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Abstract 
MiPad is an application prototype for the study of 
conversational, multi-modal interface in Microsoft Research. It 
has a Tap and Talk interface that allows users to effectively 
interact with a PDA device. The major Spoken Language 
Understanding (SLU) engine component behind MiPad is a 
robust chart parser. This paper discusses some novel features of 
the parser that enable it to take full advantage of the Tap and 
Talk interface and better support semantic based analysis. It also 
describes some implementation issues so that these new features 
can be accommodated without slowing down the parser. The 
new implementation speeds up the parser by a factor of three, 
making it more suitable for a SLU server. 

1. Introduction 

1.1. MiPad 

MiPad (Multi-modal Interactive Pad) [1] is an application 
prototype of a research project in the Speech Technology Group 
of Microsoft Research and Microsoft Speech.Net Group. It 
offers a conversational, multi-modal interface to Personal 
Information Manager functionality, including calendar, contact 
list and e-mail. While our ultimate goal is an interaction model 
that spans across a number of different platforms and users, the 
initial target device is in the palmtop form factor. We chose this 
target device because it is very difficult to enter large amount of 
text, to fill a form, and to issue commands with multiple 
parameters with the current PDA devices. Multi-modal 
interaction with speech and pen can help address these 
problems, which can significantly improve the usability with the 
Tap and Talk interface. Figure 1 shows a screenshot of the 
Appointment card in MiPad. Seven fields appear on the card: 
Subject, Location, Attendees, Duration, Start Date, Start 
Time, and Body Message. A user interacts with it by tapping 
and holding on a field and speaking appropriate content into it. 
In the example in Figure 1, the user is tapping on the Start 
Time field and talking to the device. The bars in the field 
indicate that MiPad is carrying out speech recognition. 
Experienced users can also tap on the Command button and 
speak a full sentence that contains cross-field information, such 
as “Schedule a meeting with Kevin Larson and Derek Jacoby on 
Friday for two hours.”  
1.2.  MiPad Spoken Language Understanding 

While dialog management is an important topic in our research 
[2], it plays little role in the MiPad, for the Tap and Talk 
interface explicitly provides dialog state (tapped field) 
information. The major SLU component is a robust chart parser. 
 

 
 

Figure 1. MiPad Screenshot. The user is tapping on the Start 
Time field and talking to the device. 
 
The speech recognizer can use field-specific language models 
and the SLU component can employ field-specific grammars. 
This seemingly makes the SR and SLU task easier. However, on 
the other hand, in the typical MiPad usage scenario, users may 
use the built-in MiPad microphone that is very sensitive to 
environment noise. Using the iPaq device from Compaq as one 
of our prototypes, the word recognition error rate increased by a 
factor of two in comparison to a close-talk microphone (in the 
normal office environment), which shows that we need much 
better noise robust SR and SLU. 

The MiPad SLU is modeled with domain-specific semantic 
grammars. Normally, semantic grammars are CFGs with non-
terminals representing semantic concepts instead of syntactic 
categories, like the one used for ATIS in [3]. Our grammar 
introduces a specific type of non-terminals called semantic 
classes to describe the schema of an application [4, 5]. The 
semantic classes define the conceptual structures of the 
application that are independent to linguistic structures. The 
linguistic structures are modeled with context free grammars. In 
doing so, it makes the linguistic realization of semantic concepts 
transparent to an application; therefore the application logic can 
be implemented according to the semantic class structure, in 
parallel with the development of linguistic context free 
grammar. We introduced the framework of a robust spoken 
language parser in [5]. It analyzes input sentences according to 
the linguistic grammar and maps the linguistic structure to the 
semantic conceptual structure. Recently, we have made 

Eurospeech, pp. 1555-1558, ESCA, Aalborg, Denmark, 2001





substantial modifications to the parser to fully take advantage of 
the form factor of MiPad and better support the semantic based 
analysis. The changes range from some enhanced features to 
improved performance.  

2. Robust Chart Parser  

The robust parsing algorithm is an extension of the bottom-up 
chart-parsing algorithm [6]. The robustness to 
ungrammaticality and noise can be attributed to its ability of 
skipping minimum unparsable segments in the input. The 
algorithm uses dotted rules, which are standard BNF CFG 
rules plus a dot in front of a right-hand-side symbol. The dot 
separates the symbols that already have matched with the input 
words from the symbols that are yet to be matched. Each 
constituent constructed in the parsing process is associated 
with a dotted rule. If the dot appears at the end of a rule like in 
A→α•, we call it a complete parse with symbol A. If the dot 
appears in the middle of a rule like in A→→→→B••••CD, we call it a 
partial parse (or hypothesis) for A that is expecting a complete 
parse with root symbol C. 

The algorithm maintains two major data structures --- A chart 
holds hypotheses that are expecting a complete constituent 
parse to finish the application of the CFG rules associated with 
those hypotheses; an agenda holds the complete constituent 
parses that are yet to be used to expand the hypotheses in the 
chart.  

Initially the agenda is empty. When the agenda is empty, the 
parser takes a word (from left to right) from the input and puts 
it into the agenda. It then takes a constituent A[i,j] from the 
agenda, where A is the root symbol of the constituent and [i,j] 
specifies the span of the constituent.  The order by which the 
constituents are taken out of the agenda was discussed in [5]. 
The parser then activates applicable rules and extends 
appropriate partial parses in the chart. A rule is applicable with 
respect to a symbol A if either A starts the rule or all symbols 
before A are marked optional. The activation of an applicable 
rule may result in multiple constituents that have the same root 
symbol (the left-hand-side of the rule) but different dot 
positions, reflecting the skip of different number of optional 
rule symbols after A. If the resulting constituent is a complete 
parse, namely with the dot positioned at the end of the rule, 
the complete constituent is added into the agenda. Otherwise 
partial constituents are added into the chart; To extend the 
partial parses with the complete parse A[i,j], the parser exams 
the chart for incomplete constituent with dotted rule B[l,k] → 
α•Aβ for k < i, and constructs new constituents B[l,j] → αAβ 
with various dot positions in β, as long as all the symbols 
between A and the new dot position are optional. The 
complete constituent B[l,j] → αAβ• is added into the agenda. 
Other constituents are put into the chart. The parser continues 
the above procedure until the agenda is empty and there are no 
more words in the input sentence. By then it outputs top 
complete constituents according to the heuristic scores 
described in [5]. 
 
In [5], we distinguished three different types of rule symbols: 
optional symbols that can be skipped without penalty; normal 
symbols that can be skipped with penalty; and mandatory 
symbols that cannot be skipped. We found the skip of normal 

symbols is very problematic, mainly due to the following 
reasons: 

1. Grammar authors are generally very forgetful to 
mark a symbol mandatory. On the other hand they 
are very good at labeling optional symbols. We 
believe that in their mindset the symbols they have 
written down are deemed to be mandatory unless it 
is marked as optional. 

2. The skip of normal rule symbols adversely increases 
the constituent space. This dramatically slows down 
the parser and results in a great number of bogus 
ambiguities.  

Therefore the current parser does not skip rule symbols unless 
the symbol is explicitly marked as optional. 

3. New Features of the Parser 
To take advantage of the MiPad form factor and better support 
semantic analysis, we have enhanced the parser with the 
following novel features: 

3.1. Dynamic Grammar Support 

Dynamic grammar support provides the parser with the 
capability of modifying the grammar it is using on the fly. It is 
necessary because: 

1. Different users may have different data; therefore the 
parser should be able to customize the grammar online. 
For example, users may have different and changing 
contact list, therefore the parser should dynamically 
modify the rule for the contacts of different users. 

2. Different dialog states need different grammar too. If 
MiPad is showing a New-Email card, then the 
PersonByName semantic class should only contain 
those names in the user’s contact list, since they are the 
only names that the user can specify as recipients ---
otherwise the user has to specify an e-mail address. On 
the other hand, if MiPad is showing a New-Contact 
card, then we should use a name set with much greater 
coverage, or even introduce a spelling grammar. 

We have devised an API for application developers to 
dynamically and efficiently change the grammar used by the 
parser. The change can be made at different granularity, from 
the entire grammar to every single rule. This enables the parser 
to adapt to different users and dialog states. 

3.2. Wildcard Parsing  

In a semantic grammar, some semantic concepts are free form 
text and can hardly be modeled with semantic rules. For 
instance, meeting subjects can hardly be predicated and 
modeled with semantic grammar rules. To model this type of 
semantic units, the parser is augmented to handle rules with 
wildcards like the following one: 

<Meeting-Property>::=<about> <Subject:Wildcard>  
<about> ::= about | regarding | to discuss 
Here “<Subject:Wildcard>” represents the non-terminal 
semantic class “<Subject>” that can match free-form text. 
“<about>” serves as a context cue that triggers the wildcard 
rule for “<Subject>”. Anything that does not match other 
appropriate rules in the context and that matches the wildcard 



rules with appropriate trigger will be parsed as a wildcard 
semantic component in the appropriate context. 

3.3. Parsing with Focus 

The parser can effectively take advantage of the context/dialog 
state information to reduce parsing ambiguities and the search 
space, hence improve its performance. For example, if the 
parser knows that the system is in the middle of a dialog with 
the user, talking about the attendee of a meeting, then the 
parser will only parse “John Doe” as Attendee, although it 
could be E-mail Recipient or new Contact according to the 
grammar. The parser can get the context information (focus) 
either from the dialog manager in the general Dr. Who 
architecture, or directly from the applications with a Tap and 
Talk interface. The focus is specified as a path from the root to 
the semantic class that the system is expecting an input for, 
like Root/ScheduleMeeting/MeetingProperty/StartTime). 

The parser can override the focus mode in case the user 
volunteers more information in mixed initiative dialogs. In the 
case, if the system is expecting an input of the aforementioned 
focus and the user speaks “from 3 to 5pm’, the parser will be 
smart enough to identify both Start-Time and End-Time, and 
return the semantic class that is the closest common ancestor 
of the identified semantic classes, in this case, Meeting-
Property.  

3.4. N-best Parsing 

The parser can take n-best hypotheses from the speech 
recognizer, together with their scores, as input. The parser 
parses all the n-best hypotheses; ranks them with a heuristic 
score that combines the speech recognition score and the 
parsing score. The best parse will be forwarded to the 
application. 

4. Implementation Issues 
We found that the parser slowed down with the support of 
wildcard parsing, so we have redesigned the data structure and 
sped up the parser dramatically. Here we briefly describe some 
of the implementation issues. 

4.1. Lexicon Representation 

The lexicon contains both terminals and non-terminals. The 
non-terminals include names for semantic class, groups and 
productions [5]. Each entry in the lexicon is represented with an 
ID. The lexicon can map a terminal or non-terminal string to its 
ID. An ID is an integer with the least signification 3 bits devoted 
to the type of the ID (word, semantic classes, types, productions, 
groups etc.) The rest bits can be used as index for the direct 
access to the definition of the grammar components of the 
specific type. Each lexical entry points to a set Φ that contains 
the information of the IDs of the context free rules it can 
activate, as well as the position of the lexical item in these rules. 
Set Φ is used to locate the applicable rules after a complete is 
taken out of the agenda. 
Each non-terminal entry A has a Boolean element, specifying 
if it can derive a wildcard as its left-most descendant in a 

parse, or more formally, if wildcard .α∗→A  The value of 
this element has to be pre-computed at grammar load time, and 
recomputed every time after dynamic grammar modification. 

The speed to set this Boolean value is hence very important. 
Fortunately we already have the information of rules that can 
be activated by a symbol in set Φ. With that information, we 
can define the relation {( , ) |  x },x b b α βℜ = ⇒ where α is 
empty or a sequence of optional symbols. Then a non-terminal 
can derive a wildcard on its leftmost branch if and only if it is 
in the transitive closure of the wildcard with respect to 
relationℜ . This transitive closure can be computed in time 
linear to the number of non-terminal symbols. 

4.2. Chart and Agenda 

The chart consists of a dynamic array of n elements and a 
dynamic programming structure of n*(n+1)/2 (n is the length 
of an input sentence) cells that corresponds to the n*(n+1)/2 
different span of constituents. Each array element corresponds 
to a position in the input sentence, and it contains a heap that 
maps from a symbol A to a list of partial parses. The partial 
parses cover the input sentence to the position that the element 
represents for, and they expect a complete parse of a 
constituent with root symbol A. With this the parser can 
quickly find the partial parses to extend when a complete parse 
with root A is popped from the agenda; Each cell of the 
dynamic programming structure contains a heap that maps a 
grammar symbol A to a pointer to the complete constituent 
tree with root A and the span that the cell represents for. This 
enables the parser to quickly find out if a new constituent has 
the same root name and span as an existing constituent. If so, 
the parser will safely prune the constituent with lower score.  

The agenda is implemented as a priority queue. An element of 
the queue has a higher priority if it has a smaller span and 
higher heuristic score. This guarantees that the parser does not 
miss any parses with high heuristic score [5]. 

4.3. Wildcard Support 

Since wildcard match is expensive, we would like to treat 
input words as wildcard only when it fits in the context. 
Therefore we added some top down guidance for the creation 
of a wildcard constituent. With the wildcard derivation 
information available for non-terminal symbols as described in 
4.1, this can be implemented efficiently: during the parsing 
process, after a partial constituent with dotted rule A → α•Bβ 
is added to the chart, if B can derive a wildcard on its leftmost 
branch, we then set a flag that allows the next input word to be 
introduced as a wildcard.  

After we introduce a wildcard to the parser, theoretically it can 
build m different wildcard constituents with different 
coverage, where m is the number of remaining words in input. 
This adversely increases the search space drastically, since 
each of these wildcard constituents can be combined with 
other constituents to form much more constituents. Instead of 
generating these m constituents, we assume that the wildcard 
only covers a single word. After the parser has built the parse 
for the complete sentence, it expands the wildcard coverage to 
all the skipped words adjacent to the word covered by a 
wildcard in the initial parse. The parser always prefers non-
wildcard coverage to wildcard coverage.  So wildcard will be 
used only when there is no no-wildcard parse of the input 
segment that fits the context. 



5. Experimental Results 
We have conducted some preliminary experiments to study the 
performance of the robust parser. The test data contains 624 
sentences spoken to the Command button. Each sentence is 
manually annotated with its semantic card (top level semantic 
category) and slots like in the following example: 

        Sentence: Schedule a meeting with Peter at 3 pm 
        Card: Schedule-Meeting 
        Slots: Participant=Peter, Start-Time=3pm 

The robust parser is used to parse the input sentences and the 
results are compared with the human annotated data. The card 
switching (topic ID) accuracy is obtained by comparing the 
parser-found semantic category with the human annotated one. 
The slot accuracy is obtained by computing the slot (labels plus 
contents) insertion-deletion-substitution errors that the parser 
has made. 

Our semantic grammar contains 13453 rules; among them 
6406 are lexical rules with the form A→ a. There are 908 non-
terminals and 8546 terminals, and 14 top-level non-terminals 
representing the 14 major semantic categories (topics). The 
uni-gram perplexity of the topics is 8.4 and the average 
number of slots per topic is 4.9. 

 Topic ID Slot ID 
 Original Enhanced Original Enhanced 
Transcription 7.9 7.5 35.4 29.8 
Recognition 12.0 10.6 51.6 43.7 

Table 1.  Topic ID/Slot ID Error Rate or the Original 
and the Enhanced Parsers. 

 
Table 1 compares the enhanced parser’s topic ID and slot ID 
error rates with the original parser when it takes the 
transcribed data and speech recognizer’s outputs as input. 
While the n-best parsing improves the topic ID performance 
with SR input, the wildcard parsing feature also helps topic 
ID, as shown with the error rate on the transcribed data. The 
wildcard parsing improves the Slot ID accuracy significantly 
simply because it covers more free form semantic slots like 
subject, street names, etc. 

Many topic ID errors can be attributed to the intrinsically 
ambiguous sentences. Rudimentary error analysis (with about 
half of the erroneous parses) shows that many topic ID errors 
can be attributed to the intrinsically ambiguous sentences. 
Around 1/3 of the slot errors are side effect of the card-
switching errors. Another 1/3 slot ID errors are directly related 
to the free-form text. The last 1/3 “errors” are due to some other 
reasons, such as transcription errors and uncovered proper 
names. Many errors in this category are actually not real errors. 
They are due to the inconsistent human annotations (e.g., time 
expressions were labeled with or without o’clock, a.m. or p.m., 
etc.) 

Speed-wise, the newly implemented parser on average spends 
0.2 millisecond per word on a Pentium-III 600MHz machine, 
which is a speedup by a factor of three compared to the original 
parser that does not support wildcard parsing. The speedup may 
be even more significant for sentences spoken to the non-
Command fields, since the focused parsing can prune more 
hypotheses. 

6. Discussions and Summary 
The applications of our robust parser are not limited to MiPad 
SLU. The same parser is used in the unified language modeling 
technique [7] that we are investigating for the same application. 
It takes advantage of both statistical language model such as n-
gram and semantic context free grammar to alleviate the sparse 
data problem in a domain-specific application. We are also 
using the parser together with some name entity grammars and 
statistical learning algorithms to aid the authoring of semantic 
grammar. 

While the parser is working satisfyingly, some improvements 
can still be made: 

1. Our error analysis shows that slots with free-from 
text are a major source of slot ID errors. This is due 
to the aggressive natural of the wildcard-parsing 
algorithm: it puts everything that is not covered and 
fits the context as a wildcard match and identifies 
word sequences like “latest build at” as a wildcard e-
mail subject. We are planning to integrate syntactic 
information from partial parsing [8] algorithms into 
our semantic framework, and only allow legal 
syntactic phrases to match wildcard semantic slots. 

2. We are going to use the unified language model [7] 
to score parses. With the unified language model, we 
can score parses with probability instead of 
heuristics. This enables a tight integration of speech 
recognition and SLU in a statistical framework --- 
we can use the acoustic score from the speech 
recognizer and the language model score from the 
SLU to rank the parses of n-best input. 

In this paper we have introduced the SLU component of 
MiPad, our first application prototype in the study of 
conversational, multi-modal interface. We have described the 
new features of the robust chart parser that can fully take 
advantage of the Tap and Talk interface of MiPad. We also 
discussed some of the implementation issues that speed up the 
parser for the use in a SLU server.  
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