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Abstract

The Microsoft .NET Framework is a new computing architecture
designed to support a variety of distributed applications and web-
based services. .NET software components are typically distributed
in an object-oriented intermediate language, Microsoft IL, executed
by the Microsoft Common Language Runtime. To allow convenient
multi-language working, IL supports a wide variety of high-level lan-
guage constructs, including class-based objects, inheritance, garbage
collection, and a security mechanism based on type safe execution.

This paper precisely describes the type system for a substantial
fragment of IL that includes several novel features: certain objects
may be allocated either on the heap or on the stack; those on the
stack may be boxed onto the heap, and those on the heap may be
unboxed onto the stack; methods may receive arguments and return
results via typed pointers, which can reference both the stack and the
heap, including the interiors of objects on the heap. We present a
formal semantics for the fragment. Our typing rules determine well-
typed IL instruction sequences that can be assembled and executed.
Of particular interest are rules to ensure no pointer into the stack
outlives its target. Our main theorem asserts type safety, that well-
typed programs in our IL fragment do not lead to untrapped execution
errors.

Our main theorem does not directly apply to the product. Still,
the formal system of this paper is an abstraction of informal and ex-
ecutable specifications we wrote for the full product during its devel-
opment. Our informal specification became the basis of the product
team’s working specification of type-checking. The process of writ-
ing this specification, deploying the executable specification as a test
oracle, and applying theorem proving techniques, helped us identify
several security critical bugs during development.
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1 Introduction

This paper describes typing and evaluation rules, and a type safety theorem,
for a substantial fragment of the intermediate language (IL) executed by
Microsoft’s Common Language Runtime. The rules are valuable because
they succinctly and precisely account for some unusual and subtle features
of the type system.

Background: IL The Common Language Runtime is a new execution en-
vironment with a rich object-oriented class library through which software
components written in diverse languages may interoperate. Using the Visual
Studio .NET development environment, .NET components can be written in
the new object-oriented language C* [HWO00], as well as Visual Basic, Visual
C++, and the scripting languages VBScript and JScript. Furthermore, pro-
totype .NET compilers exist for COBOL, Component Pascal, Eiffel, Haskell,
Mercury, Oberon, Ocaml, and Standard ML.

Type-checking of NET components implemented in IL has already proved
useful for finding code generation bugs. Moreover, the .NET security model
assumes type-safe behaviour; type-checking is therefore useful for handling
untrusted components. Given these and other applications, the IL type sys-
tem is worthy of formal specification.

Background: Executable Specifications This paper is one outcome of
a research project to evaluate and develop formal specification techniques for
describing and analyzing type-checkers in general. Specifically, we applied
these techniques to the study of IL. We began by writing a detailed specifica-
tion of type-checking method bodies. This was an informal document in the
style of most language references. Eventually, this document was adopted by
the product team as the basis of their detailed specification of type-checking.
In parallel, following a methodology advocated by Syme [Sym98], we wrote
formal specifications for various IL subsets suitable for comparative testing
and formal proof. The executable part of these specifications is in a func-
tional fragment of ML, the rest in higher order logic (HOL). We can compile
and run the executable part as an IL type-checker. Since it is purely func-
tional code, we may also interpret it as HOL and use it for theorem proving
in DECLARE [Sym98|. In principle, this strategy allows the same source
code to serve both as an oracle for testing actual implementations and as a
model for formal validation. So far, we have built an ML type-checker for
a largely complete subset of the IL type system, but have formally verified
only a rather smaller fragment.



As is well known [Coh89], even formal proof cannot guarantee the absence
of implementation defects, simply because one has to abstract from details
of the environment when writing formal models. We found that develop-
ing a test suite that used our formal model as an oracle was an important
way of making our model consistent with the runtime. Our suite included
about 30,000 automatically generated tests. Our experience was that test-
ing remains the only viable way of relating a specification to software of the
complexity we were considering. One of our slogans: if you specify, you must
test. Writing a formal specification without generating tests may be viable
once a design has been frozen, but is simply not effective during the design
of a new system. Eventually, we handed over our suite to the test team, who
maintain it, and who have found bugs using it.

This Paper: An IL Fragment The main part of the paper concerns an
IL fragment based on reference, value, and pointer types.

At its core, the fragment is a class-based object-oriented language with
field update and simple imperative control structures. This core is compa-
rable to the imperative object calculus [AC96, GHIL.99] and to various frag-
ments of Java [DE97, IPW99]. An item of a reference type is a pointer to a
heap-allocated object.

Moreover, our fragment includes value and pointer types:

e An item of a value type is a sequence of machine words representing
the fields of the type. Value types support the compilation of C-style
structs, for instance. Value types may be stack-allocated and passed by
value. A box instruction turns a value type into a heap-allocated object
by copying, and an unbox instruction performs the inverse coercion.
Hence, when convenient, value types may be treated as ordinary heap-
allocated objects.

e An item of pointer type is a machine address referring either to a heap-
allocated object or to a variable in the call stack or to an interior field
of one of these. The main purpose of pointer types is to allow methods
to receive arguments or return results by reference.

We selected these types because they are new constructs not previously
described by formal typing rules, and because their use needs to be carefully
limited to avoid type loopholes. In particular, we must take care that stack
pointers do not outlive their targets.

For the sake of clarity, our presentation of the semantics differs from the
ML code in our executable specifications in two significant ways:



e First, we adopt the standard strategy of presenting the type system
as logical inference rules. Such rules are succinct, but not directly
executable; we found it better to write executable ML when we initially
wrote our specifications in order to help with testing. Still, typing rules
are better than code for presenting a type system and for manual proof.

e Second, we adopt a new, non-standard strategy of assuming that each
method body has been parsed into a tree-structured applicative ex-
pression. Each expression consists of an IL instruction applied to the
subexpressions that need to be evaluated to compute the instruction’s
arguments. This technique allows us to concentrate on specifying the
typing conditions for each instruction, and to suppress the algorithmic
details of how a type-checker would compute the types of the argu-
ments to each instruction. These algorithmic details are important in
any implementation, but they are largely irrelevant to specifying type
safety.

Finally, in the spirit of writing specifications to support testing, our
applicative expressions use the standard IL assembler syntax. Hence, any
method body that is well-typed according to our typing rules can be assem-
bled and tested on the running system.

In summary, the principal technical contributions made by this paper are
the following:

e New typing and evaluation rules for value and pointer types, together
with a type safety result, Theorem 1.

e The idea that the essence of a low-level intermediate language can be
presented in an applicative notation.

Future Challenges: As we have discussed, this project is a successful
demonstration of the value of writing executable, formal specifications during
product development.

On the other hand, the main theorem of this paper does not apply to the
full product; type safety bugs may well be discovered. An unfulfilled ambi-
tion of ours is to prove soundness of the typing rules for the full language
through mechanized theorem-proving. So a future challenge is to further
develop scalable and maintainable techniques for mechanized reasoning. A
soundness proof for the whole of IL would be an impressive achievement. To
apply theorem proving during product development, scalability and main-
tainability of proof scripts are important. Scripts should be scalable in the
sense that human effort is roughly linear in the size of the specification (with



a reasonable constant factor), or else proof construction cannot keep up with
new features as they are added. Scripts should be maintainable in the sense
that they are robust in the face of minor changes to the specification, or else
proof construction cannot keep up with the inevitable revisions of the design.

In the meantime, another challenge is to develop systematic techniques
for test case generation.

A third challenge is to integrate executable specifications, such as our
ML type-checker, into the product itself. The .NET Framework, like other
component models, itself contributes to this goal, in that its support for
multi-language working would easily allow a critical component to be written
in ML, say, even if the rest of the product is not.

The remainder of the paper proceeds as follows. Section 2 presents the
typing and evaluation rules for our IL fragment, and states our main theorem.
Section 3 explains a potentially useful liberalisation of the type system. Sec-
tion 4 summarizes the omissions from our IL fragment. Section 5 discusses
related work. Section 6 concludes.

2 A Formal Analysis of BIL, a Baby IL

This section makes the main technical contributions of the paper. We present,
a substantial fragment of IL that includes enough detail to allow a formal
analysis of reference, value, and pointer types, but omits many features not
related to these. We name this fragment Baby IL, or BIL for short.

Section 2.1 describes the type structure of BIL. In Section 2.2, we specify
the instructions that may appear in method bodies of BIL, and explain their
informal semantics. In Section 2.3, we specify a formal memory model for
BIL, and a formal semantics for the evaluation of method bodies. In Sec-
tion 2.4, we specify a formal type system for type-checking method bodies.
Section 2.5 introduces conformance relations that express when intermedi-
ate states arising during evaluation are type-correct. Finally, Section 2.6
concludes this analysis by stating our Type Safety Theorem.

2.1 Type Structure and Class Hierarchy

All BIL methods run in an execution environment that contains a fixed set
of classes. Each class specifies types for a set of field variables, and signa-
tures for a set of methods. Each object belongs to a class. The memory
occupied by each object consists of values for each field specified by its class.
Methods are shared between all objects of a class (and possibly other classes).
Objects of all classes may be stored boxed in a heap, addressed by heap refer-



ences. Objects of certain classes—known as value classes—may additionally
be stored unboxed in the stack or as fields embedded in other objects.

Formally, we assume three sets, Class, Field, and Meth, the sets of class,
field, and method names, respectively, and a set ValueClass C Class of value
class names. We assume a distinguished class name System.0bject such that
System.Object ¢ ValueClass.

Classes, Fields, Methods:

I
c € Class class name

ve € ValueClass C Class value class name
System.0bject € Class — ValueClass root, of hierarchy
f € Field field name

¢ € Meth method name

Types describe objects, the fields of objects, the arguments and results of

methods, and the intermediate results arising during evaluation of method
bodies.

Types:
A, B € Type ::= type
void no bits
int32 32 bit signed integer
classc boxed object
value class vc unboxed object
A& pointer to A

The type void describes the absence of data, no bits; void is only used
for the results of methods or parts of method bodies that return no actual
result.

The type int32 describes a 32 bit integer; BIL uses integers to repre-
sent predicates for conditionals and while-loops but includes no primitive
arithmetic operations. (IL features a rich selection of numeric types and
arithmetic operations.)

A reference type class ¢ describes a pointer to a boxed object (heap-
allocated, subject to garbage collection).

A walue type value class ve describes an unboxed object—a sequence of
words representing the fields of the value class vc, akin to a C struct. The
associated reference type, class vc describes a pointer to a boxed object—a
heap-allocated representation of the fields.



Finally, a pointer type A& describes a pointer to data of type A, which
may be stored either in the heap or the stack.

To avoid dangling pointers—pointers that outlive their targets—our type
system restricts pointers as follows. An important use for pointers in IL
is to allow arguments and results to be passed by reference. The following
are sufficient conditions to type-check this motivating usage while preventing
dangling pointers. The following are not necessary conditions; we explain a
useful and safe liberalisation in Section 3.

BIL Pointer Confinement Policy:

(1) No field may hold a pointer.
(2) No method may return a pointer.
(3) No pointer may be stored indirectly via another pointer.

(IL itself follows a slightly stricter policy that bans pointers to pointers
altogether.) Each of the conditions prevents a way of creating a dangling
pointer. If a field could hold a pointer, a method could store a pointer into
its stack frame in an object boxed on the heap. If a method could return
a pointer, a method could simply return a pointer into its stack frame. If
a pointer could be stored indirectly, a method could store a pointer into its
stack frame through a pointer to an object boxed on the heap or to an earlier
stack frame. In each case, the pointer would outlive its target as soon as the
method had returned.

The following predicate identifies types containing no pointers.

Whether a Type Contains No Pointer:
pointerFree(A) < —(A = B& for some B)

Next, a method signature B ((Aq,..., A,) refers to a method named ¢
that expects a vector of arguments with types Ay, ..., A,, and whose result
has type B. No two methods in a given class may share the same signature,
though they may share the same method name.

Method signature:

sig € Sig = B l(Ay,..., Ay) method signature

We assume the execution environment organises classes into an inheri-
tance hierarchy. We write ¢ inherits ¢’ to mean that ¢ inherits from ¢/. We
induce a subtype relation, A <: B, from the inheritance hierarchy. Our type
system supports subsumption: if A <: B an item of type A may be used



in a context expecting an item of type B. The only non-trivial subtyping
is between reference types. The subtype relation is the least to satisfy the
following rules.

Subtype Relation: A <: B

(Sub Refl) (Sub Class)

c inherits ¢

A< A classc <:class¢

We assume that the relation ¢ inherits ¢’ is transitive, and therefore so is
the relation A <: B.

The IL assembler recognises a fairly standard notation for single inher-
itance that allows a class to inherit methods and fields from a single su-
perclass. One might define the inheritance relation by formalizing such a
syntax and type-checking rules. Instead, since our focus is type-checking the
BIL instruction set, it is easier and more concise to simply axiomatize the
intended properties of the hierarchy. (Although the IL syntax disallows mul-
tiple inheritance, it happens that our axioms allow a class to inherit from two
superclasses that are incomparable according to the inheritance relation.)

Formally, we assume there is an ezecution environment consisting of three
components—a function fields(c), a function methods(c), and an inheritance
relation ¢ inherits ¢'—that satisfy the following axioms:

Execution Environment: (fields, methods, inherits)

fields € Class — (Field 3 Type) fields of a class
methods € Class — (Sig iy Body) methods of a class
inherits C Class x Class class hierarchy
c inherits c (Hi Refl)
c inherits ¢’ A (Hi Trans)
¢ inherits ¢ = c inherits '
c inherits ¢ N inherits c = ¢ = ¢ (Hi Antisymm)
c inherits System.Object (Hi Root)
c inherits d A\ f € dom(fields(d)) = (Hi fields)

f € dom(fields(c)) A
fields(c)(f) = fields(d)(f)

c inherits d = (Hi methods)
dom(methods(d)) C dom(methods(c))

c inherits ve = ¢ = ve (Hi Val)

pointerFree(fields(c)(f)) (Good fields)



B (A, ..., A,) € dom(methods(c)) (Good methods)
= pointerFree(B)

For any class ¢, fields(c) € Field fin Type, the set of finite maps from field
names to types. If fields(c) = f; — A; €™, the class ¢ has exactly the set of
fields named fi, ..., f, with types Aq, ..., A,, respectively.

(The notation f; — A; S exemplifies our notation for finite maps in
general. We let dom(f; — A; ") = {f1,..., fn}. We assume that the f;
are distinct. Let (f; — A; *€4")(f) = A; if f = f; for some i € 1..n, and
otherwise be undefined.)

For any class ¢, methods(c) € Sig iy Body, the set of finite maps from
method signatures to method bodies. We define the set Body of method
bodies—instruction sequences—in the next section. If methods(c) = sig; —
b; “€1+" the class ¢ has exactly methods with signatures sig,, ..., sig,, im-
plemented by the bodies by, ..., b,, respectively.

A binary relation on classes, inherits, formalizes the inheritance hierarchy.
Axioms (Hi Refl) and (Hi Trans) guarantee it is reflexive and transitive. (Hi
Antisymm) asserts it is anti-symmetric, that is, there are no cycles in the
hierarchy. According to (Hi Root), every class inherits from System.Object,
the root of the hierarchy.

Suppose that c is a subclass of d, that is, ¢ inherits d. By subsumption,
an object of the subclass ¢ may be used in a context expecting an object of
the superclass d. Accordingly, (Hi fields) asserts that every field specified by
d is also present in the subclass ¢. The axiom (Hi methods) asserts that every
method signature implemented by d is also implemented by the subclass ¢,
though not necessarily by the same method body.

In order to implement a method invocation on an object, we need to know
the class of the object. In general, we cannot statically determine the class
of an object from its type, since by subsumption it may in fact be a subclass
of the class named in its type. Therefore, each boxed object is tagged in
our formal memory model with the name of its class. On the other hand,
for the sake of space efficiency, unboxed objects include no type information.
Therefore, we must rely on statically determining the class of an unboxed
object from its type. For this to be possible, axiom (Hi Val) prevents any
other class from inheriting from a value class. So the actual class of any
unboxed object is the same as the class named in its type.

Axioms (Good fields) and (Good methods) implement points (1) and (2)
of the Pointer Confinement Policy.

We end this section by exemplifying how value and pointer types provide
possibly more efficient alternatives to reference types for returning multiple



results. Suppose there is a class Point € ValueClass with fields(Point) =
X — int32,y — int32, that is, a class with two integer fields. Here are three
alternative signatures for returning a Point from a method named mouse:

e As a boxed object: class Point mouse ().
e As an unboxed object: value class Point mouse ().

e In a pre-allocated unboxed object passed by reference:
void mouse (value class Point&).

2.2 Syntax of Method Bodies

BIL is a deterministic, single-threaded, class-based object-oriented language.
For the sake of simplicity, we omit constructs for error or exception handling.
This section specifies the instruction set as tree-structured applicative expres-
sions, most of which represent an application of an instruction to a sequence
of argument expressions. Since each applicative expression is in a postfix
notation, it can also be read as a sequence of atomic instructions. We have
chosen our syntax carefully so that, subject to very minor editing, this se-
quence of atomic instructions can be parsed by the IL assembler (as well as
our own IL type-checker).

We express the syntax of our conditional and iteration constructs using
assembler labels, ranged over by L.

A method reference Be::l(Aq, ..., A,) refers to the method with signature
B{(A,..., A,) in class c.

Inspired by FJ [TPW99], we assume for simplicity that each class has
exactly one constructor, whose arguments are the initial values assumed by
the fields of the new object. The constructor reference for a class ¢ takes the
form voidc:i.ctor(Ay, ..., A,). Constructors are only called to create a new
object; .ctor ¢ Meth.

Method and Constructor References:

L assembler label
M = Bcul(Ay, ..., Ay) method reference
K :=void c:.ctor(Ay,..., A,) constructor reference

Applicative Expressions for Method Bodies:

4 32 bit signed integer
a,b € Body ::= method body
ldc.i4 4 load integer



abrtrue L by br Ly Li:b; Lo: conditional

Li:abrfalse Loy bbr L Ly: while-loop

ab sequencing

a 1dind load indirect

a bstind store indirect

ldarga j load argument address
a stargj store into argument

ay -+ a,newobj K create new object

ag @y --- a, callvirt M call on boxed object
ap @y --- a, call instance M call on unboxed object
a ldflda A c::f load field address
abstfld Ac:f store into field

a box ve copy value to heap

a unbox vc fetch pointer to value

Conditionals and while-loops are not primitive instructions in IL, but it
is worthwhile to make them primitive in BIL to allow a simple format for
evaluation and typing rules. We have carefully chosen a syntax for these
constructs by assembling suitable IL branch instructions and labels. We
assume that the assembler labels in these expressions do not appear in any
of their subexpressions. The result is a syntax that is a little cryptic but
that does produce IL instruction sequences with the appropriate semantics.
These abbreviations are more readable:

Abbreviations for Conditionals and While-Loops:

a by by cond 2 abrtrue Libyobr Ly Ly:by Lo:
a b while = Li:abrfalse Ly bbr L; Ly:

The technique of representing assembly language in an applicative syntax
works for this paper because it can express all the operations on reference,
value, and pointer types. We express structured control flow like conditionals
or while-loops in this style by treating an assembly of IL branch instructions
as a primitive BIL instruction. Still, the technique may not scale well to
express control flow such as arbitrary branching within a method or exception
handling.

IL includes primitive instructions 1dfld and ldarg to load the contents
of an object field or an argument. Instead of taking these as primitives in
BIL, we can derive them as follows:

10



Derived Instructions:

a1dfld A ¢::f = a1dflda A ¢:: f 1dind
a ldarg j = a ldarga j 1dind

2.3 Evaluating Method Bodies

The memory model consists of a heap of objects and a stack of method
invocation frames, each of which is a vector of arguments. Our semantics
abstracts away from the details of evaluation stacks or registers.

We assume a collection of heap references, p, ¢, pointing to boxed objects
in the heap.

A pointer takes one of three forms. A pointer p refers to the boxed object
at p. A pointer (i,j) refers to argument j of stack frame i. A pointer ptr.f
refers to field f of the object referred to by ptr.

A result is either void 0, an integer i/, a pointer ptr, or an unboxed
object f; — u; ‘€™, a finite map consisting of a sequence of results u, ...
u, corresponding to the fields fi, ..., f,, respectively.

)

References, Pointers, Results:

D, q heap reference
pir = pointer
P pointer to boxed object p
(1,7) pointer to argument j of frame i
ptr.f pointer to field f of object at ptr
U, = result
0 void
14 integer
ptr pointer
fi > u; € value: unboxed object

Next, we formalize our memory model. A heap is a finite map from ref-
erences to boxed objects, each taking the form c[f; — u; *€%"], where c is
the class of the object, and f; — u; €'" is its unboxed form. A frame, fr,
is a vector of arguments writen as .args(ug,...,u,): ug is the self param-
eter; uy,...,u, are the computed arguments. A stack, s, is a list of frames
fry---fr,. Finally, a store is a heap paired with a stack.

Memory Model:

0 = [ fi — u; €] boxed object

11



h = p; — o; €+ heap

fr == .args(ug,...,uy,) frame: vector of arguments
s u=fry---fr, stack (grows left to right)
o = (h,s) store

The example heap h = p — ¢[f; — 0, fo — (g — 1)] consists of a single
boxed object ¢[f; — 0, fo — (g — 1)] at heap reference p. The boxed object
is of class ¢ and consists of fields named f; and f;. The first field contains
the integer 0. The second field contains the unboxed object g — 1, which
itself consists of a field named ¢ containing the integer 1.

The example stack s = .args(p,p.fs.g).args(p, (1,1)) consists of two
frames. The bottom of the stack is the frame .args(p,p.f2.g), consisting
of two arguments, a reference to the boxed object at p, and a pointer to
field g of field f, of the same object. The top of the stack is the frame
.args(p, (1,1)), consisting of two arguments, a reference to the boxed object
at p, and the pointer (1, 1), which refers to argument 1 of frame 1, that is,
the pointer p. fs.g.

We rely on two auxiliary partial functions for dereferencing and updating
pointers in a store:

Auxiliary Functions for Lookup and Update:

lookup (o, ptr) lookup ptr in store o
update (o, ptr,v') update store o at ptr with result v’

We explain the intended meaning of store lookup and update by example.
Let store 0 = (h, s) where h and s are the heap and stack examples introduced
above. Then lookup(o, (1,0)) is the reference p stored in argument 0 of frame
1, and lookup (o, p. f>.g) is the integer 1 stored in field g of the unboxed object
stored in field f; of the boxed object at p. The outcome of update(o, (2,0),1)
is to update o by replacing the reference p in argument 0 of frame 2 with 1.
Similarly, the outcome of update(o, p.f1.9,0) is to update o by replacing the
integer 1 in field ¢ of field f; of the boxed object at p with the integer 0.

A little functional programming suffices to define these two functions; we
give the full definitions in the Appendix.

Our operational semantics of method bodies is a formal judgment o
b ~ v - ¢’ meaning that in an initial store o, the body b evaluates to the
result v, leaving final store o’. (A “judgment” is simply a predicate defined
by a set of inference rules.)

12



Evaluation Judgment:
ockbb~wv-o given o, body b returns v, leaving o’

Our semantics takes the form of an interpreter. The rest of this section
presents the formal rules for deriving evaluation judgments, interspersed with
informal explanations.

Evaluation Rules for Control Flow:

(Eval 1dc) (Eval Seq)
ocrFa~u-0 o Fb~uv-o"

ok 1ldc.idif ~ if -0 ockFab~v-o”

(Eval Cond) (where j =0 if i4 = 0, otherwise j = 1)
oba~if-0 o Fbj~v-o"

ot abyb cond ~ v-o”

(Eval While 0)

ockFa~0-0'

ot abwhile~0-0

(Eval While 1) (where if # 0)

cba~if -0 o Fb~ov-o” o"Fabwhile~ u-o”

o abwhile ~ u-o"

The expression 1dc.i4 ¢4 evaluates to the integer 4.

The expression a b evaluates a, returning void (that is, nothing). The
result of the whole expression is then the result of evaluating b.

The expression a by by cond evaluates a to an integer 74. The result of the
whole conditional is then the result of evaluating by if 74 = 0, and evaluating
b; otherwise.

The expression a b while evaluates a to an integer /. If ¢4 = 0 evaluation
terminates, returning void. Otherwise, the body b is evaluated, returning
void, and then evaluation of a b while repeats.

Evaluation Rules for Pointer Types:

(Eval 1dind)
ok a~s ptr-o

o aldind ~ lookup(o’, ptr) - o’

13



(Eval stind)
ocba~ptr-o o kFb~wv-o”

o b abstind ~ 0 - update(c”, ptr, v)

The expression a 1dind evaluates a to a pointer, and then returns the

outcome of dereferencing the pointer.

The expression a b stind evaluates a to a pointer, stores the result of
evaluating b in the (heap or stack) location addressed by the pointer, and

returns void.

Evaluation Rules for Arguments:

(Eval 1darga)
7 = (hofry 1)
ot ldargaj~ (i,j) -0

(Eval starg)
ocba~wu-o o =, fri---fr;)

o - astarg j ~ 0- update(o’, (i, j), u)

The expression ldarga j returns a pointer to argument j in the current

stack frame.

The expression a starg ¢ evaluates a, stores the result in argument 7 in

the current stack frame, then returns void.

Evaluation Rules for Reference Types Only:

(Eval newobj) (where K = void c::.ctor(Al,..., Al )

c ¢ ValueClass

fields(c) = fi — A; € oy a;~ v -0 Vi€ lon
Onp1 = (h,s) p&dom(h) h =h,p— c[f;— v; "]

oy ay -+ a, newobj K ~p- (h',s)

(Eval callvirt) (where M = B c::l(Ay, ..., A,))
oo ag~ po - (hr,51) ha(pe) = [ fi = uy 1]
(hi; Si) F a; ~ Vg * (hi-l—l; si—l—l) Viel.n
methods(d)(B (A, ..., Ay)) =b
(R 1y Sni1-axg8(Pos V1, - - -5 0p)) F b~ 0" (W8 fr')
oo agay -+ a, callvirt M ~ o' - (K, s)
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The expression a; -+ a, newobj K, where K is the constructor for a class
c ¢ ValueClass, allocates a boxed object whose fields contain the results of
evaluating aq, ..., a,, and returns the new reference.

The expression agay - - - a,callvirt M, where M refers to B{(Aq, ..., Ay)
in class ¢, evaluates ag to a reference to a boxed object of class ¢’ (expected
to inherit from ¢), locates the method body for B ¢(Ay,..., A,) in class ¢,
and returns the result of evaluating this method body in a new stack frame
whose argument vector consists of the reference to the boxed object (the self
pointer) together with the results of ay, ..., a,. The result of this evaluation
is the store (1, s'fr'), where fr' is the final state of the new stack frame. Once
evaluation of the method is complete, the stack is popped, to leave (1, s") as
the final store.

Evaluation Rules for Reference and Value Types:

(Eval 1df1da)
ot a~s ptr-o
ot aldflda Ac:f ~ ptr.f - o

(Eval stfld)
cba~ptr-o o kFb~w-o”

o abstfld Ac:f ~ 0- update(a”, ptr.f,v)

The expression a 1dflda A c::f evaluates a to a pointer to a boxed or
unboxed object, then returns a pointer to field f of this object.

The expression a b stfld A c::f evaluates a to a pointer to a boxed or
unboxed object, updates its field f with the result of evaluating b, and returns
void.

Evaluation Rules for Value Types Only:

(Eval newobj) (where K = void vei.ctor(Al, ..., AL))
fields(ve) = fi— A; " ok a;~ ;-0 Vi€ ln

o1 ay -+ a, newobj K ~» (f; + v; €Y - 0y, 4

(Eval call) (where M = Buc:il(Ay,..., Ay))

(o)) F ag ~~ pt?" . (hl, 51)

(hi, Si) Fa;~ v;- (hi+1, 5i+1) Viel.n
methods(ve)(B (Ay,...,A,)) =0

(M1, Snyi.args(ptr,vr, ... vp)) E b~ o' - (B8 fr')

oot agpay --- a, call instance M ~ v' - (h', §')
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(Eval box) (where p ¢ dom(h'))
0 o pir- (H,5") lookup((H, ), pir) = fi = v; <1
o aboxve~sp- ((B,p vclfi — v; €"), s)

(Eval unbox)
cka~p-o

o b aunbox vc~ p-o’

The expression a; --- a, newobj K, where K is the constructor for a
value class ve, returns an unboxed object whose fields contain the results of
evaluating aq, ..., a,.

The expression ay a; --- a, call instance M where M refers to the
signature B ((Aq,...,A,) in value class ve, evaluates ag to a pointer to an
unboxed object (expected to be of class vc), locates the method body for
B/{(Aq,...,A,) in class ve, and returns the result of evaluating this method
body in a new stack frame whose argument vector consists of the pointer to
the unboxed object (the self pointer) together with the results of ay, ..., a,.

The expression a box ¢ evaluates a to a pointer to an unboxed object,
allocates it in boxed form in the heap, and returns the fresh heap reference.

The expression aunboxc evaluates a to a heap reference to a boxed object,
and returns this reference as its result.

2.4 Typing Method Bodies

This section describes a type system for method bodies such that evaluation
of well-typed method bodies cannot lead to an execution error. What is per-
haps most interesting here is the implementation of the Pointer Confinement
Policy of Section 2.1.

Let a type frame, Fr, take the form .args(A,, ..., A,), a description of the
types of the results in the current (top) stack frame. Our typing judgment,
Fr b : B, means if the current stack frame matches Fr, the body b evaluates
to a result of type B.

Type Frames and Typing Judgment:

Fr:= args(Ay,..., Ap) frame: types of arguments
Fr+b:B given Fr, body b returns type B

We make the additional assumption about our execution environment
that every method body (b below) conforms to its signature:
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Additional Assumptions:

c ¢ ValueClass N (Ref methods)
methods(c)(B ((Aq, ..., Ay)) =
args(classc, Ay, ..., A,)
ve € ValueClass A (Val methods)
methods(ve)(B (Aq, ..., Ap)) =b =
.args(value class ve&, Ay, ..., A,) Fb: B

Next, we give typing rules to define Fr - b: B.

Typing Rule for Subsumption:

(Body Subsum)
Fr-b:B B<:B

Fr=b: B

This standard rule allows an expression of a subtype B to be used in a
context expecting a supertype B'.

Typing Rules for Control Flow:

(Body 1dc) (Body Seq)
Frt-a:void Frtb:B
FrF1dc.i4 i/ : int32 Frtab:B

(Body Cond)
Frta:int32 Frtby:B Frtb: B

Frtabyb; cond : B

(Body While)
Fria:int32 Frkb:void

Fr=abwhile : void

The rule (Body Seq) uses the type void to guarantee that the first part
of a sequential composition returns no results.

The rules (Body Cond) and (Body While) use the type int32 to guarantee
the predicate expression a returns an integer.
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Typing Rules for Pointer Types:

(Body 1dind) (Body stind) (where pointerFree(A))
Fri-a: A& Fri-a,: A& Frbas: A

Frtaldind: A Frt a; ay stind : void

The rule (Body stind) implements rule (3) of the Pointer Confinement
Policy; without the condition pointerFree(A), stind could copy a pointer to
the current stack frame further back the stack.

Typing Rules for Arguments:
(Body ldarga)

7 €0.n
.args(Ap,...,A,) F1ldargaj: A;&

(Body starg)
args(Ag,...,Ap)Fa:A; j€0.n

.args(Ap,...,A,) - astargj: void

These rules check that the argument index j exists. Since starg only
writes within the current frame, we can safely allow A; to be a pointer.

Typing Rules for Reference Types:

(Ref newobj) (where K = void c:i.ctor(Ay,..., A,)
and fields(c) = f; — A; €41)
Fria;: A; Viel.n cé ValueClass

Fri=ay --- a,newobj K : classc

(Ref callvirt) (where B l(Ay,..., A,) € dom(methods(c)))
Frtag:classc Frta;:A; Viel.n

Frtagay --+ a, callvirt Be:l(Ay,..., A,) : B

(Ref 1df1lda) (where fields(c) = f; — A; '€1-)
Fri-a:classc j€1l.n

Fri-aldflda Ajc:f;: Aj&

(Ref stfld) (where fields(c) = f; — A; €1
and pointerFree(A;))
Fri-a:classc FrEb:A; jelun

Fri=abstfld Aj c::f; : void

18



These are fairly standard rules for operations on boxed objects. Recall
that the axiom (Good fields) guarantees every field is pointer-free. So the
pointerFree(—) condition on the rule (Ref stfld) is redundant. Still, it is
not redundant in a variation of our type system considered in Section 3, that
allows value classes to include pointers.

Typing Rules for Value Types:

(Val newobj) (where K = void ve:.ctor(Ay, ..., Ay)
and fields(vc) = f; — A; '€5")
Frta;:A; Viel.un

Frtay -+ a, newobj K : value class vc

(Val call) (where B l(Aq,..., A,) € dom(methods(vc)))
Frtag:valueclassve& Fria;:A; Viel.n

Frtagay --+ a, call instance Buvc::l(Ay,...,A,) : B

(Val 1dflda) (where fields(vc) = fi — A; 1)
Frta:valueclassvce& j € 1.n

Fri=aldflda Ajve:f; : Ak

(Val stfld) (where fields(ve) = f; — A; €L
and pointerFree(A;))
Fri-a:valueclassvc&k Frkb:A; jel.un

Fr=abstfld A ve:f; : void

(Val box) (where pointerFree(value class vc))
Fr F a: value class vck

Fr = aboxvc: class ve

(Val unbox)
Frta:class ve

Fr - aunbox ve : value class ve&

These are similar to the typing rules for operations on boxed objects,
except we refer to the object via a pointer type instead of a reference type.
Like (Ref stfld), the rules (Val stfld) and (Val box) bear pointerFree(—)
conditions that are redundant in the current system, but not in the system
of Section 3.
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2.5 Typing the Memory Model

In this section, we present predicates, known as conformance judgments,
that confer types on our memory model. In the next, we show that these
predicates are invariants of computation, that is, are preserved by method
evaluation.

We begin by introducing types for the components of our memory model.
A heap type p; — ¢; '€ determines the actual class of each boxed object.
A stack type Fry --- Fr, determines frame types for each frame in the stack.
A store type ¥ = (H, S) determines a heap type H and stack type S.

Heap, Stack, and Store Types:

H = p; — ¢; '€+ heap type
Su=Fry---Fry stack type
Y= (H,9) store type

Our first conformance judgment, ¥ = u : A, means that in a store match-
ing the store type X, the result u is well-formed and has type A. We define
what it means for a store to match a store type through other conformance
judgments, defined later.

Conformance Judgment for Results (Including Pointers):

YEu:A in X, result u has type A

Conformance Rules for References and Pointers:

(Res Ref) (Ptr Ref)
H(p) =c¢ cinherits ¢ H(p) = ve

(H,S) Ep:classc (H,S) = p :value class vc&

(Ptr Arg)
i€l.m Fr;=.args(Ay,...,A,) j€0.n

(H,Fry---Fry,) = (4,7) : A;&

(Ptr Field) (where A = class c or A = value class c&)
S Eptr: A fields(c) = fi— A€ jeln
Y Eptr.fir A&

The rule (Res Ref) assigns a reference type class ¢’ to a heap reference
p, so long as ¢’ is a superclass of the actual class of the object referred to by

D
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The rule (Ptr Ref) assigns a pointer type to a heap reference p that refers
to a value that is boxed on the heap.

These two rules can assign both a reference type and a pointer type to
a heap reference to a value class. If H(p) = vc, then we have (H,S) = p :
class ¢ by (Res Ref), but also (H,S) |= p : value class c& by (Ptr Ref).
We need (Res Ref) to type references constructed by the box instruction.
We need (Ptr Ref) to type pointers constructed by the unbox instruction.

The rule (Ptr Arg) assigns a pointer type to a stack pointer (7, 7) that
refers to argument j of frame 1.

The rule (Ptr Field) assigns a pointer type to a pointer referring to the
field f; of the object referred to by ptr. The base pointer ptr may either be
of type class c or value class c&. The first case is needed for a pointer to a
field of a heap object that is not in a value class. The second case is needed
for a pointer to a field of a heap or stack object in a value class.

Conformance Rules for Other Results:

(Res Void) (Res Int)

Y EO:void X[ i :int32
(Res Value)
fields(ve) = fi— A; " S v A, Viel.n

Y E fi = v " value class ve

The rules (Res Void) and (Res Int) assign the void and int32 types to
void and integer values, respectively.

The rule (Res Value) assigns a value type value class ve to a value. By
axiom (Hi Val), the inheritance hierarchy is flat for value types. So (Res
Value), unlike (Res Ref), does not allow vc to be a proper superclass of the
actual class of the value.

Other Conformance Judgments:

HEo:c in H, object o has class ¢
HEh heap h conforms to H
SEfriFr frame fr conforms to Fr
Yo store o conforms to ¥
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Conformance Rule for Objects:

(Con Object) (where fields(c) = f; — A; *€1-m)
(H, @) =v;: A; Viel.n
H ): C[fz — v, iEl..n] e

This rule defines when a heap object ¢[f; — v; """ is well-typed. The
preconditions (H, &) + wv; : A; require that the fields v; be typed with an
empty stack type. It follows that no field v; contains a stack pointer, since
the rule (Ptr Arg) for typing stack pointers assumes a non-empty stack type.

Conformance Rule for Heaps:

(Con Heap) (where H = p; > ¢; ')
HEo;:c; Yieln

This rule defines when a heap p; — 0; ‘€™ conforms to the heap type
pi — ¢; "1™ The heap type contains the actual class ¢; of each object o;.

Conformance Rule for Frames:

(Con Frame)
YEu:A; YieO.n
Y | .args(ug, ..., uy,) @ .args(Ag, ..., Ay)

This rule defines when a frame conforms to a frame type.

Conformance Rule for Stores:

(Con Store)
HEh (H Fri---Fr;) Efr;: Fr; Yi€l.n

(H, Fry-- - Fro) = (h, fry - fr,)

This rule defines when a store (H, Fry - -- Fr,,) conforms to a store type
(h,fry---fr,). It asks that the heap h conform to the heap type H, and
that each stack frame fr; conform to the corresponding frame type Fr;, but
after removing from the store type any higher—shorter lived—stack frames.
Hence, there may be pointers from a higher to a lower stack frame, but not
the other way round.
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2.6 Evaluation Respects Typing

We use standard proof techniques to show the consistency of the BIL evalu-
ation semantics with its type system. The following is the main type safety
result of the paper. If a program satisfies the restrictions on type structure
imposed in Section 2.1 and the typing rules for method bodies in Section 2.4
then its evaluation according to the rules in Section 2.3 can lead only to
conformant intermediate states as defined in Section 2.5. Let H < H' mean
that dom(H) C dom(H') and H(p) = H'(p) for all p € dom(H).

Theorem 1 If (H,S Fr) = o and Fr = b : B and 0 & b ~ v - o' then
there exists a heap type H' such that H < H' and (H',S Fr) = v : B and
(H',S Fr) = of.

As usual, such a theorem is vacuous if there is no of such that o - b ~»
v - o' holds, which happens either because the computation would diverge,
or because it gets stuck (if there is no applicable evaluation rule). Stuck
states correspond to execution errors, such as calling a non-existent method,
or attempting to de-reference an integer or a dangling pointer. As discussed
by Abadi and Cardelli [AC96], we conjecture it would be straightforward to
adapt the proof of Theorem 1 to show that no stuck state is reachable.

3 Variation: Allowing Pointers in Fields of
Value Classes

To avoid dangling pointers, the IL type system prevents the fields of all
objects, whether boxed on the heap or unboxed on the stack, from holding
pointers. In fact, as pointed out by Fergus Henderson, a more liberal type
system that allows unboxed objects to contain pointers is useful for compiling
nested functions.

When compiling a language with nested functions (for example, Pascal
or Ada), each invocation of a nested function needs access to the activation
records (that is, the arguments and local variables) of the lexically enclosing
functions. A standard technique is to pass the function a display [ASU86], an
array of pointers to these activation records. One strategy is to implement
an activation record (containing those arguments and local variables referred
to by nested functions) as a value class on the stack, and to implement the
display by pointers to the value classes representing the activation records.
Since arguments may be passed by reference, this scheme works only if we
allow value classes to hold pointers. Otherwise, we need to pay the cost of
boxing these activation records on the heap.
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If we allow fields of value classes to hold pointers, the following more
liberal policy still avoids dangling pointers.

A More Liberal Pointer Confinement Policy:

(1) No field of a boxed object may hold a pointer.

(2) No method may return a result containing a pointer.

(3) No result containing a pointer may be stored indirectly
via another pointer.

Though this policy helps compile nested functions, we lose the possibly
useful fact that every value class may be boxed, and hence treated as a
subtype of class System.Object.

To formalize this policy, we amend BIL as follows.

e Change the definition of pointerFree(A) to be the least relation with:

(1) pointerFree(void)
(2) pointerFree(int32)
(3) pointerFree(class c)
(4) (

4) pointerFree(valueclass vc) if fields(ve) = f; — A; €™ and
pointerFree(A;) for each i € 1..n.

e Change axiom (Good fields) to read:
¢ ¢ ValueClass = pointerFree(fields(c)(f))

(The only change is the insertion of the ¢ ¢ ValueClass precondition.)

To see the effect of these changes, recall there are four typing rules that
mention the pointerFree(—) predicate: (Ref stfld), (Body stind), (Val
stfld), and (Val box).

Typing Rules Requiring Pointer-Free Types:

(Ref stfld) (where fields(c) = f; — A; ‘€4
and pointerFree(A;))
Fri-a:classc FrEb:A; jelun

Fri-abstfld A c::f; : void

(Body stind) (where pointerFree(A))
Frta,: A& Friay: A

Frtaj ay stind : void
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(Val stfld) (where fields(ve) = f; — A; €L
and pointerFree(A;))
Fri-a:valueclassvc&k Frkb:A; jel.n

Frabstfld A; ve::f; @ void

(Val box) (where pointerFree(value class vc))
Fr F a: value class vck

Fr = aboxvc : class ve

Previously, any value could be stored via (Body stind), and the pointer-
free conditions on the other three rules were redundant. Now, these rules
prevent the export of values containing pointers to the heap or further back
the stack. Now, (Ref stfld) prevents a pointer being stored into a boxed
value class with a pointer field. In fact, no such boxed value classes can even
be allocated, given the pointerFree(—) condition on (Val box).

Our proof of Theorem 1, outlined in the Appendix, is in fact for this
more liberal system. Type safety for the original system is a corollary of
type safety for this more liberal system, since any method body typed by the
original system remains typable.

Implementation of the new scheme remains future work.

4 IL Features Omitted From BIL

To give a flavour of the full intermediate language, we briefly enumerate the
main features omitted from BIL. The IL Assembly Programmer’s Reference
Manual [Mic00] contains a complete informal description of IL.

We omit all discussion of IL metadata, such as how classes, static data
and method headers are described. We omit any discussion of the on-disk
format, the specification of linkage information, and assemblies, the unit of
software deployment.

Our object model omits null objects, global fields and methods, static
fields and methods, non-virtual methods, single dimensional and multidi-
mensional covariant arrays, and object interfaces. Our instruction set omits
local variables, arithmetic instructions, arbitrary branching, jumping, and
tail calls. Tail calls require care, because the type system must prevent
pointers to the current stack frame being passed as arguments. The current
IL policy is to prevent the passing of any pointers via a tail call.

We omit delegates (that is, built-in support for anonymous method invo-
cation), typed references (that is, a pointer packaged with its type, required
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for Visual Basic), attributes, native code calling conventions, interoperabil-
ity with COM, remoting (object distribution) and multi-threading. We also
omit exception handling, a fairly elaborate model that permits a unified view
of exceptions in C++, C#, and other high-level languages.

5 Related Work

The principle of formalizing type-checking via logical inference rules is a
long-standing topic in the study of progamming languages [Car97]. Formal
typing rules have been developed for several high-level languages, including
SML [MTHM97], Haskell [PW92], and for subsets of Java [DE97, IPW99].
Formal typing rules have also been developed for several low-level languages,
including TAL [MWCG99] and for subsets of the JVM [SA98, Qia99, Yel99,
FMO00]. The properties established by proof-carrying code [Nec97] can be
viewed as typing derivations for native code. The idea of formalizing a
type system via an executable type-checker has recently been advocated for
Haskell [Jon99]. Our use of an executable specification as an oracle is an
instance of the standard software engineering principle of multi-version pro-
totyping. Proofs of soundness of several programming language type systems
have been partially mechanised in theorem provers [Van96, Nor98, Sym99,
vN99.

Several existing compilers, including GHC [PHH'93], TIL [TMC"96],
FLINT [Sha97], and MARMOT [FKR*00], use a typed intermediate lan-
guage internally. One [MWCG99] in particular translates all the way from
System F, a polymorphic A-calculus, down to a typed assembly language,
TAL. The idea of writing a type-checker for a textual assembly format (like
our type-checker for IL) appears in connection with TAL: the TALx86 type-
checker accepts input in a typed form of the IA32 assembly language that
can also be processed by the standard MASM assembler.

Reference types for heap-allocated data structures akin to the reference
types of the type system of Section 2 appear in all of these intermediate
languages. What is new about our type system is its inclusion of value and
pointer types.

e Value types describe the unboxed stack-allocated form of a class. The
box and unbox instructions coerce between stack and heap forms of a
class. Types for boxed and unboxed non-strict data structures [PLI1]
and automatic type-based coercions between boxed and unboxed forms
[Ler92] have been studied previously. Other approaches include region
analysis [TT97] and escape analysis [PG92]. Still, the idea and formal-
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ization of types to differentiate between unboxed and boxed forms of
class-based objects appears to be new.

e Pointer types describe pointers to either stack or heap allocated items.
A risk with a stack pointer is that it may dangle, if its lifetime exceeds
the lifetime of its target. The stack-based form of TAL [MCGW9S§]
includes a type constructor for describing pointers into the stack; the
parameter to the type constructor is a stack type that ensures the
target is still live when the pointer is dereferenced. Instead, the Pointer
Confinement Policy of Section 2 avoids dangling pointers via various
syntactic restrictions. IL’s pointer types are easier to integrate with
high-level languages like Visual Basic with rather simple type systems
than a more sophisticated solution using stack types, as found in TAL.

6 Conclusions

One of the innovations in Microsoft’s Common Language Runtime is support
for typed stack pointers, for passing arguments and results by reference,
for example. We presented formal typing rules and a type safety result
for a substantial fragment of the Common Language Runtime intermediate
language. Our treatment of value types and pointer types appears to be
new. These rules were devised through our writing informal and executable
specifications of the full intermediate language. This effort clarified the design
and helped find bugs, but further research is needed on machine support for
formal reasoning and on test case generation. We exploited our formal model
to validate a liberalisation of the IL policy that allows object fields to contain
stack pointers.
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A Facts Needed in the Proof of Theorem 1

This appendix encompasses the main lemmas needed in the proof of the main
type safety theorem of the paper. Our proofs are for the definitions of (Good
fields) and pointerFree(—) described in Section 3. The proofs can trivially
be adapted for the original definitions in Section 2. Appendix A.1 covers
basic lemmas about the subtype and conformance relations. Appendix A.2
presents an alternative characterisation of the pointer conformance judge-
ment ¥ = pir : A&. Finally, Appendix A.3 presents the definitions and
typing properties of the store lookup and update functions.

A.1 Basic Lemmas

We begin with two lemmas about the subtype relation. Subtyping is trivial
for all types except reference types. Only reference types can be supertypes
of other reference types.

Lemma 1 Assume B # classc forallc. If A <: B or B <: A then A= B.

Proof By assumption, the rule (Sub Class) cannot derive either A <: B
or B <: A, so either A <: B or B <: A must have been derived by (Sub
Refl). Hence, A = B. O

Lemma 2 If class ¢ <: A then there exists ¢’ such that A = class ¢ and
¢ inherits ¢

Proof If classc <: A is derived by (Sub Refl,) A = classc. Take ¢ =¢
and we get ¢ inherits ¢’ by (Hi Refl). If class ¢ <: A is derived by (Sub
Class), the result is immediate. O

Although a subsumption rule is not part of the definition of the result
conformance relation ¥ = v : A, it is derivable.

Lemma 3 IfXFv:Aand A< A thenX EFv: A

Proof Either A takes the form classc or not. If not, by Lemma 1, A’ = A,
so the result follows at once. Otherwise, by Lemma 2, there exists ¢’ such
that A" = class ¢ and c inherits ¢’. Moreover, ¥ = v : class ¢ can only
have been derived by (Res Ref), so that there exist H, S, p, ¢ such that
Y. = (H,S)and v = p and H(p) = ¢’ such that ¢" inherits c. By (Hi Trans),
" inherits ¢ and ¢ inherits ¢ imply ¢’ inherits ¢’. By (Res Ref), H(p) = ¢”
and ¢’ inherits ¢ imply (H,S) = p:classd, that is, ¥ = v: A" O

32



The next three lemmas concern how varying the size of the stack affects
conformance.

Lemma 4 states that a pointer-free result well-formed in a store type
(H,S) is also well-formed in the store type (H,<). This justifies moving
pointer-free results from the current frame to the heap.

Lemma 5 states that any result well-formed in a store type (H,S) is also
well-formed in the store type (H,S Fr). This justifies passing results from
the current frame into the frame of a called method.

Lemma 6 states that a pointer-free result well-formed in a store type
(H, S Fr) is also well-formed in the store type (H,S). This justifies returning
pointer-free results from a called frame to the previous frame.

Lemmas 4 and 6 do not apply to pointer results because if the result is a
pointer into the top stack frame it is not well-formed in a smaller stack.

Lemma 4 If (H,S) v : A and pointerFree(A) then (H,&) = v : A,

Proof By induction on the derivation of (H,S) E v : A. Because of
pointerFree(A), none of the rules (Ptr Ref), (Ptr Arg), or (Ptr Field) can
have derived the judgment (H,S) | v : A. Instead, this judgment must have
been derived by (Res Void), (Res Int), (Res Ref), or (Res Value). In cases
(Res Void), (Res Int), and (Res Ref), it is easy to see that (H,&) EFv: A
may also be derived.

In case (Res Value), we have (H,S) = f; — v; """ : value class vc
derived from fields(vc) = f; — A; "™ and (H, S) | v; : A; for each i € 1..n.
By assumption, pointerFree(value class vc), and by definition, this means
that pointerFree(A;) for each i € 1..n. By induction hypothesis, for each
i € 1.n, (H,S) = v; : A; and pointerFree(A;) imply that (H, @) = v; : A;.
By (Res Value), we get (H, @) | f; — v; """ : value class vc. 0

Lemma 5 If (H,S) =v: A then (H,S Fr) Fv: A.

Proof The proof is by inspection of the rules for deriving the judgment
(H,S)EFv: A O

Lemma 6 If (H,S Fr) = v : A and pointerFree(A) then (H,S) v : A.

Proof By Lemmad, (H,SFr) = v: Aand pointerFree(A) imply (H, @) =
v: A. By Lemma 5, repeatedly, this implies (H, S) E v : A. O

Next, we have two lemmas concerned with method call and return.

Lemma 7 says that a frame is well-formed in the store (H, S Fr) if it is
well-formed in the store (H,S). This justifies passing an argument frame to
a called method.
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Lemma 8 says that a store (h, s) conforms to the store type (H,S) if the
store (h,s fr) conforms to a store type (H,S Fr). This justifies returning
from a method.

The proof of Lemma 8 depends on showing that no pointer in the final
store (h, s) refers to the frame fr.

Lemma 7 If (H,S) = fr : Fr then (H,S Fr) = fr: Fr.

Proof Suppose fr = .args(uy,...,uy) and Fr = .args(A,...,A4,). By
definition (Con Frame), (H,S) |= fr : Fr impliesm =n and (H,S) = u; : A;
for each i € 0..n. By Lemma 5, (H,S) | u; : A; implies (H,S Fr) = u; : A;
for each 7 € 0..n. Hence, by (Con Frame), we obtain (H, S Fr) = fr: Fr. O

Lemma 8 If (H,S Fr) = (h, s fr) then (H,S) = (h, s).

Proof Suppose that S = Fry---Fr,, and s = fry---fr,. By defini-
tion (Con Store), (H,S Fr) | (h,s fr) implies m = n and H = h and
(H,Fry---Fr;) = fr; : Fr; for each i € 1..n and (H,S Fr) = fr : Fr. By
(Con Store), H = h and (H, Fry--- Fr;) = fr; : Fr; for each i € 1..n imply
the judgment (H, Fry--- Fry,) = (h, fry--- fr,), that is, (H,S) = (h,s). O

Recall that we state Theorem 1 in terms of a relation H < H' defined to
mean that dom(H) C dom(H') and H(p) = H'(p) for all p € dom(H). We
may call this the heap extension relation. Heap extension is a partial order.

Lemma 9 The relation H < H' is reflexive and transitive (that is, for all
H, H', and H', H < H, and, if H < H' and H' < H" then H < H").

Proof Reflexivity and transitivity follow at once. O

The next three lemmas state that heap extension preserves the confor-
mance relations for results, objects, and frames.

Lemma 10 If (H,S) Fv: A and H < H' then (H',S) Fv: A.

Proof The proofis an easy induction on the derivation of the conformance
judgment (H,S) Ev: A. O

Lemma 11 If H=o0:c and H < H' then H = o : c.

Proof Suppose that o = c[f; — v;*¢'*"]. By definition (Con Object), H =
o : ¢ implies fields(c) = f; — A; """ and (H, &) = v; : A; for each i € 1..n.
By Lemma 10, (H,9) = v; : A; and H < H' implies (H', &) = v; : A; for
each i € 1..n. Hence, by (Con Object), we obtain H' =0 : ¢, as desired. O
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Lemma 12 If (H,S) = fr: Fr and H < H' then (H',S) |= fr: Fr.

Proof Let fr = .args(ug,...,uy) and Fr = .args(Ay, ..., A,). By defini-
tion (Con Frame), (H,S) = fr : Fr implies that m = n and (H,S) = u; : A;
for each i € 0.n. By Lemma 10, (H,S) = u; : A; and H < H' imply
(H',S) E u; : A;, for each i € 0..n. By (Con Frame), (H',S) = fr: Fr. O

The final lemma of this section justifies boxing of results. If the heap h
and the object o both conform to the heap type H, and p is a fresh reference,
then the extended heap obtained by allocating o at p is well-formed.

Lemma 13 If H = h and p ¢ dom(h) and H = o : ¢ then H,p — ¢ |
h,p — o.

Proof Suppose that h = p; — o; ‘™. By definition (Con Heap), H =
pi — ¢; " and H |= o; : ¢; for each i € 1.n. Let H' = H,p — c so that
H < H'. By Lemma 11, H = o : cand H < H' imply H' | o : ¢, and
moreover H | o; : ¢; and H < H' imply H' | o; : ¢; for each i € 1..n.
Hence, by (Con Heap), we obtain H,p+— ¢ = h,p — o. O

A.2 Another Formulation of Pointer Conformance

In the next section we present the recursive definitions of the lookup and
update functions on pointers. To show properties of these functions, it is
convenient to present in this section a reformulation of the pointer confor-
mance relation ¥ | ptr : A&. Essentially, we show that every well-formed
pointer takes the form of either (1) a pointer to an argument in a frame,
followed by a possibly empty path of field selections, or (2) a reference to
a boxed object of a value class, followed by a possibly empty path of field
selections, or (3) a reference to a boxed object (not necessarily of a value
class) followed by a non-empty path of field selections.

This reformulation begins with a notion of a path, a possibly empty se-
quence of field names.

Path Within an Object:

I 1
—

fo=fi-fa sequence of fields (written € if n = 0)

Next, we define a relation A L. B to mean that either the sequence fis
empty and A = B, or that A is a value class, and selecting the fields in the

series fin order yields the type B. This is defined in terms of A SN B, an
auxiliary single step relation.
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Actions of Fields on Types: A Sy Band AL B

AL Bifand only if A = value class vc and
fields(ve) = fi— A; " and f = f; and B = A;.

A== Bifand only if A = B.

AL Bif and only if A ELNRRELNY & (where n > 0).

Given these notations, we reformulate pointer conformance as follows.

Lemma 14 The judgment ¥ |= ptr : A& holds if and only if either:

(1) there ezist (i,5), f, and B such that ptr = (i, j).f and © &= (i, 7) : B&
and B =L A, or

(2) there exist p, f, and ve such that ptr = p.f and ¥ = p : valueclassve&

and value class ve == A, or

(3) there exist p, f;, f-: and ¢ such that ptr = p.fj.f and ¥ = p: classc
and A; N A, where fields(c) = f; — A; €™ and j € 1..n.

Proof For the backwards direction, it is easy to check, by inspection, that
each of the conditions (1), (2), and (3) implies that ¥ = ptr : A&.

For the forwards direction, we show by induction on the derivation of the
judgment ¥ = ptr : A& that it implies one of the three conditions.

(Ptr Ref) We have (H, S) = p: value class vce& derived from H(p) = ve.
We conclude case (2) with f = € and (H,S) = p : value class vc&
and value class vc = value class vc.

(Ptr Arg) We have (H, Fry---Fry,,) = (4,7) : A;& derived from i € 1.m
and Fr; = .args(A,...,An) and j € 0..n. We conclude case (1) with
f=eand (H,Fry- - Frp,) | (i,j) : A;& and A; == A;.

(Ptr Field) We have ¥ = ptr.f; : A;& derived from ¥ = ptr : B and
fields(c) = fi — A; " and j € 1..n and, either B = class ¢ or
B = value class c&.

If B = class ¢, the judgment ¥ = ptr : class ¢ can only have been
derived by (Res Ref) and hence there is a reference p such that ptr = p.

We conclude case (3) with f = € and £ = p : class ¢ and A, =L A;,
where fields(c) = f; — A; "™ and j € 1..n.
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Otherwise, B = valueclassc&. By definition, fields(c) = f; — A;*€-n

and 57 € 1..n imply value class c i> A;. By induction hypothesis,
Y = ptr.f; : A;j& implies one of the three conditions:

(1) There exist (4, 7), g, and B such that ptr = (i, ). and ¥ = (4, ) :
B& and B =% valueclassc. The latter and valueclassc i> A,
imply B EEiY A;. We conclude case (1) by taking f= q.f;-

(2) There exist p, g, and vc such that ptr = pgand ¥ E p :
value class ve& and value class ve == value class c. The
latter and value class ¢ L> A; imply value class vc :]> A;.
We conclude case (2) by taking f= q.f;-

(3) There exist p, fi, ¢, and ¢ such that ptr = p.f;.gd and ¥ = p :
classcand A, =% valueclass c, where fields(c) = f! — A;i€L-m
and k£ € 1..m. From A, :§> value class c and value classc i>
A; we get Ay SN A;. We conclude case (3) by taking f= q.f;-

Because A& is a pointer type, none of the rules (Res Void), (Res Int), (Res
Ref), or (Res Value) can have derived ¥ = ptr : A&. O

We use this lemma to prove the typing properties of store lookup and
update functions stated in the next section.

A.3 Facts about Lookup and Update

We omitted the definitions of functions for store lookup lookup(o, ptr) and
store update update(o, ptr,v') from the main body of the paper.

The store lookup function is defined in terms of an auxiliary function,
result lookup lookup (v, fi--- f,), that given the result v, returns the outcome
of applying each of the field selections fi, ..., f, in turn. Here is the definition
of this auxiliary function, followed by a typing lemma.

Result Lookup: lookup(v, fi--- fr)

I A 1
lookup(v,€) = v
lookup(f; = u; *€4", f; e lookup (u;, F)  where j € 1.n

—

Lemma 15 If ¥ Fv: A and A L. B then © = lookup(v, f) : B.
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Proof By induction on the length of f In the base case f = ¢ and
lookup(v, f) = v. By definition, A == B implies A = B. Hence, ¥ v : A
implies ¥ = lookup(v, f) : B.

In the inductive case f = fg. Given A 1L B, we have A Ly ¢ and

¢ =L B. Given A L5 C, we have A = value class vc and fields(ve) =
fi — A; " and f = f; and C = A; with j € 1.n. By definition (Res
Value), ¥ = v : value class vc implies v = f; +— v; ““" and ¥ = v; : A;
for each i € 1..n. By definition, lookup(v, f) = lookup(f; — v; N T

lookup(v;, §). By induction hypothesis, ¥ = v; : A; and A; =%, B imply
Y = lookup(vj, §) : B, that is, ¥ = lookup (v, f) : B. O

Next, we present the definition of store lookup, followed by a typing
lemma.

Store Lookup via Pointer: lookup(o, ptr)

I 1
—

lookup((h, s), p.f) = lookup(f; — u; ‘€, f)
where h(p) = c[f; — u; €17

lookup((h, s), (z,j)f) 2 lookup (v;, f)
where s = fry---fr,---fr,, with ¢ € 1.m,
and fr, = .args(vg,...,v,) with j € 0..n

Lemma 16 If ¥ =0 and X = ptr : A& then X |= lookup (o, ptr) : A.

Proof Let (h,s) = o so that ¥ = (h,s). According to Lemma 14, ¥ |=
ptr : A& implies one of three cases.
In case (1), there exist (i,7), f, and B such that ptr = (i,7).f and

S k= (4,5) : B& and B =5 A. By definition (Ptr Arg), © = (i, ) : B& im-
plies ¥ = (H, Fry -+ Fry,) and B = A; and Fr; = .args(Ay, ..., A,) where
i € 1.m and j € 0..n. By definition (Con Store), (H, Fry--- Fry,,) = (h,s)
implies that s = fr,--- fr,, and that (H, Fry--- Fr;) | fr; : Fr;. By defini-
tion (Con Frame), this implies fr; = .args(uy,...,u,) and (H, Fry--- Fr;) E
u; © Aj;. By definition, lookup(o,ptr) = lookup((h,s), ptr = (z,j)f) =
lookup (u;, f). By Lemma 15, (H, Fry - -- Fr;) |= uj: A;and A, =L 4 implies
(H,Fry--- Fr;) = lookup(u;, f) : A. By Lemma 5, repeatedly, this implies

that (H, Fry .- Fry,) = lookup(u;, f) : A, that is, ¥ = lookup(o, ptr) : A.
In case (2), there exist p, f: and ve such that ptr = p.f and ¥ E

p : value class vc& and value class vc LA By definition (Ptr Ref),
Y | p: value class ve& implies ¥ = (H, S) and H(p) = ve. By definition
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(Con Store), (H,S) = (h,s) implies H = h. By definitions (Con Heap) and
(Con Object), H &= h and H(p) = vc imply that h(p) = vc[f; + v; €8]
and H = vc[fi — v; "] : ve and (H,Q) & v; : A; for each i € 1..n,
where fields(ve) = f; — A; €7 Let v = f;i — v; ©" By defini-
tion, lookup(o, ptr) = lookup((h, s),p.]?) = lookup(v,]?). By (Res Value),
fields(ve) = f; — A; €4" and (H,2) E v; : A; for each i € 1.n im-
ply (H,2) E v : value class vc. By Lemma 5, repeatedly, this implies
Y E v : value class vc. By Lemma 15, ¥ = v : value class vc and

valueclassve == A then ¥ E lookup (v, ]?) : A, that is, ¥ |= lookup (o, ptr) :
A.
In case (3), there exist p, f;, f, and ¢ such that ptr = p.fj.f and ¥

p : class ¢ and A; L A, where fields(c) = f; — A; €™ and j € 1..n.
By definition (Res Ref), ¥ = p : class c implies ¥ = (H, S) and H(p) = ¢
and ¢ inherits c. By definition (Con Store), (H,S) & (h,s) implies H |=
h. By axiom (Hi fields), fields(c) = f; — A; """ and ¢ inherits ¢ imply
there exists m such that fields(c') = f; — A; *€"-"*™_ By definitions (Con
Heap) and (Con Object), H = h and H(p) = ¢ imply that h(p) = d[f; —
v; 1€t and H | off; = v; €47 2 c and (H, @) = v; @ A; for each i €
1..n + m, where fields(c) = f; — A; *€'-"t™_ By definition, lookup (o, ptr) =
lookup((h, s),p.f;.) = lookup(f; — v; €+ £ F) = lookup(v;, f). By
Lemma 5, repeatedly, (H, @) = v; : A; implies ¥ = v; : A;. By Lemma 15,
Y E v ¢ A and A; =L A then T = lookup(vj,f) : A, that is, ¥
lookup (o, ptr) : A. O

The store update function is defined in terms of an auxiliary function,
result update update(v, f1--- fn,v"), that given the result v, returns the out-
come of updating the field indicated by the field selections fi, ..., f, with
the result v'. Here is the definition, together with a typing lemma.

Result Update: update(v, f1--- fn,v')

update(v, €,v") 2y
update(f; — u; €7 f; fio)) =
(fj = update(u;, f,0"), fi = u; €M=Y for j € 1.n

Lemma 17 If ¥ E u : Aand A =% B and © E v : B then ¥ |
update(u, f,v) : A.
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Proof By induction on the length of f In the base case f = ¢ and
update(u, f,v) = v. By definition, A == B implies B = A. Hence, ¥ = v :
A implies ¥ | update(u, f, v) @ A.
In the inductive case f = fg. Given A 1L B, we have A Ly ¢ and
C =L B. Given 4 -1 C, we have A = valueclasswvc and fields(ve) = f; —
A€t and f = fjand C = A; with j € 1..n. By definition (Res Value), X |=
u : value classvc implies u = f; — v; """ and ¥ = v; : A; for each i € 1..n.
By definition, update(u, f,v) = (f; — update(v;,§,v"), fi — v; €0-m~1i}),
By induction hypothesis, ¥ = v; : A; and A, I Band = v : B imply
Y = update(v;,g,v) : A;. By (Res Value), this and ¥ = v; : A; for each
€ (1.n) — {j} and fields(vc) = f; — A; €™ imply 2 k= update(u, f,v). O

Given the previous auxiliary function, here is the definition of store up-
date.

Store Update via Pointer: update(o, ptr,v')

A

update((h, 5),p.f, V') =
(((h = p),p > clupdate(f; = u; <", f,0)]), 5)
where h(p) = c[f; = u; €7
update((h, s), (z,])f, V') =
(h, fry---.args(vy,. .., update(v;, fj V), o) )
where s = fry---fr,--- fr,, with ¢ € 1.m,
and fr, = .args(vy,...,v,) with j € 0..n

Finally, we state two typing lemmas for store update. They are essen-
tial facts in the proof of type safety for BIL: the proof of Theorem 1 uses
Lemma 18 and Lemma 19 to show that evaluations of stind and starg,
respectively, are type safe.

Lemma 18 If ¥ o0 and ¥ |= ptr : A& and ¥ = v : A and pointerFree(A)
then ¥ = update(o, ptr,v).

Proof Let (h,s) = o so that ¥ = (h,s). According to Lemma 14, ¥ |=
ptr . A& implies one of three cases. . .
In case (1), there exist (i,7), f, and B such that ptr = (i,7).f and

(
Y E(i,j): B& and B L 4. By definition (Ptr Arg), ¥ = (4,7) : B& im-
plies ¥ = (H, Fry -+ Fry,) and B = A; and Fr; = .args(Ay, ..., A,) where
i € 1.m and j € 0..n. By definition (Con Store), (H, Fry--- Fry,,) = (h,s)
implies that s = fr,---fr,, H E h and that (H,Fry---Fry) &= fry :
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Fry for each i € 1.m. By definition (Con Frame), this implies fr; =
.args(ug,...,u,) and (H, Fry---Fr;) = uy @ Aj for each j' € 0..n. By
definition,

Upd(lte(O', ptr, U) = update((hafrl o 'frm)a (Za.])f-: U)
= (hfry o fr e fr)
where fri = .args(uo, ..., update(uj,ﬁv), ..., uy). By Lemma 4, we have

that (H,Fri---Fr,) = v : A and pointerFree(A) imply (H, &) E v :
A. By Lemma 5, repeatedly, this implies (H, Fry---Fr;) = v : A. By

Lemma 17, (H, Fry--- Fr;) = u; : Aj and A; L. A and (H,Fri---Fr;) E
v : Aimply (H,Fry---Fr;) E update(uj,f,v) : A;. By (Con Frame),
this and (H, Fry--- Fr;) = uy : Ay for each j' € (0..n) — {j} imply that
(H, Fry---Fr;) = fr’: Fr;. By (Con Store), this, H = h and (H, Fry--- Fry)
= fry : Fry for each ¢ € (1.m) — {i} imply that & &= (h, fry - fri - fr,.),
that is, ¥ = update(o, ptr,v).

In case (2), there exist p, f, and vc such that ptr = p.f and X | p:

value class ve& and value class ve == A. By definition (Ptr Ref), ¥ =
p : value class vc& implies ¥ = (H,S) and H(p) = ve. By definition
(Con Store), (H,S) [ (h,s) implies H = h and S = Fry---Fr,y and s =
fry - fr,, and (H, Fry---Fry) = fr. : Fry for each k € 1..n'. By definition
(Con Heap), H = h implies H = py — ¢y "™ and h = py + oy "™ and
H = oy : ¢y for each i' € 1..m. From H(p) = ve, there exists i € 1..m such
that p = p; and ve = ¢;. By definition (Con Object), H = o; : ve implies
0; = vc[f; — v 1€ and fields(ve) = f;j — A; 7" and (H, Q) E v; : A
for each j € 1..n. By definition,

update(o, ptr,v) = update((h, s),p.f; v)
= (((h=pi) +pi = 0)),5)

where 0] = veupdate(f; — v; €', f,v)]. By (Res Value), fields(vc) = f; —
A" and (H, @) E v; : A; for each j € 1..n imply (H, @) E f; > v 75"
value classve. By Lemma 4, (H,S) = v : A and pointerFree(A) imply that
(H,2) E v : A. By Lemma 17, (H,9) [ f; — v; 7" : value class vc

and value class ve =2 A and (H,2) E=v: Aimply (H,9) = update(f; —
v; 1€ £ v) : value class ve. By definition (Res Value), this implies by
(Con Object) that H = o) : ve. By (Con Heap), this and H = oy : ¢ for
each 7' € (1..m) — {i} implies H |= (h — p;) + p; — 0}. By (Con Store), this
and (H, Fry--- Fry) = fry : Frp foreach k € 1..n" imply ¥ E ((h—pi)+pi —
0}), s), that is, ¥ |= update(o, ptr,v).
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In case (3), there exist p, f;, f: and ¢ such that ptr = p.fj.fand YEDp:

class ¢ and A, N A, where fields(c) = fj — Ay 7" and j € 1..n. By
definition (Res Ref), ¥ = p : class ¢ implies ¥ = (H, S) and H(p) = ¢’ and
c inherits c. By axiom (Hi fields), fields(c) = fj = A;7€1" and ¢ inherits c
imply there exists m such that fields(c') = f; + Aj 7'€-"+m By definition
(Con Store), (H,S) [ (h,s) implies H = h and S = Fry---Fr,y and s =
fry---fr,, and (H, Fry---Fry) = fr. : Fry for each k € 1..n'. By definition
(Con Heap), H |= h implies H = py ~ ¢y €™ and h = py — oy "™
and H = oy : ¢y for each i' € 1..m'. From H(p) = ¢, there exists i € 1..m’
such that p = p; and ¢ = ¢;. By definition (Con Object), H = o; : ¢ implies
0i = C[fj > vjp IE" ] and (H, @) = vy : Ay for each j' € 1.n + m.
By definition,

update(o, ptr,v) = update((h,s),pi.fj.ﬁv)
= (((h=pi) +pi = 0)),5)

where

o, = Cdlupdate(fy — vy Jelntm, fifsv)]

= C’[fj — update(vj, f-:v), fj' — vji j/el..(n-;-m)_{j}]
By Lemma 4, (H,S) | v A and pointerPree(A) imply (H,2) | v': A.

By Lemma 17, (H,@) [ v; : A; and A; =L A and (H,@) = v : A then
(H,®) = update(v;, f,v) : A;. By (Con Object), this and (H, @) = vy : A
for each j' € 1..(n +m) — {j} implies H = 0} : ¢;. By (Con Heap), this and
H = oy : ¢y for each i € (1.m') — {i} implies H = ((h — p;) + p; — 0}). By
(Con Store), this and (H, Fry--- Fry) = fr, : Fry for each £ € 1..n" imply
Y E (((h—p) +pi = 0)),s), that is, ¥ | update(o, ptr,v). O

Lemma 19 If ¥ E 0 and £ E (i,j) : A& and ¥ = v : A and 0 =
(hafrl o frz) then X ): update(a, (Zaj)av)

Proof By definition (Ptr Arg), ¥ = (4,7) : A& gives ¥ = (H, Fry -+ - Fry,)
and A = A; where ¢ € 1.m and Fr; = .args(Ap,...,A,) and j € 0..n.
By definition (Con Store), (H, Fry--- Fry,) = (h, fry--- fr;) implies i = m
and H = h and (H,Fry---Fry) &= fry  Fry for each ¢/ € 1.i. By
definition (Con Frame), (H, Fry---Fr;) = fr; : .args(4o, ..., A,) implies
fri = .args(ug,...,u,) and (H, Fry--- Fr;) = uj : Ay for each j' € 0..n. By
definition:

update(o, (i,7),v) = wupdate((h,fry---fr;),(i,7),v)
= (h,fry---.args(ug, ..., v,...,uy,))
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By (Con Frame), ¥ = uj : Ay for each j' € (0.n) — {j} and & = v : A;
imply ¥ = .args(ug,...,v,...,uy) : .args(Ao,...,A4,). By (Con Store),
this and H = h and (H, Fry---Fry) = fry @ Fry for each ¢/ € 1.4 —1
imply (H, Fry---Fr;) &= (h,fr,---.args(ug,...,v,...,uy,)), that is, ¥ |
update(o, (i,7),v). O

A.4 Proof of Type Safety

Proof of Theorem 1 If (H,SFr)=c and Fr+b:B ando -b~v-of
then there exists a heap type H' such that H < H' and (H',S Fr) = v : B
and (H',S Fr) = of.

Proof The proof is by induction on the derivation of o = b ~» v-¢’. There
is a case for each of the rules of the operational semantics.

(Eval 1dc)

obF1dc.id i) ~if - o
By assumption, (H,S Fr) = o and Fr + 1dc.i4 i : B. Because of
Fr = 1dc.i4 ¢ : B, and Lemma 1, we must have B = int32. By

(Res Int), (H,S Fr) = i4 : int32. Take H' = H. We conclude
(H',S Fr) =i/ : B and (H',S Fr) = o.

(Eval Seq)
cbka~u-o o Fb~uv-of

cFab~v-of

By assumption, (H, SFr) = o and Fr - ab: B. Because of Fr - ab: B,
we must have Fr - a : void and Fr F b : B. By induction hypothesis,
(H,S Fr) = o and Fr + a : void and 0 - a ~ u - o' imply there
exists a heap type H' such that H < H' and (H',S Fr) = u : void
and (H',S Fr) = o¢'. By induction hypothesis, (H', S Fr) | ¢’ and
Frtb:Band o - b~ v-of imply there exists a heap type H'
such that H' < H' and (H',S Fr) Ev: B and (HY,S Fr) E of. By
Lemma 9, H < H' and H' < H' imply H < H'. We conclude H < Hf
and (H',S Fr) Ev: B and (H',S Fr) = o',

(Eval Cond)
j=0if 4 =0, otherwise 7 =1
oba~if -0 o' Fbi~uv-of

o F aby by cond ~ v-of
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By assumption, (H,S Fr) = o and Fr t a by by cond : B. Because of
Fr = abg by cond : B, we must have Fr - a : int32 and Fr - b; : B,
whether j = 0 or j = 1. By induction hypothesis, (H,S Fr) = o and
Fr+a:int32 and o F a ~ i - o' imply there exists a heap type H'
such that H < H' and (H',S Fr) = i4 : int32 and (H',S Fr) | o'.
By induction hypothesis, (H',S Fr) = ¢' and Fr F b; : B and o
bj~ v - o' imply there exists a heap type H' such that H' < H' and
(HY,S Fr) = v : B and (H',S Fr) = /. By Lemma 9, H < H' and
H' < H'imply H < H'. We conclude H < HY and (H',SFr) =v: B
and (H',S Fr) E o'.

(Eval While 0)

oFa~0-0of

oF abuwhile~ 0-of

By assumption, (H,S Fr) = o and Fr = a b while : B. Because of
Fr = a b while : B, we must have Fr - a : int32 and Fr - b : void
and void <: B. By Lemma 1, B = void. By induction hypothesis,
(H,SFr) = o and Fr-a: int32 and o - a ~» 0- o' imply there exists
a heap type HT such that H < H' and (H,S Fr) & 0 : int32 and
(HT,S Fr) = of. By (Res Void), (H",S Fr) = 0 : void. We conclude
H < H'and (H',S Fr) = 0: B and (H',S Fr) & of.

(Eval While 1)
ocba~if -0 if #0
okFb~v-o0”
0"+ a b while ~ u - of

o abuwhile ~ u - of

By assumption, (H,S Fr) = o and Fr = a b while : B. Because of
Fr = a b while : B, we must have Fr - a : int32 and Fr - b : void
and void <: B. By Lemma 1, B = void. By induction hypothesis,
(H,S Fr) o and Fr t a : int32 and o - a ~ i/ - o imply there
exists a heap type H' such that H < H' and (H', S Fr) = i/ : int32
and (H',S Fr) = o¢'. By induction hypothesis, (H', S Fr) | ¢’ and
Fr b :void and o0 F b~ v - ¢” imply there exists a heap type H”
such that H' < H" and (H",S Fr) = v : void and (H",S Fr) E o”.
By induction hypothesis, (H", S Fr) = ¢" and Fr F a b while : void
and ¢” F a b while ~» u - o' imply there exists a heap type H' such
that H” < H' and (H',S Fr) = u : void and (H',S Fr) | of. By
Lemma 9, H < H' and H' < H" and H" < H' imply H < Hf. We
conclude H < H' and (H',S Fr) =u: B and (H',S Fr) = o',
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(Eval 1dind)
oba~sptr-of

o F aldind ~ lookup(of, ptr) - of

By assumption, (H,S Fr) = o and Fr  a 1dind : B. Because of
Fr F @ 1dind : B, we must have Fr - a : Bf& for some Bf <: B.
By induction hypothesis, since (H,S Fr) = o and Fr - a : B'&
and o F a ~» ptr - o there must exist a heap type H' such that
H < H' and (HY,S Fr) | ptr : B'& and (H',S Fr)  of. By
Lemma 16, (H',S Fr) & of and (H',S Fr) = ptr : B'& imply
(H',S Fr) & lookup(ot,ptr) : BY. By Lemma 3, this and B <: B
imply (HT,S Fr) = lookup(o', ptr) : B. We conclude H < H' and
(H', S Fr) & lookup (o', ptr) : B and (H',S Fr) = of.

(Eval stind)
cka~ptr-o o Fb~v-o”

ok abstind ~ 0 - update(a”, ptr, v)

By assumption, (H,S Fr) = o and Fr F a bstind : B. Because of
Fr = a b stind : B, we must have Fr - a : A& and Fr - b : A for
some A with pointerFree(A) and void <: B. By Lemma 1, B = void.
By induction hypothesis, since (H,S Fr) | o and Fr F a : A& and
o b a~» ptr-o’ there must exist a heap type H' such that H < H' and
(H',S Fr) = ptr : A& and (H', S Fr) = ¢'. By induction hypothesis,
since (H',S Fr) =o' and Fr-b: A and o' = b~ v-0¢” there must
exist a heap type H' such that H' < H' and (H',S Fr) v : A and
(H',S Fr) E ¢". By Lemma 10, (H',S Fr) | ptr : A& and H' < Hf
imply (H',S Fr) | ptr : A&. By Lemma 18, (H',S Fr) & ¢" and
(H',S Fr) | ptr : A& and (H',S Fr) = v : A imply (H',S Fr)
update(c”, ptr,v). By (Res Void), (HT, S Fr) = 0 : void. By Lemma 9,
H < H' and H' < H' imply H < Hf. We conclude H < H' and
(H',S Fr) =0: B and (H',S Fr) = update(o”, ptr,v).

(Eval 1darga)
g = (hvfrl te f’rz)
ot ldargaj~ (i,j) -0
By assumption, (H,S Fr) = (h,fry---fr;) and Fr - ldarga j : B.
Because of Fr - 1darga j : B, we must have j € 0..n and A;& <: B
where Fr = .args(Ay,...,A,). Because of (H,S Fr) = (h,fry---fr;),
we must have S = Fry---Fr;_y and Fr = Fr; for some Fry, ..., Fr;.
By (Ptr Arg), ¢ € 1..i and Fr; = .args(Ay,...,A4,) and j € 0..n imply
(H,Fry---Fr;) = (i,7) : A;j&. By Lemma 3, this and A;& <: B imply
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that (H,S Fr) = (i,j) : B. Take H' = H. By Lemma 9, H < Hf. We
conclude H < H' and (H',S Fr) = (i,j) : B and (H',S Fr) = o.

(Eval starg)
oba~wu-o o =, fri---fr;)

o - astarg j ~ 0 - update(o’, (i, j), u)

By assumption, (H, S Fr) = o and Fr - astargj : B. Because of Fr -
a starg j : B, we must have Fr = .args(Ao,...,4,) and Fr - a : A
and j € 0..n and void <: B. By induction hypothesis, (H,S Fr) E o
and Fr - a : Aj and 0 - a ~ u- o' imply there exists a heap type
HY such that H < H' and (H',S Fr) Eu: A; and (H',S Fr) = o'
Because of (H', S Fr) |= (W', fr - -+ fr;), we must have S = Fry--- Fr;_,
and Fr = Fr; for some Fry, ..., Fr;. By (Ptr Arg), i € 1..i and Fr; =
.args(Ao, ..., A,) and j € 0..n implies (H', Fry--- Fr;) | (i,7) : A;&.
By Lemma 19, (H',S Fr) = (W', fry---fr;) and (H',S Fr) & (i,5) :
Aj& and (HT,S Fr) = u: A; imply (HT, S Fr) & update(o’, (i, §), u).
By (Res Void), (H', SFr) = 0 : void, and then by Lemma 3, void <: B
implies (H', S Fr) = 0: B. We conclude H < H' and (H',S Fr) |=
0: B and (H',S Fr) & update(o’, (i, 7), u).

(Eval newobj)
c ¢ ValueClass K = void c:.ctor(Al,..., Al )
fields(c) = fi — A; € oy a;~ v -0 Vi€ lon
Ont1 = (hys) p & dom(h) h'=h,p c[fi v """
o Fa; -+ a, newobj K ~»p- (h',s)

By assumption, (H,S Fr) = oy and Frt a; --- a,newobj K : B. Since
c ¢ ValueClass, the rule (Ref newobj) but not the rule (Val newobj)
must have derived the judgment Fr - a; - - - a,newobj K : B. Therefore,
K =voidc:.ctor(Ay,...,A,) (and hence m = n and A; = A] for each
i € 1.n) and Fr F a; : A; for each i € 1.n and class ¢ <: B. By
Lemma 2, the latter implies there exists ¢ such that B = class ¢
and ¢ inherits ¢. Let Hy = H. By induction hypothesis, repeatedly,
for each i € 1..n, (H;,S Fr) = o, and Fr F a; : A; and o; F a; ~
v; - 0,41 imply there exists a heap type H;,, such that H; < H;,; and
(Hiv1,S Fr) Ewv; : A; and (H;11,S Fr) = 0441. From 0,41 = (h, s) we
get that (H,.1,S Fr) | (h,s). Let H' = H,1,p — c. By definition,
H, < Ht. We obtain H; < H' from H; < H; . for each i € 1..n with
appeal to Lemma 9 and the definition of <. By (Res Ref), B = class¢
and ¢ inherits ¢ imply (HY,S Fr) = p : B. By Lemma 10, for each
i€l.n, (Hiy, SFr) Ewv; : A;and H;yy < H,,yq implies (H,41, SFr) =
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v; + A;. Given ¢ ¢ ValueClass, for each i € 1..n, the axiom (Good fields)
implies pointerFree(fields(c)(f;)), that is, pointerFree(A;), and hence,
by Lemma 4, (H,.1,S Fr) = v; : A; implies (H,41,9) = v; : A;. By
(Con Object), (Hpy1,9) E v; + A; for each i € 1..n implies H, 1 =
c[fi = v; "] : ¢. The judgment (H,.1,S Fr) &= (h,s) must have
been derived using (Con Store), so H,.1 = h and there are Fry, ...,
Fr, and fry, ..., fr, such that S Fr = Fry---Fr, and s = fry---fr,
and (Hpyq, Fry--- Fr;) & fr; © Fr; for each i € 1..r. By Lemma 13,
H,;1 E hand p ¢ dom(h) and H,, E c[fi — v; *€"] : ¢ imply
H' = ht. By Lemma 12, (H, 1, Fry--- Fr;) & fr; : Fr; and H,, < Hf
imply (HT, Fry---Fr;) | fr; : Fry, for each i € 1..n. By (Con Store),
this and H' = At imply (H',S Fr) = (h',s). We conclude H < HT
and (H',S Fr)Ep: B and (H',S Fr) | (h', s).

(Eval callvirt)
M = DB'c:l(Ay, ..., An)
oo = ag ~ po - (h1, 31)
hi(po) = [ fi = u; "]
(hi; Si) F a; ~ UV * (hi-l—l; Si+1) Viel.n
methods(d)(B' ((Aq, ..., An)) =10
(R 1y Sny1-arg8(Pos V1, - - -5 Un)) b~ 0"+ (W8 fr')
oo agay -+ a, callvirt M ~ o' (K, §)

By assumption, (H,S Fr) = oy and Fr - agay --- a, callvirt M : B.
Because of Fr - agay - - - a,callvirt M : B, we have B'0(Ay, ..., A,) €
dom(methods(c)) and Fr b ag : class ¢ and Fr b a; : A; for all
i € 1.n and B’ <: B. By induction hypothesis, (H,S Fr) | oy and
Fr & ag : class ¢ and og - ag ~ po - (hy,s1) imply there exists a
heap type H; such that H < H; and (H,S Fr) = py : class ¢ and
(Hy,S Fr) = (h1,s1). From the latter, it follows that H; = hy. Since
only (Res Ref) can derive (Hy,S Fr) = py : class ¢, there exists ¢”
such that Hy(p) = ¢" and ¢ inherits ¢. From H; | hy and hy(pg) =
d[fi — u; €™ and Hy(p) = " it follows that ¢ = ¢, and hence
that ¢ inherits ¢ and that (Hy,S Fr) |= po : class ¢. By induction
hypothesis, repeatedly, for each i € 1..n, (H;,S Fr) E (h; s;) and
Frt a; : A; and (hy, ;) b a; ~ v; - (hig1, Sip1) imply there exists a
heap type Hi+1 such that Hz S Hi+1 and (Hi+1,S F’f‘) ): (O Az and
(Hiv1,S Fr) E (hit1, Siv1). By Lemma 9, we get that H; < H,; for
each ¢ € 1..n.

Next, we argue separately, based on whether or not ¢’ is a value class.

e First, we suppose that ¢ ¢ ValueClass. Let Fr' = .args(class
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Ay, ... Ay) and fr' = .args(po,vi,...,vn). By (Ref methods),
methods(c')(B'((Ay,. .., Ay)) = bimplies that Fr' b : B'. Given
H; < H,y, for each i € 1..n, by Lemma 10, (Hy,S Fr) & py :
classc implies that (H,.1,S Fr) | po : classc, and for each i €
l.n, (Hiy1, SFr) E v; : A; implies that (H, 1, SFr) Ev; : A;. By
(Con Frame), (H, 41, S Fr) = po : classc and (H,y1, S Fr) Ev;
A; for each i € 1..n imply (Hy,y1,S Fr) E fr' : Fr'. By Lemma 7,
this implies that (H,,,,S Fr Fr') = fr' : Fr'. By (Con Store),
this and (H,.1,S Fr) = (hny1, Snyr) imply (H, 1, S Fr Fr') |
(Ant1, Sngr fr').

e Second, suppose ¢ € ValueClass. Let fr' = .args(po,vi,...,Un)
and Fr' = .args(valueclasscd&, Ay, ..., A,). By (Val methods),
methods(c')(B' (Ay, ..., A,)) = b implies that Fr' = b : B'. By
(Ptr Ref), Hy(py) = ¢ and ¢ € ValueClass imply that (Hy, SFr) =
po : value class d&. Given H; < H,,; for each i € 1..n,
by Lemma 10, (Hy,S Fr) = po : value class & implies that
(Hpi1,S Fr) | po : value class &, and for each i € 1..n,
(Hi11,SFr) E v; : A; implies that (H, 1, SFr) E v; : A;. By (Con
Frame), (H,11,S Fr) = po : value class d& and (Hp1,S Fr) =
v; : A; for each ¢ € 1.n imply (H,1,S Fr) = fr' : Fr'. By
Lemma 7, this implies that (H,1,S Fr Fr') = fr' : Fr'. By (Con
Store), this and (H, 11, SFr) E (hny1, Snv1) imply (Hy,y1, S Fr Fr')
= (Anst1, Snt1 fT,)-

The rest of the argument is the same in either case. By induction
hypothesis, (Hpy1,S Fr Fr') = (hni1, 8001 fr') and Fr' = b : B’ and
(Rni1, Snat fr') F b~ o' - (B, 8" fr') imply there exists a heap type H'
such that H,,; < H' and (H',SFr Fr') =o' : B' and (H', S Fr Fr') |=
(h',s'fr"). By Lemma 9, H < H; and H, < H,,;; and H,,;; < H imply
H < HY. By axiom (Good methods), B' ((Ay,..., A,) € methods(c')
implies pointerFree(B'). By Lemma 6, (H',S Fr Fr') &= ¢ : B' and
pointerFree(B') imply (HY,S Fr) = o' : B'. By Lemma 3, this and
B' <: B imply (H',S Fr) = ' : B. By Lemma 8, (H',S Fr Fr') =
(h',s" fr') implies (H',S Fr) & (K,s'). We conclude H < H' and
(HY,S Fr) =v': B and (H',S Fr) &= (W, ).
(Eval 1dflda)
ot a~sptr-of
ot aldflda Ac:f ~ ptr.f-of

By assumption, (H,S Fr) = o and Fr - a 1dflda A c¢::f : B. Either
(Ref 1dflda) or (Val 1df1da) can have derived Fr - aldfldaAc:f : B.
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In case (Ref 1dflda), we have Fr I a : class c and fields(c) = f; —
A; ®mand f = f; with j € 1.n, and A;& <: B. By Lemma 1,
B = A;&. By induction hypothesis, (H, SFr) =0 and Fr - a : classc
and o - a ~ ptr - of imply there exists a heap type H' such that
H < H" and (H',S Fr) = ptr : class c and (H',S Fr) = of. By (Ptr
Field), (H',S Fr) | ptr : class ¢ and fields(c) = f; — A; €™ and
j € 1.n imply that (H',S Fr) & ptr.f : A;&.

In case (Val 1df1da), we have Fr - a : valueclasswvcd& and fields(ve) =
fi> A; € and f = f; with j € 1.n, and A;& <: B. By Lemma 1,
B = A;&. By induction hypothesis, (H,S Fr) = o and Fr F a :
value class ve& and o - a ~» ptr - of imply there exists a heap type
HT such that H < H' and (H',S Fr) |= ptr : value class ve& and
(H',S Fr) | of. By (Ptr Field), (H', S Fr) |= ptr : value class ve&
and fields(ve) = fi = A; €™ and j € 1..n imply that (HT, S Fr) &
ptr.f + Aj&.

In either case, we conclude H < H' and (H',S Fr) |= ptr.f : B and
(HT,S Fr) & of.

(Eval stf1d)
cba~ptr-o o kFb~w-o”

ol abstfld A c:f ~ 0- update(a”, ptr.f,v)

By assumption, (H,S Fr) = o and Fr - abstfld A c::f : B. Either
(Ref stfl1d) or (Val stfld) can have derived Fr - abstfld Ac::f : B.

In case (Ref stfld), we have Fr - o : class c and Fr - b : A; and
fields(c) = fi — A;*€"™ with j € 1..n and pointerFree(A;), and void <:
B. By Lemma 1, B = void. By induction hypothesis, (H,S Fr) E o
and Fr - a : class ¢ and 0 + a ~ ptr - ¢ imply there exists a
heap type H' such that H < H' and (H',S Fr) = ptr : class ¢ and
(H',S Fr) = o'. By induction hypothesis, (H',S Fr) = ¢’ and Fr -
b:A; and o' b b~ v- 0" imply there exists a heap type H' such that
H' < H'and (H',S Fr)Ev: A; and (H,S Fr) E ¢”. By Lemma 10,
(H',S Fr) |= ptr : class c and H' < H' imply (H',S Fr) | ptr :
class c. By (Ptr Field), this implies (H', S Fr) & ptr.f; : A;&.

In case (Val stfld), we have Fr - a : value class ve& and Fr b : A,
and fields(ve) = f; — A; " with j € 1.n and pointerFree(A;),
and void <: B. By Lemma 1, B = void. By induction hypothesis,
(H,S Fr) = o and Fr F a : value class ve& and o F a ~ ptr - o’
imply there exists a heap type H' such that H < H' and (H', S Fr) |=
ptr : value class ve& and (H', S Fr) = o'. By induction hypothesis,
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(H',S Fr) = o and Fr - b : A; and ¢' = b ~ v - 0" imply there
exists a heap type H' such that H' < H' and (H',S Fr) Ev: A; and
(H',S Fr) = o". By Lemma 10, (H', S Fr) = ptr : value class ve&
and H' < H' imply (H',S Fr) &= ptr : value class ve&. By (Ptr
Field), this implies (H', S Fr) k= ptr.f; : A;&.

In either case, (Res Void) implies (H', S Fr) = 0 : void. By Lemma 9,
H < H"and H' < H' imply H < H'. By Lemma 18, (H',S Fr) &
o" and (H',S Fr) | ptr.f; + Aj& and (H',S Fr) &= v : A; and
pointerFree(A;) imply (H', S Fr) | update(c”, ptr.f;,v). We conclude
H < H', (H',SFr) = 0:void, and (H', S Fr) | update(c”, ptr.f;,v).

(Eval newobj)
K =voidvc:.ctor(Al,..., Al)
fields(ve) = f; — A; €Ln

oiFa;~wv -0 Vielon

o Fay -+ a,newobj K ~» (f; = v; € -0y,

By assumption, (H,S Fr) = oy and Frt a; --- a,newobj K : B. Since
ve € ValueClass, the rule (Val newobj) but not the rule (Ref newobj)
must have derived the judgment Fr - a; - - - a,newobj K : B. Therefore,
K =voidvc:.ctor(Ay, ..., A,) (and hence m = n and A; = A] for each
i €1.n)and Fr+ a; : A; foreach i € 1..n and valueclassvc <: B. By
Lemma 1, B = valueclasswvc. Let Hy = H. By induction hypothesis,
repeatedly, for each i € 1..n, (H;,S Fr) | o; and Fr + a; : A; and
o; F a; ~ v; -0,y imply there exists a heap type H;;; such that
H; < H;iyy and (H;yq,S Fr) E v; + A; and (Hiyq, S Fr) = 0441, Let
HY = H,,,. We obtain H; < H' for each i € 1..n + 1 with appeal
to Lemma 9. By Lemma 10, for each i € 1.n, (H;41,S Fr) E v; :
A; and H;y < H' implies (HY,S Fr) & v; : A;. By (Res Value),
fields(ve) = fi — A; €% and (HY, S Fr) | v; : A; for each i € 1.0
implies (HT,S Fr) & f; — v; """ : value class ve. We conclude
H < H"and (H',S Fr) | fi — v; " : B and (H',S Fr) | 0,41

(Eval call)
M = B've::l(Aq, ..., Ay)
oo ag ~ ptr - (hy, 1)
(hi, Si) Fa;~ ;- (hi+1, 5i+1) Viel.n
methods(ve)(B' ((Ay, ..., An)) =b
(M1, Sny1.args(ptr,vi, ..., vp)) E b~ o' - (B8 fr')

oot agay -+ a, call instance M ~ v’ - (b, §')

By assumption, (H, S Fr) = 0y and Fr - agay - - - a,call instance M :
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B. Because of Fr - ag a; --- a, call instance M : B, we have
B' l(Ay,..., Ay) € dom(methods(vc)) and Fr = ag : value class ve&
and Fr - a; : A; for all i € 1.n and B’ <: B. By induction hypoth-
esis, (H,S Fr) | oy and Fr  ag : value class vc& and og - ag ~
ptr - (hy, s1) imply there exists a heap type H; such that H < H; and
(Hy, S Fr) |= ptr : value class vc& and (Hy, S Fr) = (b1, s1). By in-
duction hypothesis, repeatedly, for each i € 1..n, (H;, S Fr) E (h;, s;),
Fr = a; : A;, and (h;,s;) B a; ~ v; - (hiy1, si11) imply there exists
a heap type H,y; with H; < H;y; and (H;q,S Fr) = v; © A; and
(Hiv1,S Fr) E (hiy1, Siz1). By Lemma 9, we get H; < H, ., for each
i € 1l.n. Let Fr' = .args(value class vc&, Ay,...,A4,) and fr' =
args(ptr,vy,...,v,). By (Val methods), methods(ve)(B'0( Ay, ..., Ay))
= b implies that Fr' = b : B'. Since we have H; < H, ; for each
i € 1..n, by Lemma 10, (Hy,S Fr) = ptr : value class vc& implies
that (H,.1,S Fr) | ptr : value class pir&, and for each i € 1..n,
(Hiy1,S Fr) = v; + A; implies that (H,1,S Fr) = v; : A;. By (Con
Frame), (H,11,S Fr) = ptr : value class vc& and (Hp41, S Fr) = v;
A; for each i € 1..n imply (H,1,S Fr) = fr' : Fr'. By Lemma 7, this
implies that (H,y1,S Fr Fr') & fr' : Fr'. By (Con Store), this and
(Hpi1,S Fr) | (hngts Sny1) imply (Hyi1, S Fr Fr') = (hpyt, Snia fr1)-
By induction hypothesis, (H,,1,S Fr Fr') = (hni1, Sny1 fr') and Fr' =
b : B and (hypy1,Snp1 fr') B b ~ o' - (B, fr') imply there exists
a heap type H' such that H,.; < H' and (H',S Fr Fr') E o' :
B' and (H',S Fr Fr') = (I',s' fr'). By Lemma 9, H < H; and
H, < H,,; and H,,, < H' imply H < H'. By axiom (Good
methods), B' ((Ay, ..., A,) € methods(vc) implies pointerFree(B'). By
Lemma 4, this and (H,S Fr Fr') =o' : B imply (H',2) E o' : B'.
By Lemma 5, repeatedly, this implies (H',S Fr) &= o' : B'. By
Lemma 3, this and B’ <: B imply (H',S Fr) = v : B. By Lemma 8,
(HT,S Fr Fr') = (W, s" fr'). implies (H', S Fr) = (h',s"). We conclude
H < H'and (H',S Fr) =v": B and (H',S Fr) &= (I, s').

(Eval box)
ot a~sptr- (W, s)
lookup((h', §'), ptr) = fi r> v; €7
P ¢ dom(h,) 0= UC[fi — v; iel..n]
o Faboxve~sp-((W,p~0),s)

By assumption, (H,S Fr) = o and Fr - a box vc : B. Because of
Fr = abox ve : B, we must have Fr - a : value class vc& and
pointerFree(valueclasswvc) and classve <: B. By induction hypothe-
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sis, (H, SFr) = o and Fr F a : valueclassvc& and o - a ~> pir-(h', §')
imply there exists a heap type H' such that H < H' and (H', S Fr) |
ptr : value class vc& and (H',S Fr) | (h',s"). The latter can only
have been derived using (Con Store), so we must have H' = h’ and
(H,Fry---Fr;) = fr; - Fr; for each ¢ € 1..n where S Fr = Fry--- Fr,
and s = fr,--.fr, for some Fry, ..., Fr, and fry, ..., fr,. By
Lemma 16, (H', S Fr) = (W', s') and (H', S Fr) |= ptr : valueclassvc&
and lookup((h',s'), ptr) = f; = v;"-" imply (H', SFr) = f; v v
valueclasswve. By Lemma 4, this and pointerFree(valueclasswvc) im-
ply (H', @) | fi — v; *“"" : value class vc. Because of this, and (Res
Value), we must have fields(vc) = f; — A; "€t and (H', @) E v; : 4;
for all i € 1..n. By (Con Object), (H',@) = v; : A; for all i € 1..n
implies H' |= 0 : ve. By Lemma 13, H' = h' and p ¢ dom(h’) and
H' = o:vcimply H',p — vc = h',p+— o. Take Hf = H',p — vc. By
definition H' < H'. By Lemma 9, this and H < H' imply H < H'. By
Lemma 12, for each i € 1..n, (H, Fry--+Fr;) &= fr; : Fr; and H < HT
imply (H', Fry--- Fr;) = fr; : Fr;. By (Con Store), Hf = h',p — o
and (H', Fry---Fr;) | fr; : Fr; for all i € 1.n imply (H',S Fr) &
(h',p + o0,5). By (Res Ref), (H',S Fr) = p: class vc. By Lemma 3,
this and classwve <: B imply (H', SFr) = p: B. We conclude H < HT
and (H',S Fr) =p: B and (H",S Fr) &= ((h',p — o), s).

(Eval unbox)
oba~p-of

o aunbox vc~s p - of

By assumption, (H, SFr) = o and Fr b aunboxvc : B. Because of Fr -
aunboxvc : B, we must have Fr F a : classwvc and value classvc& <:
B. By induction hypothesis, (H,S Fr) = o and Fr F a : class vc and
o Fa~s p-of imply there exists a heap type H' such that H < H' and
(HT,SFr) =p: classvcand (H',SFr) = of. Because of (HY, SFr) =
p : class vce there must be a class name ¢ such that ¢ inherits ve and
H(p) = c¢. By the axiom (Hi Val), ¢ inherits ve implies ¢ = ve. By
(Ptr Ref), H'(p) = ve implies (H', S Fr) & p : value class ve&. By
Lemma 3, this and value class vc& <: B imply (H',S Fr) = p: B.
We conclude H < H and (H',S Fr) =p: B and (H',S Fr) Eof. O
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