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ABSTRACT 

Several techniques are known for reducing the size of language 
models, including count cutoffs [1], Weighted Difference  
pruning [2], Stolcke pruning [3], and clustering [4]. We compare 
all of these techniques and show some surprising results.  For 
instance, at low pruning thresholds, Weighted Difference and 
Stolcke pruning underperform count cutoffs.  We then show 
novel clustering techniques that can be combined with Stolcke 
pruning to produce the smallest models at a given perplexity.  
The resulting models can be a factor of three or more smaller 
than models pruned with Stolcke pruning, at the same perplexity.   
The technique creates clustered models that are often larger than 
the unclustered models, but which can be pruned to models that 
are smaller than unclustered models with the same perplexity. 

1. INTRODUCTION 

Language models for large vocabulary speech recognizers and 
other applications are typically trained on hundreds of millions 
or billions of words.  An uncompressed language model is 
typically comparable in size to the data on which it is trained.  
Some form of size reduction is therefore critical for any practical 
application.  Many different approaches have been suggested for 
reducing the size of language models, including count-cutoffs 
[1], Weighted Difference pruning [2], Stolcke pruning [3], and 
clustering [4].  In this paper, we first present a comparison of 
these various techniques, and then we demonstrate a new 
technique that combines a novel form of clustering with Stolcke 
pruning, performing up to a factor of 3, or more, better than 
Stolcke pruning alone.   

None of the techniques we consider are loss-less.  Therefore, 
whenever we compare techniques, we do so by comparing the 
size reduction of the techniques at the same perplexity.  We 
begin by comparing count-cutoffs, Weighted Difference 
pruning, Stolcke pruning, and variations on IBM pruning.  All of 
our experiments are performed on both an English corpus – Wall 
Street Journal – and a Chinese newswire database.  To our 
knowledge, no direct comparison of clustering versus count 
cutoffs or any of the other techniques has previously been done – 
we show that count cutoffs in isolation are much more effective 
than clustering in isolation.  We also show that Weighted 
Difference and Stolcke pruning actually, in a few cases, 
underperform count cutoffs when only a small amount of 
pruning is being done. 

Next, we consider combining techniques, specifically Stolcke 
pruning and a novel clustering technique.  The clustering 
technique is surprising in that it often first makes the model 
larger than the original word model.  It then uses Stolcke 
pruning to prune the model to one that is smaller than a standard 
Stolcke-pruned word model of the same perplexity. 

2. PREVIOUS WORK 

There are four well-known previous techniques for reducing the 
size of language models.  These are count-cutoffs, Weighted 
Difference pruning, Stolcke pruning, and IBM clustering. 

The best known and most commonly used technique is count-
cutoffs.  When creating a language model estimate for a 
probability of a word z given the two preceding words x and y, 
typically a formula of the following form is used: 
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The notation C(xyz) indicates the count of xyz – the number of 
occurrences of the word sequence xyz in the training data.    The 
function α is a normalization constant.  The function D(C(xyz)) 
is a discount function.  It can, for instance, have constant value, 
in which case the technique is called “Absolute Discounting” or 
it can be a function estimated using the Good-Turing method, in 
which case the technique is called Good-Turing or Katz 
smoothing. 

In the count cutoff technique, a cutoff, say 3, is picked, and all 
counts C(xyz) � 3 are discarded.  This can result in significantly 
smaller models, with a relatively small increase in perplexity. 

In the Weighted Difference method, the difference between 
trigram and bigram, or bigram and unigram probabilities is 
considered.  For instance, consider the probability P(City|New 
York) versus the probability P(City|York) – the two probabilities 
will be almost the same.  Thus, there is very little to be lost by 
pruning P(City|New York).  On the other hand, in a corpus like 
the Wall Street Journal, C(New York City) will be very large, so 
the count would not typically be pruned.  The Weighted 
Difference method can therefore provide a significant advantage.  
In particular, the weighted difference method uses the value 
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For simplicity, we give the trigram equation here; an analogous 



  

equation can be used for bigrams, or other n-grams.  Some 
pruning threshold is picked, and all trigrams and bigrams with a 
value less than this threshold are pruned.  Seymore and 
Rosenfeld [2] did an extensive comparison of this technique to 
count cutoffs, and showed that it could result in significantly 
smaller models than count cutoffs, at the same perplexity. 

Stolcke pruning can be seen as a more mathematically rigorous 
variation on this technique.  In particular, our goal in pruning is 
to make as small a model as possible, while keeping the model 
as unchanged as possible.  The Weighted Difference method is a 
good approximation to this goal, but we can actually solve this 
problem exactly, using a relative entropy-based pruning 
technique, Stolcke pruning.  The increase in relative entropy 
from pruning is 

∑ −−
zyx

xyzPxyzPxyzp
,,

)]|()|(’)[log(  

Here, P’ denotes the model after pruning, P denotes the model 
before pruning, and the summation is over all triples of words 
x,y,z.   Stolcke shows how to efficiently compute the 
contribution of any particular trigram P(z|xy) to the expected 
increase in entropy.  A pruning threshold can be set, and all 
trigrams or bigrams that would increase the relative entropy less 
than this threshold are pruned away.  Stolcke shows that this 
approach works slightly better than the weighted difference 
method, although in most cases, the two models end up selecting 
the same n-grams for pruning. 

The last technique for compressing language models is 
clustering.  In particular, IBM [4] showed that a clustered 
language model could significantly reduce the size of a language 
model with only a slight increase in perplexity.  Let zl represent 
the cluster of word z. The model used was of the form P(zl|xlyl)× 
P(z|zl).  To our knowledge, no comparison of clustering to any of 
the other three techniques has been done. 

3.  PRUNING AND CLUSTERING 
COMBINED  

Our technique is essentially a generalization of IBM’s clustering 
technique, combined with Stolcke pruning.   However, the actual 
clustering we use is somewhat different than might be expected.  
In particular, in many cases, the clustering we use first increases 
the size of the model.  It is only after pruning that the model is 
smaller than a pruned word-based model of the same perplexity.   

The clustering technique we use creates a binary branching tree 
with words at the leaves.  By cutting the tree at a certain level, it 
is possible to achieve a wide variety of different numbers of 
clusters.  For instance, if the tree is cut after the 8th level, there 
will be roughly 28=256 clusters.  Since the tree is not balanced, 
the actual number of clusters may be somewhat smaller. We 
write zl to represent the cluster of a word z using a tree cut at 
level l.  Each word occurs in a single leaf, so this is a hard 
clustering system, meaning that each word belongs to only one 
cluster.  We actually use two different clustering trees, one for 
the “z” position, and one optimized for the “y” position (which 
is also used for the “x” position.) [5]  

We notice that there is no need for the sizes of the clusters used 
in different positions to be the same.  In particular, we use a 
model of the form  P(zl|xjyj) × P(z|xkykzl).  We call this model the 
“Both Clusters” technique.  We also create a model of the form 
P(zl|xy) × P(z|xyzl).  We call this the “Predict Clusters” 
technique. 

Optimizing such a large number of parameters is potentially 
overwhelming.  In particular, consider a model of the type 
P(zl|xjyj) × P(z|xkykzl).  There are 5 different parameters that need 
to be simultaneously optimized for a model of this type: j, k, l, 
the pruning threshold for P(zl|xjyj), and the pruning threshold for 
P(z|xkykzl).  Rather than try a large number of combinations of all 
5 parameters, we give an alternative technique that is 
significantly more efficient.  Simple math shows that the 
perplexity of the overall model P(zl|xjyj) × P(z|xkykzl) is equal to 
the perplexity of the cluster model P(zl|xjyj)  times the perplexity 
of the word model P(z|xkykzl).  The size of the overall model is 
clearly the sum of the sizes of the two models.  Thus, we try a 
large number of values of j, l, and a pruning threshold for 
P(zl|xjyj), computing sizes and perplexities of each, and a 
similarly large number of values of l,  k, and a separate threshold 
for P(z|xkykzl).  We can then look at all compatible pairs of these 
models (those with the same value of l) and quickly compute the 
perplexity and size of the overall models.  This allows us to 
relatively quickly search through what would otherwise be an 
overwhelmingly large search space. 

4. EXPERIMENTAL RESULTS AND 
DISCUSSION 

We performed our experiments on two different corpora.  The 
first was a subset of the Wall Street Journal corpus.  In 
particular, we used the first ten million words of the Wall Street 
Journal corpus for training data.  For heldout data, we used 
every 50th sentence, taken from a set of 250,000 words from the 
end of the corpus.  For test data, we used every 50th sentence 
taken from a disjoint set of 1,000,000 words at the end of the 
corpus. 

For most of our experiments, we built a large number of models.  
Rather than graph all points of all models together, we show 
only the outer envelope of the points.  That is, if for a given 
model type and a given point there is some other point of the 
same type with both lower perplexity and smaller size than the 
first point, then we do not graph the first, worse point. 

We built a very large number of models for English as follows.  
First, for experiment with clusters only, we tried most models of 
the form P(zl|xjyj) × P(z|xkykzl) for values 2 � j,k,l � 12.  For 
cutoffs, we tried 167 different combinations of cutoffs, where 
the trigram cutoff varied between 0 and 1024, in increments of 
about 50% and the bigram cutoff was various fractions of the 
trigram cutoff, between 0.1 and 1.2 times the trigram cutoff.  For 
weighted difference pruning and Stolcke pruning, we tried a 
large range of parameters sufficient to cover the same 
perplexities as covered by the count cutoffs. The size was 
measured as the total number of parameters of the system: one 
parameter for each bigram and trigram that was not thresholded, 
as well as one parameter for each normalization parameter α that 



  

was needed, and one parameter for each unigram.  In the pruning 
experiments, bigrams and trigrams were both pruned, unigrams 
never were.  This resulted in the smallest possible number of 
parameters being equal to the vocabulary size, approximately 
60,000 words.   
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Figure 1: Perplexity versus size on WSJ data 

Figure 1 shows the results of these experiments.  
Unfortunately, because of the very large range of sizes, it is 
difficult to resolve detail.  The main result that can be 
observed is that the cluster-only technique is by far the worst.  
The cluster-only technique is roughly an order of magnitude 
worse than the others.  In order to show more detail, we also 
plotted relative sizes.  Each technique was plotted compared to 
the Both Cluster technique.   
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Figure 2: Perplexity versus relative size on WSJ data 

The main result to notice here is that over a wide range of 
values, the Both Cluster technique produces models that are at 
most 2/3 the size of Stolcke-pruned models with the same 
perplexity.  In many cases, the models are half the size or less.  

This is a much larger improvement, than, say, the relatively 
small improvement of Stolcke pruning over count cutoffs alone. 

The other interesting result is the surprisingly good performance 
of count cutoffs, better than previously reported, and, at low 
thresholding values, marginally better than Weighted Difference 
pruning, and overlapping with Stolcke pruning.  We have a few 
explanations for this.  First, Stolcke did not compare his 
technique directly to count cutoffs, but only to Weighted 
Difference pruning.  A close look at the paper comparing 
Weighted Difference pruning [2] to count cutoffs shows that 
very few points were compared at the low-pruning end of the 
chart.  Also, in the previous work, rather trying a large number 
of reasonable values for bigram and trigram cutoffs, and then 
looking at the best ones, bigrams and trigrams were pruned in 
such a way as to have the same number of non-zero parameters.   

The most interesting analysis is to look at some sample settings 
of the parameters of the Both Clusters system, as shown in table 
1. The value “all” for k means that the tree was cut at infinite 
depth, i.e. each cluster contained a single word.  The “prune” 
column indicates the Stolcke pruning parameter used. 

l j prune 
P(zl|xjyj) 

k prune 
P(z|xkykzl) 

perplex size 

7 7 2560 13 3072 292.7 62077 

7 9 896 12 768 249.0 66938 

7 9 128 12 160 204.7 90382 

8 10 112 all 128 194.3 102436 

8 12 56 16 64 173.9 153799 

8 12 28 all 42 164.1 203372 

7 12 14 16 20 153.3 300193 

7 13 10 all 10 146.0 452421 

7 15 3 all 4 136.3 1007055 

7 16 1.5 all 1 134.2 2533680 

Table 1: Sample parameter settings for P(zl|xjyj) × P(z|xkykzl) 

First, notice that the two pruning parameters (in columns 3 and 
5) tend to be very similar.  This is good, since applying the 
theory of relative entropy pruning predicts that the two pruning 
parameters should actually have the same value.   

Next, compare our model, of the form P(zl|xjyj) × P(z|xkykzl)  to 
traditional IBM clustering, of the form P(zl|xlyl) × P(z|zl), which 
is equal to P(zl|xlyl) × P(z|x0y0zl).  Traditional IBM clustering 
makes two assumptions that we see are suboptimal.  First, it 
assumes that j=l.  We see that the best results come from 
unequal settings of j and l.  Second, more importantly, IBM 
clustering assumes that k=0.  We see that not only is the 
optimal setting for k not 0, it is typically the exact opposite: all 
(in which case P(z|xkykzl) = P(z|xyzl)), or 16, which is very 
similar.  That is, we see that words depend on the previous 
words, and that an independence assumption is a poor one.  Of 
course, many of these word dependencies are pruned away – 
but when a word does depend on something, the previous 
words are better predictors than the previous clusters.  The 



  

other important finding here is that for most of these settings, 
the unpruned model is actually larger than a normal trigram 
model – whenever k=all or 16, the unpruned model P(zl|xjyj) × 
P(z|xkykzl) is actually larger than an unpruned model P(z|xy). 

This analysis of the data is very interesting – it implies that the 
gains from clustering are not from compression, but rather from 
capturing structure.  Factoring the model into one in which the 
cluster is predicted first, and then the word is predicted given the 
cluster allows the structure and regularities of the model to be 
found.  This larger, better structured model can be pruned more 
effectively.   

We also performed experiments on a Chinese Newswire corpus 
of about 12 million characters, with a 65,502 word vocabulary. 
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It is interesting to compare the two sets of results.  The main 
conclusion is that for the two corpora, in two different 
languages, the results are qualitatively very similar.  In 
particular, again for Chinese, Stolcke pruning is better than 
Weighted Difference pruning; at very low threshold values, 
count cutoffs outperform both.  The Both Cluster technique 
works significantly better than Stolcke pruning alone, producing 
models that are at least a third smaller than Stolcke pruning 
alone at the same perplexity over a range of perplexity values. 
The most noticeable difference is that the Predict Cluster 
technique and the Both Cluster technique converge here, rather 
than diverging sharply, as in English.  This should not be 
interpreted too strongly.  Recall that Predict Cluster is a special 
case of Both Cluster.  In the Chinese data, for the largest models, 
it turned out to be optimal to use j=k=all, i.e. no clustering.  For 
the English data, marginally better performance at a given size 
could be achieved with j=16, k=all.  This marginal difference in 
the asymptotic best perplexity leads to large relative differences 
in sizes.  Indeed, for the same reason, the other steep 
divergences at the left sides of the graphs should not be over-
emphasized either. 

Why does our system work as well as it does?  Consider an 
example: P(Tuesday | party on).  We might prune this model 
to one such as P(WEEKDAY|EVENT PREPOSITION) 

×P(Tuesday|WEEKDAY).  Clearly, in general, it is not 
necessary to keep separate probabilities for P(Wednesday | 
party on WEEKDAY) and P(Thursday | party on WEEKDAY).  
On the other hand, consider P(Friday | God it’s) as in the 
phrase “Thank God it’s Friday”.  Clearly, P(Friday | God it’s 
WEEKDAY) differs markedly from P(Monday | God it’s 
WEEKDAY).   This ability to capture both idiomatic usage in 
the word model, and standard patterns in the cluster model, 
appears important.  An examination of unpruned WSJ n-grams 
is consistent with this hypothesis, though the unpruned n-
grams tend to be more like P(commission | and exchange), as 
in the phrase “Securities and exchange commission.” 

5. CONCLUSIONS 

We have performed a fairly thorough comparison of different 
types of language model size reduction.  One area we have not 
explored in this paper is the actual representation of the language 
model, which is generally more of an engineering issue.  
However, there are interesting interactions between the language 
model compression technique and the language model 
representation.  For instance, with count cutoff techniques, one 
can easily use the bigram data structure both to store P(z|y) and 
α(yz) in a single structure.  Similarly, there are interactions 
between language model representation, and some 
implementions of tree decoders for speech recognition.  These 
interactions cannot be ignored in practical systems. 

We have shown several interesting results.  They include the fact 
that when count cutoffs are well optimized, they are better in 
some cases than previously reported.  We have done the first 
systematic comparison of clustering techniques to pruning 
techniques, and shown that the pruning techniques outperform 
the clustering techniques, when used separately.  Finally, we 
showed that by combining clustering and Stolcke pruning 
techniques in a novel way, we can achieve significantly better 
results than Stolcke pruning using either alone.  Our clustering 
technique is particularly interesting because it typically 
increases the size of the unpruned model, while resulting in an 
overall decrease in pruned model size.  Similarly, it is 
interesting because it shows that using many different cluster 
sizes for different purposes is helpful, and that the cluster sizes 
are different than the conventional wisdom might suggest.  
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