rules. To model this type of
semantic units, the parser is augmented to handle rules with
wildcards like the following one:

<Meeting-Property>::=<about> <Subject:Wildcard>
<about> ::= about | regarding | to discuss
Here “<Subject:Wildcard>” represents the non-terminal
semantic class “<Subject>” that can match free-form text.
“<about>” serves as a context cue that triggers the wildcard
rule for “<Subject>”. Anything that does not match other
appropriate rules in the context and that matches the wildcard

rules with appropriate trigger will be parsed as a wildcard
semantic component in the appropriate context.

3.3. Parsing with Focus

The parser can effectively take advantage of the context/dialog
state information to reduce parsing ambiguities and the search
space, hence improve its performance. For example, if the
parser knows that the system is in the middle of a dialog with
the user, talking about the attendee of a meeting, then the
parser will only parse “John Doe” as Attendee, although it
could be E-mail Recipient or new Contact according to the
grammar. The parser can get the context information (focus)
either from the dialog manager in the general Dr. Who
architecture, or directly from the applications with a Tap and
Talk interface. The focus is specified as a path from the root to
the semantic class that the system is expecting an input for,
like Root/ScheduleMeeting/MeetingProperty/StartTime).

The parser can override the focus mode in case the user
volunteers more information in mixed initiative dialogs. In the
case, if the system is expecting an input of the aforementioned
focus and the user speaks “from 3 to 5pm’, the parser will be
smart enough to identify both Start-Time and End-Time, and
return the semantic class that is the closest common ancestor
of the identified semantic classes, in this case, Meeting-
Property.

3.4. N-best Parsing

The parser can take n-best hypotheses from the speech
recognizer, together with their scores, as input. The parser
parses all the n-best hypotheses; ranks them with a heuristic
score that combines the speech recognition score and the
parsing score. The best parse will be forwarded to the
application.

4. Implementation Issues
We found that the parser slowed down with the support of
wildcard parsing, so we have redesigned the data structure and
sped up the parser dramatically. Here we briefly describe some
of the implementation issues.

4.1. Lexicon Representation

The lexicon contains both terminals and non-terminals. The
non-terminals include names for semantic class, groups and
productions [5]. Each entry in the lexicon is represented with an
ID. The lexicon can map a terminal or non-terminal string to its
ID. An ID is an integer with the least signification 3 bits devoted
to the type of the ID (word, semantic classes, types, productions,
groups etc.) The rest bits can be used as index for the direct
access to the definition of the grammar components of the
specific type. Each lexical entry points to a set Φ that contains
the information of the IDs of the context free rules it can
activate, as well as the position of the lexical item in these rules.
Set Φ is used to locate the applicable rules after a complete is
taken out of the agenda.
Each non-terminal entry A has a Boolean element, specifying
if it can derive a wildcard as its left-most descendant in a

parse, or more formally, if wildcard .α∗→A The value of
this element has to be pre-computed at grammar load time, and
recomputed every time after dynamic grammar modification.

The speed to set this Boolean value is hence very important.
Fortunately we already have the information of rules that can
be activated by a symbol in set Φ. With that information, we
can define the relation {(,) | x },x b b α βℜ = ⇒ where α is
empty or a sequence of optional symbols. Then a non-terminal
can derive a wildcard on its leftmost branch if and only if it is
in the transitive closure of the wildcard with respect to
relationℜ . This transitive closure can be computed in time
linear to the number of non-terminal symbols.

4.2. Chart and Agenda

The chart consists of a dynamic array of n elements and a
dynamic programming structure of n*(n+1)/2 (n is the length
of an input sentence) cells that corresponds to the n*(n+1)/2
different span of constituents. Each array element corresponds
to a position in the input sentence, and it contains a heap that
maps from a symbol A to a list of partial parses. The partial
parses cover the input sentence to the position that the element
represents for, and they expect a complete parse of a
constituent with root symbol A. With this the parser can
quickly find the partial parses to extend when a complete parse
with root A is popped from the agenda; Each cell of the
dynamic programming structure contains a heap that maps a
grammar symbol A to a pointer to the complete constituent
tree with root A and the span that the cell represents for. This
enables the parser to quickly find out if a new constituent has
the same root name and span as an existing constituent. If so,
the parser will safely prune the constituent with lower score.

The agenda is implemented as a priority queue. An element of
the queue has a higher priority if it has a smaller span and
higher heuristic score. This guarantees that the parser does not
miss any parses with high heuristic score [5].

4.3. Wildcard Support

Since wildcard match is expensive, we would like to treat
input words as wildcard only when it fits in the context.
Therefore we added some top down guidance for the creation
of a wildcard constituent. With the wildcard derivation
information available for non-terminal symbols as described in
4.1, this can be implemented efficiently: during the parsing
process, after a partial constituent with dotted rule A → α•Bβ
is added to the chart, if B can derive a wildcard on its leftmost
branch, we then set a flag that allows the next input word to be
introduced as a wildcard.

After we introduce a wildcard to the parser, theoretically it can
build m different wildcard constituents with different
coverage, where m is the number of remaining words in input.
This adversely increases the search space drastically, since
each of these wildcard constituents can be combined with
other constituents to form much more constituents. Instead of
generating these m constituents, we assume that the wildcard
only covers a single word. After the parser has built the parse
for the complete sentence, it expands the wildcard coverage to
all the skipped words adjacent to the word covered by a
wildcard in the initial parse. The parser always prefers non-
wildcard coverage to wildcard coverage. So wildcard will be
used only when there is no no-wildcard parse of the input
segment that fits the context.

5. Experimental Results
We have conducted some preliminary experiments to study the
performance of the robust parser. The test data contains 624
sentences spoken to the Command button. Each sentence is
manually annotated with its semantic card (top level semantic
category) and slots like in the following example:

 Sentence: Schedule a meeting with Peter at 3 pm
 Card: Schedule-Meeting
 Slots: Participant=Peter, Start-Time=3pm

The robust parser is used to parse the input sentences and the
results are compared with the human annotated data. The card
switching (topic ID) accuracy is obtained by comparing the
parser-found semantic category with the human annotated one.
The slot accuracy is obtained by computing the slot (labels plus
contents) insertion-deletion-substitution errors that the parser
has made.

Our semantic grammar contains 13453 rules; among them
6406 are lexical rules with the form A→ a. There are 908 non-
terminals and 8546 terminals, and 14 top-level non-terminals
representing the 14 major semantic categories (topics). The
uni-gram perplexity of the topics is 8.4 and the average
number of slots per topic is 4.9.

 Topic ID Slot ID
 Original Enhanced Original Enhanced
Transcription 7.9 7.5 35.4 29.8
Recognition 12.0 10.6 51.6 43.7

Table 1. Topic ID/Slot ID Error Rate or the Original
and the Enhanced Parsers.

Table 1 compares the enhanced parser’s topic ID and slot ID
error rates with the original parser when it takes the
transcribed data and speech recognizer’s outputs as input.
While the n-best parsing improves the topic ID performance
with SR input, the wildcard parsing feature also helps topic
ID, as shown with the error rate on the transcribed data. The
wildcard parsing improves the Slot ID accuracy significantly
simply because it covers more free form semantic slots like
subject, street names, etc.

Many topic ID errors can be attributed to the intrinsically
ambiguous sentences. Rudimentary error analysis (with about
half of the erroneous parses) shows that many topic ID errors
can be attributed to the intrinsically ambiguous sentences.
Around 1/3 of the slot errors are side effect of the card-
switching errors. Another 1/3 slot ID errors are directly related
to the free-form text. The last 1/3 “errors” are due to some other
reasons, such as transcription errors and uncovered proper
names. Many errors in this category are actually not real errors.
They are due to the inconsistent human annotations (e.g., time
expressions were labeled with or without o’clock, a.m. or p.m.,
etc.)

Speed-wise, the newly implemented parser on average spends
0.2 millisecond per word on a Pentium-III 600MHz machine,
which is a speedup by a factor of three compared to the original
parser that does not support wildcard parsing. The speedup may
be even more significant for sentences spoken to the non-
Command fields, since the focused parsing can prune more
hypotheses.

6. Discussions and Summary
The applications of our robust parser are not limited to MiPad
SLU. The same parser is used in the unified language modeling
technique [7] that we are investigating for the same application.
It takes advantage of both statistical language model such as n-
gram and semantic context free grammar to alleviate the sparse
data problem in a domain-specific application. We are also
using the parser together with some name entity grammars and
statistical learning algorithms to aid the authoring of semantic
grammar.

While the parser is working satisfyingly, some improvements
can still be made:

1. Our error analysis shows that slots with free-from
text are a major source of slot ID errors. This is due
to the aggressive natural of the wildcard-parsing
algorithm: it puts everything that is not covered and
fits the context as a wildcard match and identifies
word sequences like “latest build at” as a wildcard e-
mail subject. We are planning to integrate syntactic
information from partial parsing [8] algorithms into
our semantic framework, and only allow legal
syntactic phrases to match wildcard semantic slots.

2. We are going to use the unified language model [7]
to score parses. With the unified language model, we
can score parses with probability instead of
heuristics. This enables a tight integration of speech
recognition and SLU in a statistical framework ---
we can use the acoustic score from the speech
recognizer and the language model score from the
SLU to rank the parses of n-best input.

In this paper we have introduced the SLU component of
MiPad, our first application prototype in the study of
conversational, multi-modal interface. We have described the
new features of the robust chart parser that can fully take
advantage of the Tap and Talk interface of MiPad. We also
discussed some of the implementation issues that speed up the
parser for the use in a SLU server.

7. References
[1] X. Huang and et al., "MiPad: A Next Generation PDA

Prototype," ICSLP, Beijing, China, 2000.
[2] K. Wang, "A Plan-based Dialog System with

Probabilistic Inference," ICSLP, Beijing, China, 2000.
[3] W. Ward, "Understanding Spontaneous Speech: the

Phoenix System," ICASSP, Toronto, Canada, 1991.
[4] B. Alabiso. A. Kronfeld, "LEAP: Language Enabled

Applications," the First Workshop on Human-machine
Conversation, Bellagio, Italy, 1997.

[5] Y.-Y. Wang, "A Robust Parser For Spoken Language
Understanding," Eurospeech, Budapest, Hungary, 1999.

[6] J. Allen, Natural Language Understanding: Benjamin-
Cummings Publishing Company, Inc., 1995.

[7] Y.-Y. Wang, M. Mahajan, and X. Huang,, "A Unified
Context-Free Grammar And N-Gram Model For Spoken
Language Processing," ICASSP, Istanbul, Turkey, 2000.

[8] S. Abney, "Partial Parsing via Finite State Cascades.,"
Natural Language Engineering, vol. 2, pp. 337-344,
1996.

