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Abstract

In this paper a preliminary version of the NTRU signature scheme is cryptanalyzed. The attack
exploits a correlation between some bits of a signature and coefficients of a secret random polynomial.
The attack does not apply to the next version of the signature scheme.

1 Introduction

Since the introduction of public key cryptography in the late seventies, many cryptosystems have been
put forth but only few of them have survived. Finding a new cryptosystem that overcomes deficiencies
of existing ones is a challenging task of paramount importance.

In 1996 a new encryption scheme called NTRU was proposed [HPS96, HPS98]. It is a highly
efficient cryptosystem based on a problem of finding small vectors in certain lattices. After a number of
modifications that preclude some serious attacks, its encryption/decryption speed still has a big safety
margin over conventional public key cryptosystems. [HS00] introduced a complimentary signature
scheme. The NTRU signature scheme is based on a similar problem and also much faster than other
known signature schemes.

The hardness of underlying problems is necessary but not sufficient condition of security of the
NTRU and NSS schemes. This relation between a hard problem and a cryptosystem is not unique and
may be found in other cryptosystems (e.g, the DSS). It opens door to attacks on a cryptosystem that
do not attempt to solve the underlying hard problem. In this paper we exhibit one such an attack on
the preliminary version of the NTRU signature scheme.

The current version of the NTRU signature scheme [HPS00] is resistant to our attack.

2 A brief description of the preliminary version of the NSS

We briefly describe the preliminary version of the NTRU signature scheme (NSS) as it was presented
in [HS00].

The parameters of the schemes are

(N, p, q, qf , qw,K,B).

[HS00] does not give clear guidelines on the choice of these parameters except for these conditions:

p divides qf and qw

q divides qfqf
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has the order of the security parameter of the scheme, e.g, 2−80.

We will use the following parameters that according to [HS00] “provide a security level that is at
least as great as an RSA 1024-bit modulus:”

(N, p, q, qf , qw,K,B) = (251, 2, 128, 16, 8, 6, 393). (1)

All polynomials in the description of the NSS have degree N − 1 and the multiplication is done
using the rule XN = 1. The multiplication in the ring Z[X]/(XN − 1) is denoted by ∗. The norm of a
polynomial a = aN−1X

N−1 + · · ·+ a1X + a0 is

||a|| =
√

(a0 − µa)2 + · · ·+ (aN−1 − µa)2,

where µa =
∑N−1

i=0 ai/N is the mean of its coefficients. The norm of a polynomial that is only determined
modulo q is computed by putting first its coefficients in a preselected interval [A,A + q − 1] by adding
or subtracting q.

The scheme is designed as follows

• Private and public keys: Bob chooses four polynomials of degree N − 1. Two of them, f1

and g1, are random with coefficients reduced modulo p (if p = 2, these polynomials are binary).
Two others, f2 and g2, have exactly K coefficients equal to 1 with the rest equal to 0. Then Bob
computes f and g as

f = f1 + qff2 and g = g1 + qfg2

and inverses of f modulo p and q

Fp ≡ f−1 (mod p) and Fq ≡ f−1 (mod q).

The private key is (f, Fp). The public key is the product

h ≡ Fq ∗ g (mod q).

• To sign a message M the signer does the following:

1. Hash M and encode the result as a polynomial m modulo p.
2. Compute w1 = Fp ∗m (mod q).
3. Randomly add or subtract multiples of p to some coefficients of w1. For example, if p = 2,

replace two zero coefficients with 2, two with −2, and two of the 1 coefficients with −1.
4. Randomly choose w2 with exactly K coefficients equal to 1 and the rest to 0.
5. Compute w = w1 + qww2.
6. Compute s = f ∗ w (mod q).
7. The signature on M is the the pair (m, s).

• To verify a signature (m, s) on M :

1. Check that s ≡ m (mod p).
2. Check that ||s|| ≤ B.
3. Compute t = h ∗ s (mod p) and check that ||t|| ≤ B.
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The norm of s and t that are determined modulo q can be computed given A. A is chosen so that
the means of the coefficients of s and t lie in the middle of the interval [A,A + q − 1]. We let

A =
N

4
+

qfK

2
+

qwK

2
− q

2
.

The following observation is crucial for the proof of completeness of the NSS (and our attack):

s ≡ f ∗ w = (f1 + qff2) ∗ (w1 + qww2) ≡ f1 ∗ w1 + qff2 ∗ w1 + qwf1 ∗ w2 (mod q),

because q divides qfqw. Now for our choice of parameters the resulting polynomial will have almost all
of its coefficients lying in an interval of length q. When one computes its norm and puts its coefficients
in the interval [A,A + q − 1], one almost restores this polynomial in integers (to within some additive
constant).

3 Attack on the NSS

We show that a passive attacker who may only intercept signatures can recover the private key. For the
concrete parameters (1) just a few dozens signatures are sufficient to reveal part of the key. The attack
does not even need the messages corresponding to the intercepted signatures.

We present the attack in three steps. First, a correlation between two coefficients of s and w is
proved. Second, we show how this correlation can be exploited resulting in a partical recovery of f2 and
g2. The two polynomials are recovered to within a circular shift of their coefficients. Third, the attack
is extended to recovery of more bits of the secret key.

3.1 Useful correlation

We write p[k] to denote the kth coefficient of a polynomial p. For −N < k < 0 let p[k] def= p[k + N ].

There are K coefficients of f and g that are at least qf (they are K non-zero coefficients of f2 and
g2). Denote positions of these coefficients in f by a1, . . . , aK and in g by b1, . . . , bK . We call these
coefficients “large,” since all others are less than p, which is less than qf .

A valid signature is s = f ∗ w (mod q). Its kth coefficient is

s[k] =
N−1∑
i=0

f [i]w[k − i] =
N−1∑
i=0

(f1[i]w1[k − i] + qff2[i]w1[k − i] + qwf1[i]w2[k − i]) (mod q). (2)

Notice that all but K coefficients of f2 are zero. It means that a fairly large summand qff2[ai] = qf

in the sum (2) is only present if w1[k−ai] is set to one. We conjecture that if s[k] is large, then w[k−ai]
is most likely equal 1. To quantify this observation we want to estimate the correlation between s[k]
and w[k − ai].

Fix f and let w1, w2 be sampled independently at random according to their respective distributions.
We ignore step 3 of the signing algorithm that introduces some distortion in the distribution of the
coefficients of w. The expected value of a coefficient of s is approximately

E(s[k]) ≈

(
N−1∑
i=0

f1[i]

)
1
2

+ qf
K

2
+ qw

(
N−1∑
i=0

f1[i]/N

)
K =

df1 + Kqf

2
+

Kqwdf1

N
,
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where df1 =
∑N−1

i=0 f1[i]. If w1[k − ai] = 1, then the expected value of s[k] conditioned on this event is

E(s[k] | w1[k − ai] = 1) ≈
df1 + f1[k − ai]

2
+ qf

K + 1
2

+
Kqwdf1

N
.

The variance of a single coefficient is approximately

Var(s[k]) ≈

(
N−1∑
i=0

f [i]2
)

1
4

+ K
df1

N
(1−

df1

N
)q2

w. (3)

Now we can compute the covariance and the correlation coefficient of two random variables. One
random variable is s[k] as a function of w and another is w1[k − ai] for a fixed i.

cov(s[k], w1[k − ai]) = E(s[k]w1[k − ai])− E(s[k])E(w1[k − ai])

=
1
2
E(s[k] | w1[k − ai] = 1)− E(s[k])

1
2

=
1
4
(f1[k − ai] + qf ).

The correlation coefficient is

ρ(s[k], w1[k − ai]) = cov(s[k], w1[k − ai])/
√

Var(s[k])Var(w1[k − ai]).

The maximum on the variance (3) is delivered by
∑N−1

i=0 f [i]2 = K(qf + 1)2 + (N −K) and df1 = N/2.
The correlation coefficient is at least

ρ(s[k], w1[k − ai]) ≥
qf/4√

(1
4(K(qf + 1)2 + (N −K)) + 1

4Kq2
w)1

4

.

Therefore for the concrete parameters (1)

ρ(s[k], w1[k − ai]) ≥ 0.42.

This correlation is very high and can be detected in a few trials. The problem now is to exploit this
dependency since w1 is kept secret and picked at random anew for every signature.

3.2 Partial recovery of the key

The previous section established a lower bound on the correlation between s[k] and w1[k− ai] for some
i. It means that when s[k] is large then w1[k− ai] is more likely to be one. It also works the other way
round. If s[k] is small, then w1[k − ai] is zero with probability more than 1/2. Clearly, this argument
also applies to t ≡ g ∗ w (mod q), since the product has exactly the same form as s ≡ f ∗ w (mod q).

Take two coefficients s[k] and t[k′] such that s[k] is smaller than the median and t[k′] is larger than
the median. Fix some integer i and j between 1 and K. We expect that w1[k − ai] is more likely to be
zero than one, while w1[k′ − bj ] tends to be one rather than zero. But it cannot be true simultaneously
if k − ai = k′ − bj and we thus have that

k − ai 6= k′ − bj ,

hence
bj − ai 6= k′ − k. (4)
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These inequalities are true only probabilistically, i.e., bj − ai 6= k′ − k with probability better than
1− 1/N , which is the case when the coefficients are chosen uniformly and independently at random.

Notice that in (4) the unknown and known variables are separated and we can conjecture about
bj − ai by observing k′ − k. It suggests the following line of attack on the scheme.

Partial recovery of a1, . . . , aK and b1, . . . , bK .

Input: A list of valid signatures (s1,m1), . . . , (sM ,mM ) (hashes m1, . . . ,mM are ignored by the
algorithm).

Output: An unordered list of length K2 that contains all ai − bj for 1 ≤ i, j ≤ K, where ai are
positions of the non-zero coefficients of f2 and bj are positions of the non-zero coefficients of g2.

Step 1. Compute ti ≡ h ∗ si mod q for all 1 ≤ i ≤ M .
Step 2. Put coefficients of si and ti into the interval [A,A+q−1], where A = N

4 + qf Q
2 + qwK

2 − q
2 .

Step 3. Choose k1, . . . , kN/2—the positions of the N/2 largest coefficients of si and k′1, . . . , k
′
N/2—

the positions of the N/2 smallest coefficients of ti.
Step 4. For every pair ki and k′j compute their difference modulo N . Keep track of frequences

of all possible differences (numbers between 0 and N − 1).
Step 5. Aggregate statistics collected on step 0 over all pairs (si, ti).
Step 4. Choose the K2 least frequent numbers. This is a tentative list of ai − bj mod N for

all 1 ≤ i, j ≤ K.

We do not give a formal proof of correctness of this algorithm. The intuition behind the algorithm
follows from (4). We know that the difference of two coefficient k and k′ selected as in step 3 is less
likely to coincide with ai− bj mod N than with a random number between 0 and N −1. Therefore after
sufficiently large number of trials the differences ai − bj mod N will emerge from the list 1, . . . , N − 1—
they will occur less frequently among differences k − k′ mod N .

Experimental evidence suggests that the probabilities converge very fast and for the parameters (1)
less than a hundred signatures are sufficient to find out ai − bj mod N for 1 ≤ i, j ≤ K.

3.3 Revealing more bits of the key

The result of the partial recovery of the key presented in the previous section is a complete list of
ai − bj mod N (and probably a few more numbers, since there are K2 numbers in total) for unknown
values {(ai, bi)}K

i=1. Our goal is to restore the unknown values.

Notice that every circular shift {((ai +M) mod N, (bi +M) mod N)}K
i=1 or a swap ({(N−1−bi, N−

1− ai)}K
i=1) results in the same pattern of ai − bj mod N . Therefore the best we can do is to come up

with a list of 2N possibilities for the unknown values. A simple backtrack algorithm finds one solution
(and immediately other 2N − 1) surprisingly fast for the parameters (1). The problem of studying
the performance of this algorithm or even proving that for N and K of interest there are at most 2N
possible solutions appears to be hard.

Suppose we know the list {(ai, bi)}K
i=1, which encodes f2 and g2. [HPS98] presents a lattice attack
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on a NTRU private key that also applies to the NSS. The 2N × 2N -matrix

α 0 . . . 0 h0 h1 . . . hN−1

0 0 . . . 0 hN−1 h0 . . . hN−2
...

...
. . .

...
...

...
. . .

...
0 0 . . . α h1 h2 . . . h0

0 0 . . . 0 q 0 . . . 0
0 0 . . . 0 0 q . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . q


defines a lattice parameterized by α that contains the vector (αf, g). This vector is most likely the
shortest vector in the lattice but the parameters of the scheme are chosen to make the task of finding
this vector infeasible. If f2 and g2 are known, then the vector (αf2, g2) is a very good approximation to
the shortest vector. It might be sufficient for an attack but to the best of our knowledge no algorithm
exists that may take advantage of this approximation.

Instead, we use our knowledge of f2 to conjecture about w1 based on this formula:

s ≡ f1 ∗ w1 + qff2 ∗ w1 + qwf1 ∗ w2 (mod q).

If, as we have shown, there is a strong correlation between coefficients s[k + ai] and w1[k], we can guess
w1[k] by observing s[k+a1],. . . ,s[k+aK ]. As we know w1, we may then detect a more subtle correlation
between coefficients of f1 and s. Experiments show that we can thus reveal over two thirds of the bits
of f1. It still falls short from a total break of the system, but demonstrates that a partial key exposure
may be used to uncover more bits of the key.

4 Conclusion

We presented an attack on the preliminary version on the NSS that reveals a significant part of the
private key. This attack requires interception of less than a hundred signatures. We may conclude that
the NSS as presented in [HS00] is completely insecure.

Our attack fails against the next version of the NSS [HPS00]. The reason for it is that in the new
NSS the polynomials forming the private key do not have a few large coefficients, which undermines
our method of detecting differences between coefficients. In addition, a special algorithm for choosing
w deliberately hides “features” of the private polynomials.
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