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Abstract

There are two usual methods to evaluate a software
system in multi-hop wireless ad hoc networks: simu-
lation and real test-bed. The test-bed method is ex-
pensive and non-repeatable. The simulation method
usually requires re-implementing the real software
system inside the simulator, which is also infeasible
for large scale software systems. In this paper, we
present an emulation system capable of evaluating
unmodified real software systems in simulated envi-
ronments, which is repeatable, detailed, and realistic.
The experimental results show that our system is able
to emulate large scale ad hoc networks. By using our
system, we have greatly improve the performance of
the Coda file system in ad hoc networks.

1 Introduction

An ad hoc network is a collection of wireless mobile
nodes which dynamically forms a temporary network
without using the existing network infrastructure
or centralized administration. Due to its dynamic
topology and limited resource, new network proto-
cols and applications have been developed specifically
for ad hoc networks. It is very important but non-
trivial to evaluate network protocols and applications
in ad hoc network environments. Usually the follow-
ing two methods are used:

e The first method is to construct a real ad hoc
network test-bed with desired scenarios, and
then run the applications or protocols in the test-
bed. Although the scenario is very realistic, this
method is expensive and non-repeatable.

o The second method is using network simula-
tor. It offers the ability to repeat and con-
trol the network conditions at user’s require-
ment. One example is the network simula-
tor ns-2 [5]. However, pure network simula-
tion requires re-implementing the network pro-
tocols/applications inside ns-2. Some systems
may be too complicated to be re-implemented,

such as the Coda file system [10]. Also, the traf-
fic used in the simulator is generated by traffic
model. Traffic modeling is nontrival.

Since both test-bed and simulator have pros and
cons, network emulation [4] has been proposed to
combine their advantages. A network emulator is a
tradeoff between real testbed and pure simulation.
In a typical emulation experiment, network traffic is
generated by real systems and then injected into the
simulator to experience the simulated network envi-
ronments. By allowing the real world traffic to inter-
act with the simulator, network emulator avoids the
traffic modeling problem, as well as the problem of
re-implementing the real systems inside the simula-
tor. At the same time, it achieves the repeatability
by simulating the network environments inside the
emulator.

The emulator developed by Kevin Fall [4] is mainly
for wired networks. It does not contain layers below
TCP. However, these lower layers are important in
constructing realistic ad hoc network environments.
Based on the CMU wireless extension to ns-2 [3],
we have implemented a detailed and realistic emu-
lation system which contains all of the necessary net-
work layers. Therefore, without implementing the
real system in ns-2 and without deploying and oper-
ating physical machines in the field, we are able to
evaluate unmodified real systems under realistic and
repeatable ad hoc network conditions.

In order to correctly measure the real system’s per-
formance, the emulator needs to run in real time,
which requires the virtual clock in the simulator be
synchronized with the wall clock. The validity of
the emulation experiments depends on the emulator’s
ability to keep up with the real time. We have devel-
oped a re-ordering algorithm to improve this ability.
The improved emulation system is able to emulate
ad hoc networks containing more than 100 mobile
nodes with heavy background traffic.

We apply our emulator to analyze and improve
the Coda [10] file system over ad hoc networks, and
achieve substantial improvements.
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Figure 1: Logical view of emulation setup. MNi is a real ma-
chine which will generate real traffic. This traffic is directed to its
corresponding emulated node inside the ns-server, which is part of
the ad hoc network scenario.

2 Structure of the Emulator for
Ad Hoc Networks

In this section, we briefly review the existing emula-
tor in ns-2 and then present our emulator for ad hoc
networks.

2.1 Emulator in ns-2

The network emulator in ns-2 [4] is a real-time simu-
lator with the ability to interact with real-world traf-
fic. To achieve this function, the following three ma-
jor components have been added to ns-2 [4]:

e A real-time scheduler to synchronize the simula-
tor’s virtual clock with the wall clock.

e Network objects to access the live traffic. Three
types of network objects are implemented in [4].
They are UDP/IP, raw IP, and frame level net-
work objects.

e Tap agents to tunnel live network traffic inside
the simulator.

2.2 Emulator for Ad Hoc Networks

The network emulator [4] in ns-2 is mainly for wired
network, where protocol layers below TCP are not
emulated. These lower layers are important for
constructing realistic ad hoc network environments.
With the new elements added by CMU wireless ex-
tensions, we have designed an emulator for multi-hop
wireless ad hoc networks, where real world traffic can
experience a realistic ad hoc network environment.

Figure 1 shows the logical view of the set up for
emulation of ad hoc networks, where the ns-server
is a single central machine running ns-2 simulator,
and other machines MN1,..., MN/ are real machines
running real network protocols/applications.

In the ns-server, users create ad hoc network sce-
narios!® for their desired ad hoc network environments
In our emulation system, we design the following two
types of mobile nodes for the ns-server:

! Ad hoc key [1] is a convenient tool to create scenarios of
wireless networks.

NS server
AdHoc
M1 Tap Tap M2

Figure 2: Packet flow in the emulation system, where M1 and
M2 are real computers in which the real applications/protocols are
running.

o A stmulated mobile node is a usual mobile node in
ns-2. It contains a protocol stack from physical
layer to application layer.

e An emulated mobile node is a simulated mobile
node augmented with a tap agent and a network
object. Each emulated node is tightly bound with
a real machine where real protocols/applications
under investigation are running. Traffic gener-
ated by the real machine is directly captured
by the corresponding emulated node inside ns-
server, which is part of the ad hoc network sce-
nario.

In Figure 1, all of the traffic generated by MN: is
directed to its corresponding emulated node.

Although the real machine MN: stays static, its
corresponding emulated node is one of the mobile
nodes in the simulated ad hoc network. All of the
traffic generated or sunk by MNi is relayed by its
corresponding emulated node. Therefore, we achieve
the effect that the real machine MNiis a mobile node
in the ad hoc network, with its real traffic undergo-
ing the protocol stack and experiencing the ad hoc
network environments created by user.

3 A New Real-Time Scheduler
Using Reordering Algorithm

In this section, we present a new real-time scheduler
using reordering algorithm, which reduces the time-
lag (if an event is scheduled at time ¢; and is pro-
cessed at time ¢y, then its time-lag is t; —%;) of visible
events, thus improves the accuracy and scalability of
emulation.

3.1 Visible Event v.s. Invisible Event

We identify the difference among events by classifying
them into two categories: wvisible event and invisible
event. In Figure 2, a data packet from M1 to M2 will
take the following path:

1. generated by the real system running in real ma-
chine M1 and then sent to its destination M2;

2. tapped by the ns-server and injected into sim-
ulator by the tap agent in the emulated node
representing M1;
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Figure 3: Invisible time-lag. Thick line in the axis of wall clock
indicates the processing time of each event.
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Figure 4: Visible time-lag. Thick line in the axis of wall clock
indicates the processing time of each event.

3. experiences the ad hoc network environments
simulated in ns-2;

4. sent to the real destination M2 by the tap agent
in the emulated node representing M2;

5. received by the real destination M2;

The extra overhead caused by the emulation comes
from step 2, step 4, and the time for transmitting the
packet between real machines and ns-server 2. The
events happen at step 2 and step 4 are wvisible events,
which only happen in emulated nodes. Other events
are not visible by the real machines and are called
wnvisible events. If the visible events are processed
without any delay, then the real systems running in
M1 and M2 will not experience any delay either, and
their behaviors are preserved in the emulator.

We give two examples to show the different effects
of the time-lag of visible/invisible events. In Figure 3
and Figure 4, e;(i = 1,...,4) is an event in the event
queue, whose scheduled time is indicated by the po-
sition in the axis of the simulator clock. The actual
dispatching time of ¢; is indicated by the position in
the axis of real time clock, where the thick lines in-
dicate the processing time of each event. We assume
that e4 is a visible event, and other events are all
invisible events in simulated nodes.

e In Figure 3, e3 has time-lag due to the process
time of e;. However, the visible event e4 is dis-
patched on time. The real machine will not be
aware of the time-lag of e3. And the behavior of
the application running in the real machine will
not be changed due to the time-lag of invisible
event eg.

2This is ignored since it only takes about 80 us to transmit
a 1 KB packet in a 100 Mbps switcher used in our test-bed.

AB-BC <AC
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Figure D: An example scenario where reordering algorithm will
take advantages by dispatching the visible events in advance of
their scheduled times. In this scenario, B is an emulated node,
and A, C are simulated nodes. B’s nearest neighbor is C and
|AB| > |AC|. When A sends out a packet, it arrives at C first
and is processed there first by the simulator. Using reordering
algorithm, since |AB| — |BC| < |AC|, the packet will be processed
at the emulated node B first instead of C.

e In Figure 4 both ez and e4 have time-lag. These
time-lags will affect the behaviors of the real ap-
plication. However, the effect on the application
is only determined by the amount of time-lag of
visible event e4. The time-lag of eg is still invis-
ible to the real application.

From above we can see that only the time-lags of
visible events can affect the real applications, which
leads us to develop a new real time scheduler using
re-ordering algorithm.

3.2 Reordering Algorithm

Since only the time-lags of visible events can affect
the real applications, we can improve the emulator
by dispatching the visible event ahead of its sched-
uled time if allowed, which may result in dispatching
events out of their schedule-time orders.

Dispatching events out of schedule-time orders may
cause causality error. For example, if we dispatch
event e before e;y, with scheduled time t; > 1,
and if e;5 changes some state variables which will be
used by e;1, then we will have the effect that future
event e;o affects the past event e;1, which is called
causality error. However, if these two events do not
have causality relationship, dispatching them out of
time-stamp orders will still preserve the correctness
of the simulated model.

We have
algorithm[6)

proved the following reordering

Reordering algorithm: In a multi-hop
wireless ad hoc network, an event E of Node
N scheduled at time t can be dispatched at
time mawz{t— At,ty}, where ¢ denotes the
latest dispatching time of Node N, and At,
the possible maximum time that an event
can be advanced, is determined by:

Al — distance_from_near.est_neighbor (1)
speed_of_light
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Figure 6: Round-trip time of ICMP echo request, where dashed
lines are the results of reordering algorithm, and solid lines are the
results of non-reordering algorithm.

Intuitively, the upper limit of At is derived from
the fact that a neighbor of node A takes at least At
to put wireless energy on machine A. Therefore, an
event scheduled at time ¢ can be safely dispatched at
time maz{t — At,tn}. If we apply the reordering al-
gorithms to the events belonging to emulated nodes,
then we can process the visible events in a higher pri-
ority. Although At is very small, bursts of simulated
events can happen during At in a wireless network
with shared channel, especially in lower level layers
(physical layer, MAC layer, and routing layer). For
example, when a node sends a packet, it schedules
a packet-arrive-event at every node sharing the same
channel. Figure 5 shows one example that reordering
algorithm will take advantages of At.

To illustrate the improvement achieved by the re-
ordering algorithm, we measure the average round-
trip time of ICMP echo requests between two emu-
lated nodes, which are in a cloud of mobile nodes.
Figure 6 shows the results, where dashed lines are
the result of reordering algorithm, and solid lines are
the result of non-reordering algorithm. As we can
see from this figure, reordering algorithm has smaller
RTT by reducing time-lags of visible events. The
improvement for typical scenarios ranges from 5% to
10%. In a scenario with larger number of nodes, there
are more chances where reordering algorithm can take
advantages.

4 Scalability of the Emulator
for Ad Hoc Networks

With large scale complex simulation scenarios, the
emulator may not be able to keep up with the real
time, which in turn will change the behaviors of the
real system under evaluation, and invalidate the em-
ulation experiment. This section examines the scala-
bility of the emulator.

To evaluate the scalability of the emulator, we vary
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Figure 7: The histogram of visible time-lags. The three numbers
under each plot are the maximum time-lag (ms), total number of
events, and the real FTP throughput (Mb/second) respectively

the load of the ns-server by changing the complexity
of simulation scenarios, which is determined by the
number of nodes and the amount of background traf-
fic. The real application we use here is FTP. In our
experiments, the number of mobile nodes varies from
10 to 120, and the rate of background traffic from
0 packets/second to 120 packets/second (the packet
size is 512 bytes).

Figure 7 shows the experimental results. In this
figure, each plot shows the histogram of visible time-
lags in its corresponding scenario. The horizontal axis
represents the amount of time-lags in ms, while the
vertical axis shows the number of time-lags. The
three numbers under each plot represents respec-
tively the mazimum time-lag (ms), the total num-
ber of events, and the throughput (Mb/second) of real
FTP. As the scenario complexity increases, the num-
ber and the amount of time-lags increase, and the
FTP throughput decreases, eventually results in an
invalidated emulation experiment with a large scale
scenario of 120 nodes with a background traffic of 120
packets/second. In this large scale scenario, there are
many large visible time-lags, and the FTP through-
put is only 0.53 Mb/s, which is very small compared
to 1.46 Mb/s, the throughput of simulated FTP for
the same scenario. FTP/TCP is well modeled in ns-
2, so we can use it to judge the validity of emulation
experiments on FTP/TCP. In cases that real system
is not modeled in the simulator, we can use the statis-
tics of the time-lags of visible events to determine the
validity of each emulation experiments. The four ex-
periments in the bottom-right corner of Figure 7 are
either invalidated or questionable. All other experi-
ments have small time-lags and throughput closed to
1.46 Mb/s, and are therefore valid.

As we can see from this figure, the emulation sys-
tem works for ad hoc networks with sufficient size
and complexity to enable studying and evaluating
real system under interesting scenarios of ad hoc net-
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Figure 8: Scenario for testing Coda file system, where node 1
fetches data from node 8. Node 8 is a stationary node, and all the
others move along the circle at constant speed. This scenario is
interesting since the topology keeps changing from the Node 8’s
point of view, with its route to node 1 keeps changing.

works.

5 Improve the Coda File Sys-
tem in Ad Hoc Networks

Coda file system [10] is the descendant of Andrew
file system (AFS). Tt is a distributed file system con-
sisting of file servers and clients. Evaluating Coda
file system under ad hoc network environments has
been interesting but have not been done before due
to the difficulty of constructing real and repeatable
ad hoc network environments. Also it is very difficult
to model the Coda file system in the simulator since
Coda contains more than 100K lines of code and has
been tuned for years. In this section we apply the em-
ulation system to analysis and improve Coda under
ad hoc networks.

Here we give a brief review of the the file transfer
protocol in Coda, which is essentially a cyclic blast
transfer protocol. At the beginning of each cycle,
the source sends a block of data packets (the last
packet of each block has ack-me flag), then waits for
the acknowledgement. The acknowledgements will
specify the lost packets that need to be retransmit-
ted. Then the cycle repeats. Note that in Coda, the
client and server are not peers. Server will handle
all Coda flow control regardless it is the source or
the sink, so that a server can handle larger number
of file transfer requests from clients. In other words,
if the source is a server, it will retransmit the block
of data if the acknowledgements do not arrive after
a predetermined time (i.e., when the retransmission
timer is timeout). However, if the source is a client,
the client will wait passively for acknowledgements
to arrive from server. There is not timeout scheme
built in the client. Instead, the server will retransmit
the acknowledgement if it does not receive more data
packets from the client after a predetermined period
of time. The retransmission timer is set based on the
RTT estimation.

Ad hoc networks provide new environments with

dynamical network topologies and error-prone low-
bandwidth wireless channels, where the original Coda
file transfer protocol does not perform as well as in
other types of networks, probably due to the fact that
some weakness in Coda may not exhibit in scenarios
other than ad hoc networks. In emulator, since we
can create rich accurate and realistic ad hoc network
scenarios, quite a few problems in Coda are identified
and fixed. For example:

1. In Coda, the last packet in one transfer window
had the ack-me flag, and the receiving side will
not send out the ACK packet until it receives
this last packet. In ad hoc networks, this last
packet is the most likely packet to get lost due to
congestion or route error. We have observed that
the first a few packets in one transfer window
are usually transferred successfully after a route
between the source node and the destination is
established. Then route error may happen due
to mobility or other reasons, and the last one or
more packets in the transfer window are more
likely to loss. To fix this problem, the receiving
side now sends out a gratuitous ACK whenever
it has seen a nearly full window of data packets,
instead of passively waiting for the last packet in
that window.

2. If the sending side was time-out while waiting
for acknowledgements, Coda starts retransmit-
ting all unacknowledged packets. In ad hoc net-
works, it is more difficult to choose a good time-
out value. Also the ACK packet has much higher
lost rate than in other type of networks. If the
time-out value is not good enough or the ACK
is lost, then retransmitting all unacknowledged
packets wastes the bandwidth and increases the
congestion, since some of the unacknowledged
packets may have been successfully received by
the receiver. To fix it, now we only retransmit
the first unacknowledged packet (with ack-me
flag) plus the next sequence of data packets that
are allowed to send in the current send window.
The retransmit packet usually triggers another
ACK packet from the receiving side, which spec-
ifies the packets that are missed.

3. In Coda, when the transfer begins, the RTT is
estimated and the retransmit interval (time-out
value) is set according to the estimated RTT.
This retransmit interval is fixed during that spe-
cific file transfer. While fixed retransmit in-
terval may be good enough for other networks,
ad hoc networks exhibit much larger RTT vari-
ance, which means fixed retransmit interval may
result in unnecessary retransmit, or even worse,
putting the link in a idle state for long time if
the initial RTT estimated is too large. To fix
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Figure 9: Sequence plot. The throughput of improved Coda file
transfer protocol is almost twice of the original throughput.

this problem, the retransmit interval is now ad-
justed according to the estimated RTT.

Figure 9 illustrates our improvements on Coda over
ad hoc networks. The scenario we used here is shown
in Figure 8, where node 1 fetches 5M byte data from
node 8, and there is a CBR background traffic (20
packets/second) between node 4 and 5. In this em-
ulation experiment, all of the visible time-lags are
less than 1.6 ms, so the emulation experimental re-
sults are validated. As we can see from Figure 9, the
throughput of the improved version is almost twice
of the original version’s throughput.

6 Related Work

Besides the basis emulation work by Kevin Fall [4],
other recent works in emulation include [2, 7, 9].
These systems are implemented by extending the ker-
nel to intercept and drop packets at IP layer. The ker-
nel implementation limits the usage of those systems,
especially for the case of ad hoc networks, where sim-
ple packet manipulations inside kernel is difficult to
model ad hoc networks.

The other closely related work is trace-based net-
work emulation [8], which re-creates the observed
end-to-end characteristics of a real network trace by
using probing traffic. The created trace can then be
replayed easily for evaluating real systems. Trace-
based network emulation has been successfully used
in analyzing system such as Coda in wired or wireless
networks with infrastructure, where trace are rela-
tively easy to collected. Still it could be very difficult
to collect a trace of large scale ad hoc networks.

7 Conclusion

In this paper, we have presented an emulator for
ad hoc networks which combines the strengths of both
test-beds and pure simulation.

By differentiating visible events from invisible
events, we also introduce a reordering algorithm,
which processes the visible events ahead of their
scheduled time. Since the real systems are only af-
fected by the visible events, the reordering algorithm
reduces the time-lags of visible events, therefore re-
duce the bad effects caused by the time-lags in ns-
server. The scalability test has shown that the em-
ulator works for ad hoc networks with sufficient size
and complexity.

The improvement on Coda over ad hoc networks
has demonstrated that our emulation system is a new
powerful tool in analyzing and evaluation real sys-
tems in ad hoc networks. The advantages of using
emulator for ad hoc networks are:

e We do not need to modify the real systems or
model them in the simulator.

e The ad hoc network environments are under
user’s control. They are repeatable, detailed,
and realistic. We do not need to drive the mobile
nodes to construct a realistic test-bed.

e The validity of the emulation experiments can be
determined by the time-lags of the visible events,
which can be easily collected.
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